Acquas E, Tanda G, Di Chiara G (2002) Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats. Neuropsychopharmacology 27:182–193
Article
CAS
Google Scholar
Akomolafe SF, Akinyemi AJ, Ogunsuyi OB, Oyeleye SI, Oboh G, Adeoyo OO, Allismith YR (2017) Effect of caffeine, caffeic acid and their various combinations on enzymes of cholinergic, monoaminergic and purinergic systems critical to neurodegeneration in rat brain-in vitro. Neurotoxicology 62:6–13
Article
CAS
Google Scholar
Alasehirli B, Cekmen M, Nacak M, Balat A (2005) Effects of caffeine on placental total nitrite concentration: a 21-day, vehicle-controlled study in rats. Curr Ther Res 66:130–137
Article
CAS
Google Scholar
Albers RW, Siegel GI (2012) Membrane transport. In: Brady ST, Siegel GJ, Albers RW, Price D (eds) Basic neurochemistry: principles of molecular, cellular and medical neurobiology, 8th edn. Elsevier Academic Press, Massachusetts, USA, pp 41–62
Google Scholar
Antkiewicz-Michaluk L, Wąsik A, Możdżeń E, Romańska I, Michaluk J (2014) Antidepressant-like effect of tetrahydroisoquinoline amines in the animal model of depressive disorder induced by repeated administration of a low dose of reserpine: behavioral and neurochemical studies in the rat. Neurotox Res 26:85–98
Article
CAS
Google Scholar
Aoyama K, Matsumura N, Watabe M, Wang F, Kikuchi-Utsumi K, Nakaki T (2011) Caffeine and uric acid mediate glutathione synthesis for neuroprotection. Neuroscience 181:206–215
Article
CAS
Google Scholar
Arnone D, McIntosh AM, Ebmeier KP, Munafo MR, Anderson IM (2012) Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol 22:1–16
Article
CAS
Google Scholar
Barros-Miñones L, Goñi-Allo B, Suquia V, Beitia G, Aguirre N, Puerta E (2015) Contribution of dopamine to mitochondrial complex I inhibition and dopaminergic deficits caused by methylenedioxymethamphetamine in mice. Neuropharmacology 93:124–133
Article
Google Scholar
Behr GA, Moreira JC, Frey BN (2012) Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxidative Med Cell Longev 2012:609421. https://doi.org/10.1155/2012/609421
Article
CAS
Google Scholar
Bhattacharya SK, Satyan KS, Chakrabarti A (1997) Anxiogenic action of caffeine: an experimental study in rats. J Psychopharmacol 11:219–224
Article
CAS
Google Scholar
Blardi P, de Lalla A, Urso R, Auteri A, Dell’Erba A, Bossini L, Castrogiovanni P (2005) Activity of citalopram on adenosine and serotonin circulating levels in depressed patients. J Clin Psychopharmacol 25:262–266
Article
CAS
Google Scholar
Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60:1527–1533
Article
CAS
Google Scholar
Brown RE, Corey SC, Moore AK (1999) Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behav Genet 29:263–271
Article
Google Scholar
Cappelletti S, Daria P, Sani G, Aromatario M (2015) Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol 13(2015):71–88
Article
CAS
Google Scholar
Charles HC, Lazeyras F, Krishnan KR, Boyko OB, Payne M, Moore D (1994) Brain choline in depression: in vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Prog. Neuropsychopharmacol. Biol Psychiatry 18:1121–1127
Article
CAS
Google Scholar
Ciarlone AE (1978) Further modification of a fluoromertric method for analyzing brain amines. Microchem J 23:9–12
Article
CAS
Google Scholar
Cunha RA, Agostinho PM (2010) Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J Alzheimers Dis 20:S95–S116
Article
CAS
Google Scholar
Dale E, Bang-Andersen B, Sánchez C (2015) Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 95:81–97
Article
CAS
Google Scholar
Devasagayam TP, Kamat JP, Mohan H, Kesavan PC (1996) Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochim Biophys Acta 1282:63–70
Article
Google Scholar
El Yacoubi M, Ledent C, Parmentier M, Bertorelli R, Ongini E, Costentin J, Vaugeois JM (2001) Adenosine A2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2A receptor knockout mice. Br J Pharmacol 134:68–77
Article
Google Scholar
Erecińska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19
Article
Google Scholar
Erickson JD, Eiden LE, Hoffman BJ (1992) Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci U S A 89:10993–10997
Article
ADS
CAS
Google Scholar
Ferré S (2016) Mechanisms of the psychostimulant effects of caffeine:implications for substance use disorder. Psychopharmacology 233(10):1963–1979
Article
Google Scholar
Ferré S, O'Connor WT, Svenningsson P, Björklund L, Lindberg J, Tinner B, Strömberg I, Goldstein M, Ögren SO, Ungerstedt U, Fredholm BB, Fuxe K (1996a) Dopamine D1 receptor-mediated facilitation of GABAergic neurotransmission in the rat strioentopenduncular pathway and its modulation by adenosine A1 receptor-mediated mechanisms. Eur J Neurosci 8:1545–1553
Article
Google Scholar
Ferré S, Popoli P, Tinner-Staines B, Fuxe K (1996b) Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites. Neurosci Lett 208:109–112
Article
Google Scholar
Fisone G, Borgkvist A, Usiello A (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61:857–872
Article
CAS
Google Scholar
Fredholm BB (1995) Astra award lecture. Adenosine, adenosine receptorsand the actions of caffeine. Pharmacol Toxicol 76:93–101
Article
CAS
Google Scholar
Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133
CAS
PubMed
Google Scholar
Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270
Article
CAS
Google Scholar
Fryer JD, Lukas RJ (1999) Antidepressants noncompetitively inhibit nicotinic acetylcholine receptor function. J Neurochem 72:1117–1124
Article
CAS
Google Scholar
Gałecki P, Gałecka E, Maes M, Chamielec M, Orzechowska A, Bobińska K, Lewiński A, Szemraj J (2012) The expression of genes encoding for COX-2, MPO, iNOS, and sPLA2-IIA in patients with recurrent depressive disorder. J Affect Disord 138:360–366
Article
Google Scholar
Garrett BE, Griffiths RR (1997) The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol Biochem Behav 53:533–541
Article
Google Scholar
Gaweł S, Wardas M, Niedworok E, Wardas P (2004) Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 57:453–455
PubMed
Google Scholar
Gersner R, Gordon-Kiwkowitz M, Zangen A (2009) Automated behavioral analysis of limbs’ activity in the forced swim test. J Neurosci Methods 180:82–86
Article
Google Scholar
Gorun V, Proinov I, Baltescu V, Balaban G, Barzu O (1978) Modified Ellman procedure for assay of cholinesterases in crude enzymatic preparation. Anal Biochem 86(1):324–326
Article
CAS
Google Scholar
Guo X, Park Y, Freedman ND, Sinha R, Hollenbeck AR, Blair A, Chen H (2014) Sweetened beverages, coffee, and tea and depression risk among older US adults. PLoS One 9:e94715
Article
ADS
Google Scholar
Hashiguchi W, Nagatomo I, Akasaki Y, Uchida M, Tominaga M, Takigawa M (2001) Influences of caffeine to nitric oxide production and zonisamide concentration in the brain of seizure susceptible EL mice. Psychiatry Clin Neurosci 55:319–324
Article
CAS
Google Scholar
Hennings EC, Kiss JP, De Oliveira K, Toth PT, Vizi ES (1999) Nicotinic acetylcholine receptor antagonistic activity of monoamine uptake blockers in rat hippocampal slices. J Neurochem 73:1043–1050
Article
CAS
Google Scholar
Higley MJ, Picciotto MR (2014) Neuromodulation by acetylcholine: examples from schizophrenia and depression. Curr Opin Neurobiol 29:88–95
Article
CAS
Google Scholar
Holmes PV (2003) Rodent models of depression: reexamining validity without anthropomorphic inference. Crit Rev Neurobiol 15:143–174
Article
Google Scholar
Holtzman SG, Finn IB (1988) Tolerance to behavioral effects of caffeine in rats. Pharmacol Biochem Behav 29:411–418
Article
CAS
Google Scholar
Hsu CW, Wang CS, Chiu TH (2010) Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice. J Biomed Sci 17:4. https://doi.org/10.1186/1423-0127-17-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakobsen JC, Katakam KK, Schou A, Hellmuth SG, Stallknecht SE, Leth-Møller K, Iversen M, Banke MB, Petersen IJ, Klingenberg SL, Krogh J, Ebert SE, Timm A, Lindschou J, Gluud C (2017) Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial Sequential Analysis. BMC Psychiatry 17:162. https://doi.org/10.1186/s12888-017-1311-5
Article
PubMed
PubMed Central
Google Scholar
Janowsky DS, el- Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632–635
Article
CAS
Google Scholar
Jin MJ, Yoon CH, Ko HJ, Kim HM, Kim AS, Moon HN, Jung SP (2016) The relationship of caffeine intake with depression, anxiety, stress, and sleep in Korean adolescents. Korean J Fam Med 37:111–116
Article
Google Scholar
Karcz-Kubicha M, Antoniou K, Terasmaa A, Quarta D, Solinas M, Justinova Z, Pezzola A, Reggio R, Müller CE, Fuxe K, Goldberg SR, Popoli P, Ferré S (2003) Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration. Neuropsychopharmacology 28:1281–1291
Article
CAS
Google Scholar
Kuzmin A, Johansson B, Gimenez L, Ögren S, Fredholm BB (2006) Combination of adenosine A1 and A2A receptor blocking agents induces caffeine-like locomotor stimulation in mice. Eur Neuropsychopharmacol 16:129–136
Article
CAS
Google Scholar
Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35:676–692
Article
CAS
Google Scholar
Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442
Article
Google Scholar
Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, Picciotto MR (2013) Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci U S A 110:3573–3578
Article
ADS
CAS
Google Scholar
Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochem Biophys Acta 582:67–67
Article
CAS
Google Scholar
Moshage H, Kok B, Huizenga JR, Jansen PL (1995) Nitrite and nitrate determination in plasma: a critical evaluation. Clin Chem 41(6 Pt 1):892–896
CAS
PubMed
Google Scholar
Nehlig A, Daval J-L, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev 17:139–170
Article
CAS
Google Scholar
Pham NM, Nanri A, Kurotani K, Kuwahara K, Kume A, Sato M, Hayabuchi H, Mizoue T (2014) Green tea and coffee consumption is inversely associated with depressive symptoms in a Japanese working population. Public Health Nutr 17:625–633
Article
Google Scholar
Porkka-Heiskanen T (1999) Adenosine in sleep and wakefulness. Ann Med 31:125–129
Article
CAS
Google Scholar
Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 59:383–388
Article
CAS
Google Scholar
Ruusunen A, Lehto SM, Tolmunen T, Mursu J, Kaplan GA, Voutilainen S (2010) Coffee, tea and caffeine intake and the risk of severe depression in middle-aged Finnish men: the Kuopio ischaemic heart disease risk factor study. Public Health Nutr 13:1215–1220
Article
Google Scholar
Saricicek A, Esterlis I, Maloney KH, Mineur YS, Ruf BM, Muralidharan A, Chen JI, Cosgrove KP, Kerestes R, Ghose S, Tamminga CA, Pittman B, Bois F, Tamagnan G, Seibyl J, Picciotto MR, Staley JK, Bhagwagar Z (2012) Persistent β2*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder. Am J Psychiatry 169:851–859
Article
Google Scholar
Schechter LE, Ring RH, Bayer CE, Haghes ZA, Khawaja X, Malberg JE, Rosenzweig-Lipson S (2005) Innovative approaches for the development of antidepressant drugs: current and future strategies. J Am Soc Exp Neurotherap 2:590–611
Google Scholar
Shi X, Dalal NS, Jain AC (1991) Antioxidant behaviour of caffeine: efficient scavenging of hydroxyl radicals. Food Chem Toxicol 29:1–6
Article
CAS
Google Scholar
Souza MA, Mota BC, Gerbatin RR, Rodrigues FS, Castro M, Fighera MR, Royes LF (2013) Antioxidant activity elicited by low dose of caffeine attenuates pentylenetetrazol-induced seizures and oxidative damage in rats. Neurochem Int 62:821–830
Article
CAS
Google Scholar
Svenningsson P, Nomikos GG, Fredholm BB (1999) The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. J Neurosci 19:4011–4022
Article
CAS
Google Scholar
Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide in neurological disorders. Can J Physiol Pharmacol 87:581–594
Article
CAS
Google Scholar
Tsakiris S, Angelogianni P, Schulpis KH, Behrakis P (2000) Protective effect of l-cysteine and glutathione on rat brain Na+, K+ ATPase inhibition induced by free radicals. Z Naturforsch 55:271–277
Article
CAS
Google Scholar
Wang L, Shen X, Wu Y, Zhang D (2016) Coffee and caffeine consumption and depression: A meta-analysis of observational studies. Aust NZJ Psychiatry 50:228–242
Article
Google Scholar
Wasik A, Romańska I, Antkiewicz-Michaluk L (2009) 1-Benzyl-1,2,3,4-tetrahydroisoquinoline, an endogenous parkinsonism-inducing toxin, strongly potentiates MAO-dependent dopamine oxidation and impairs dopamine release: ex vivo and in vivo neurochemical studies. Neurotox Res 15:15–23
Article
CAS
Google Scholar
Williams M (1987) Purine receptors in mammalian tissues: pharmacology and functional significance. Annu Rev Pharmacol Toxicol 27:315–345
Article
CAS
Google Scholar
Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309
Article
CAS
Google Scholar