The term ‘healthful’ means promoting good health, e.g., food, while the term ‘healthy’ means in good health e.g., a healthy person. But the term ‘healthy’ has been used for both the person and the good food (Drewnowski 2005). Healthfulness therefore implies the ability of a food to impart health benefits to the consumer. Meat is defined as the flesh (skeletal muscle) of animals that is eaten as food. This definition may include connective tissue and the fat attached to the muscle (Williams 2007). In culinary terms, meat is divided majorly into two categories; red meat and white meat. Red meat refers to meat from cattle, sheep, and goat (Williams 2007) while white meat is mainly from poultry (Cosgrove et al. 2005). Meat remains an important part of the human diet especially in the developed world (McAfee et al. 2010). Meat is nutrient dense (Cosgrove et al. 2005) with substantial amounts of protein, B vitamins, zinc, iron, and essential amino acids, and these nutrients are easily absorbed in the body (Avery 2004).
Red meat is an important source of highly digestible protein with raw red muscle meat containing 20–25 g protein/ 100 g, having all essential amino acids and does not contain limiting amino acids; and 2–8 g fat/100 g for lean meat, with virtually no carbohydrate. Red meat is a good source of omega-3 polyunsaturated fatty acids, essential vitamins and minerals. Mutton is particularly nutrient-dense, and is a rich source of thiamin, vitamins B6 and B12, iron, phosphorus and copper (Williamson et al. 2005; Williams 2007). Fish and shellfish are excellent sources of protein (13–22 g protein/ 100 g) but are relatively poor in fat content (1–23 g fat/100 g) and carbohydrate content (0–3 g carbohydrate/100 g) (Nurnadia et al. 2011). Chicken muscle meat provides 19–22 g protein/ 100 g and 0.3–0.9 g fat/ 100 g (Wattanachant et al. 2004). But even with this encouraging data on nutrient composition, there have been reports of association of red meat consumption with incidences of colon cancer and cardiovascular diseases, thereby creating a negative vibe towards meat consumption (McAfee et al. 2010). For the purposes of this paper, the term meats shall mean beef, pork, poultry, fish, game meat, and offal.
Edible insects have been consumed by humans since time immemorial and entomophagy is still practiced presently in the world, particularly in Africa, Asia and Latin America (Pali-Schöll et al. 2019). Insects are ubiquitous and are the most diverse group of organisms in life’s history (Raheem et al. 2019). More than 1000 species of insects are consumed worldwide, providing nutrition and economic lifeline to many communities (Raheem et al. 2019). Most insects have higher protein content with similar digestibility compared to conventional livestock (Kinyuru 2009). The crude protein content of many insect species has been found to exceed 60%. The house cricket [Acheta domesticus (L.)], for instance, was shown to surpass soy protein in terms of being a protein source when fed to weaning rats (Finke et al. 1989). Chen & Akre (1994) found the weaver ant, a common insect in China, to contain 42–67% protein and being rich in amino acids. Some insects have been shown to have protein with superior solubility (Omotoso 2006) and some have been reported to have protein with high biological value (de Guevara et al. 1995; Solomon et al. 2008).
Edible insects can be a source of fat and fiber in the diet. For instance, termites contain, on average, 32% fat and 5% fiber, while crickets have 13% fat and 10% fiber based on dry matter (Rumpold and Schlüter 2013). Edible insects are high in monounsaturated fatty acids and polyunsaturated fatty acids as well as vitamins such as riboflavin, panthothenic acid, biotin, and in some cases folic acid (Rumpold and Schlüter 2013). On fresh weight basis, the energy content of insects is on average comparable to meat from conventional livestock except for pork since it has high fat content (Durst and Johnson 2010). Insects are rich in minerals including copper, manganese, selenium, iron, calcium, zinc, and phosphorus, with a particularly high content of iron and zinc (Barker et al. 1998; Christensen et al. 2006; Kinyuru 2009; Rumpold and Schlüter 2013).
A different approach of looking at the nutritional value of foods, referred to as nutrient profiling, has been developed in the recent past. Nutrient profiling is the science of classifying foods according to their nutritional composition (Scarborough et al. 2007) for intentions related to promoting health and preventing disease (Rayner 2013; Maillot et al. 2008). Nutrient profiles are developed using different algorithms, referred to as nutrient profile models, which use food composition data (Quinio et al. 2007). It can be used in various situations, for instance, food labelling and its regulation, regulation of advertising (Scarborough et al. 2007), regulating commercial food marketing to consumers, promoting reformulation of food products, and regulation of nutrition and health claims on foods (Maschkowski et al. 2014). Nutrient profiling can be used to differentiate foods that are healthful from those that are less healthful (Scarborough et al. 2007). Therefore, they can assist consumers in making healthful dietary choices (Eržen et al. 2015) and hence useful in tackling under- and over-nutrition (Payne et al. 2015). The term ‘healthful’ means promoting good health, e.g., food, while the term ‘healthy’ means in good health e.g., a healthy person. But the term ‘healthy’ has been used for both the person and the good food (Drewnowski 2005).
A nutrient profiling system/model is a scoring tool based on the nutrient composition of a food according to scientific and reasonable standards (Townsend 2010). Nutrient profiling filters a huge quantity of nutritional data into a single convenient index or indicator (Arvaniti & Panagiotakos 2008). Nutrient profile models are mostly based on (1) qualifying nutrients known to be beneficial to health (positive nutrients), mostly vitamins and minerals, (2) disqualifying nutrients (negative nutrients), mostly fats, added sugars, and sodium, or (3) the combination of both (Drewnowski and Fulgoni 2008). Some models, for example, the WXYfm model, use a simple scoring system where negative points are assigned for beneficial nutrients and positive points are assigned for negative nutrients based on the nutritional content of 100 g of food or drink, and the points are summed up (Rayner 2005). Certain cutoff points are determined and foods or drinks that score above the cutoffs are categorized as ‘less healthful’ (Miller et al. 2009). The general ‘building blocks’ for the models include: nutrients selection, reference amount, food category declination, and cut-off use. Nutrient selection is concerned about the balance between positive nutrients and negative nutrients and how many are to be included; reference amount is the basis for comparison, e.g. per 100 g, per 100 kcal, per serving; food category declination is concerned about the likelihood of applying the same nutritional criteria (nutrient scores and/or thresholds) for all foods (across the board model) or specific criteria according to food category (category-wise model); and cut-off use suggest the likelihood of either allocating scores based on the nutrient composition or using threshold values for each nutrient (Garsetti et al. 2007).
Consumers have difficulty using food package labels to derive nutritional information and they need refined support in making dietary choices. Additionally, public health messages related to dietary choices are not fully embraced or understood by the general public, who invariably purchase food instead of nutrients (Masset 2012). Nutrient profile (NP) models can therefore furnish consumers with instant data on the levels or amounts of nutrients in individual foods and hence the ability to make quick decisions on food choice (Lobstein and Davies 2008).
This study evaluated the healthfulness of edible insects and commonly consumed meats in Sub-Saharan Africa using three nutrient profiling models; WXYfm (Ofcom), RRR (Ratio of Recommended to Restricted), and GDA (Guideline Daily Amounts). The WXYfm model was developed by the Food Standards Agency (FSA) in the UK with an aim of controlling advertising of food to children. It is a scoring system where points are assigned based on the nutritional value in 100 g of the food or drink. It uses the following nonbeneficial nutrients; energy, total sugar, saturated fat and sodium; and counterbalances with beneficial nutrients, namely fruits, vegetables and nuts (FVN), fiber and protein. The model classifies foods ‘across the board’ (Scarborough et al. 2010) as either healthful, intermediate, or less healthful (Quinio et al. 2007).
The Ratio of Recommended to Restricted (RRR) model is a tool that provides a summary of the ratio of beneficial food components that should be eagerly consumed, i.e., protein, dietary fiber, calcium, iron, vitamins A and C, to those that should be limited, i.e., energy (calories), sugars, cholesterol, saturated fat, and sodium. The RRR provides a single index that denotes this ratio which consumers can use to compare the nutritional value of food items as opposed to the complexity of interpreting multiple numeric values on food labels, recommendations or standards. The RRR is designed to help consumers make healthful food choices and it can identify nutrient-rich foods within food categories (Scheidt and Daniel 2004). The details of the development and application of the RRR model are available here (Scheidt and Daniel 2004).
The GDA Model is a LIM scoring system based on three nutrients to limit: fat, salt, and saturated fatty acids (SFA), with the output being a mean percentage score. It is based on maximum recommended daily amounts of the three nutrients in 100 g of food. The LIM score model is a threshold model which categorizes food as ‘healthful’ or ‘less healthful’ based on the amounts of negative nutrients and has been used as the basis for health claims on food labels, in addition to helping consumers reduce the intake of nutrients to limit (Scarborough et al. 2007).
The objective of this study was therefore to evaluate the healthfulness of edible insects and commonly consumed meats in Sub-Saharan Africa using three nutrient profiling models with a view of identifying the most healthful options for consumers to make informed and better dietary choices.