Abdelli LS, Samsam A, Naser SA (2019) Propionic acid induces gliosis and neuro-inflammation through modulation of PTEN/AKT pathway in autism spectrum disorder. Sci Rep 9:8824. https://doi.org/10.1038/s41598-019-45348-z
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Ashwood P, Wills S, Van de Water J (2006) The immune response in autism: a new frontier for autism research. J Leukoc Biol 80(1):1–15. https://doi.org/10.1189/jlb.1205707
Article
CAS
PubMed
Google Scholar
Babalola KT, Oyebanjo O, Adekoya VA et al (2021) Protective effect of methanol leaf extract of Cnidoscolus aconitifolius against lipopolysaccharides-induced cortico-hippocampal neuroinflammation, oxidative stress and memory impairment. Adv Tradit Med. https://doi.org/10.1007/s13596-021-00578-3
Article
Google Scholar
Barnhart CD, Yang D, Lein PJ (2015) Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS ONE 10(4):e0124521. https://doi.org/10.1371/journal.pone.0124521
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23(2–3):183–187. https://doi.org/10.1016/j.ijdevneu.2004.09.006
Article
PubMed
Google Scholar
Beach TG, Woodhurst WB, MacDonald DB, Jones MW (1995) Reactive microglia in hippocampal sclerosis associated with human temporal lobe epilepsy. Neurosci Lett 191(1–2):27–30. https://doi.org/10.1016/0304-3940(94)11548-1
Article
CAS
PubMed
Google Scholar
Bigelow RT, Agrawal Y (2015) Vestibular involvement in cognition: visuospatial ability, attention, executive function, and memory. J Vestib Res 25(2):73–89. https://doi.org/10.3233/VES-150544
Article
PubMed
Google Scholar
Bjorklund G, Saad K, Chirumbolo S, Kern JK, Geier DA, Geier MR, Urbina MA (2016) Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol Exp (wars) 76(4):257–268. https://doi.org/10.21307/ane-2017-025
Article
Google Scholar
Bukhari SI, Alfawaz H, Al-Dbass A, Bhat RS, Moubayed NM, Bukhari W, Hassan SA, Merghani N, Elsamaligy S, El-Ansary A (2020) Efficacy of Novavit in ameliorating the neurotoxicity of propionic acid. Transl Neurosci 11(1):134–146. https://doi.org/10.1515/tnsci-2020-0103
Article
CAS
PubMed
PubMed Central
Google Scholar
Charles VV, Michel TW (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. https://doi.org/10.1038/nprot.2006.116
Article
Google Scholar
Chen KL, Chen CT, Lin CH, Huang CY, Lee YC (2019) Prediction of playfulness by pretend play, severity of autism behaviors, and verbal comprehension in children with autism spectrum disorder. Neuropsychiatr Dis Treat 15:3177–3186. https://doi.org/10.2147/NDT.S223681
Article
PubMed
PubMed Central
Google Scholar
Dash SC, Tripathi SN, Singh RH (1983) Clinical assessment of medhya drugs in the management of psychosis (unmada). Anc Sci Life 3(2):77–81
CAS
PubMed
PubMed Central
Google Scholar
de la Bâtie CD, Barbier V, Roda C, Brassier A, Arnoux JB, Valayannopoulos V, Guemann AS, Pontoizeau C, Gobin S, Habarou F, Lacaille F, Bonnefont JP, Canouï P, Ottolenghi C, De Lonlay P, Ouss L (2018) Autism spectrum disorders in propionic acidemia patients. J Inherit Metab Dis 41:623–629. https://doi.org/10.1007/s10545-017-0070-2
Article
CAS
PubMed
Google Scholar
DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139(Suppl 2):136–153. https://doi.org/10.1111/jnc.13607
Article
CAS
PubMed
PubMed Central
Google Scholar
Falk S, Götz M (2017) Glial control of neurogenesis. Curr Opin Neurobiol 47:188–195. https://doi.org/10.1016/j.conb.2017.10.025
Article
CAS
PubMed
Google Scholar
Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20(3):269–287. https://doi.org/10.1016/0165-0173(94)00015-h
Article
CAS
PubMed
Google Scholar
Guan X, Li X, Yang X, Yan J, Shi P, Ba L, Cao Y, Wang P (2019) The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci 235:116795. https://doi.org/10.1016/j.lfs.2019.116795
Article
CAS
PubMed
Google Scholar
Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65(5):2146–2156. https://doi.org/10.1046/j.1471-4159.1995.65052146.x
Article
CAS
PubMed
Google Scholar
Jiji KN, Muralidharan P (2021a) Identification and characterization of phytoconstituents of ethanolic root extract of Clitoria ternatea L. utilizing HR-LCMS analysis. Plant Science Today 8(3):535–540. https://doi.org/10.14719/pst.2021.8.3.1141
Article
CAS
Google Scholar
Jiji KN, Muralidharan P (2021b) Neuroprotective effects of Clitoria ternatea L. against propionic acid-induced behavior and memory impairment in autistic rat model. Futur J Pharm Sci 7:163. https://doi.org/10.1186/s43094-021-00314-3
Article
Google Scholar
Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW 2nd, Mochly-Rosen D (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22(10):1635–1648. https://doi.org/10.1038/s41593-019-0486-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamkaen N, Wilkinson JM (2011) The antioxidant activity of Clitoria ternatea flower petal extracts and eye gel. Phytother Res 23:1624–1625. https://doi.org/10.1002/ptr.2832
Article
Google Scholar
Kondratyev A, Gale K (2000) Intracerebral injection of caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-evoked status epilepticus. Brain Res Mol Brain Res 75(2):216–224. https://doi.org/10.1016/s0169-328x(99)00292-2
Article
CAS
PubMed
Google Scholar
MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE, Boon F, Taylor AR, Kavaliers M, Ossenkopp KP (2007) Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 176(1):149–169. https://doi.org/10.1016/j.bbr.2006.07.025
Article
CAS
PubMed
Google Scholar
MacFabe DF, Rodriguez-Capote K, Hoffman JE, Franklin AE, Mohammad-Asef Y, Taylor AR, Boon F, Cain DP, Kavaliers M, Possmayer F, Ossenkopp K (2008) A Novel rodent model of Autism: Intraventricular Infusions of Propionic Acid Increase locomotor activity and induce neuroinflammation and oxidative stress in discrete regions of adult rat brain. Am J Biochem Biotechnol 4(2):146–166. https://doi.org/10.3844/ajbbsp.2008.146.166
Article
CAS
Google Scholar
Margret AA, Begum TN, Parthasarathy S, Suvaithenamudhan S (2015) A strategy to employ Clitoria ternatea as a prospective brain drug confronting monoaine oxidase (MAO) against neurodegenerative diseases and depression. Natural Products and Bioprospecting 5:293–306. https://doi.org/10.1007/s13659-015-0079-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Matta SM, Hill-Yardin EL, Crack PJ (2019) The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav Immun 79:75–90. https://doi.org/10.1016/j.bbi.2019.04.037
Article
PubMed
Google Scholar
Meeking MM, MacFabe DF, Mepham JR, Foley KA, Tichenoff LJ, Boon FH, Kavaliers M, Ossenkopp KP (2020) Propionic acid induced behavioural effects of relevance to autism spectrum disorder evaluated in the hole board test with rats. Prog Neuropsychopharmacol Biol Psychiatry 97:109794. https://doi.org/10.1016/j.pnpbp.2019.109794
Article
CAS
PubMed
Google Scholar
Mirza R, Sharma B (2018) Selective modulator of peroxisome proliferator-activated receptor-α protects propionic acid induced autism-like phenotypes in rats. Life Sci 214:106–117. https://doi.org/10.1016/j.lfs.2018.10.045
Article
CAS
PubMed
Google Scholar
Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60. https://doi.org/10.1016/0165-0270(84)90007-4
Article
CAS
PubMed
Google Scholar
Mukherjee PK (2019) Quality control and evaluation of herbal drugs—evaluating natural products and traditional medicine. Elsevier, Amsterdam, pp 79–149
Book
Google Scholar
Mukherjee PK, Kumar V, Kumar NS, Heinrich M (2008) The Ayurvedic medicine Clitoria ternatea—from traditional use to scientific assessment. J Ethnopharmacol 120:291–301. https://doi.org/10.1016/j.jep.2008.09.009
Article
PubMed
Google Scholar
Murthy HN, Yadav GG, Dewir YH, Ibrahim A (2021) Phytochemicals and biological activity of desert date (Balanites aegyptiaca (L.) Delile). Plants 10:32. https://doi.org/10.3390/plants10010032
Article
CAS
Google Scholar
Noyan-Ashraf MH, Brandizzi F, Juurlink BH (2005) Constitutive nuclear localization of activated caspase 3 in subpopulations of the astroglial family of cells. Glia 49(4):588–593. https://doi.org/10.1002/glia.20140
Article
PubMed
Google Scholar
Nunez J (2008) Morris water maze experiment. J vis Exp 19:897. https://doi.org/10.3791/897
Article
Google Scholar
O’Callaghan JP, Sriram K (2005) Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf 4(3):433–442. https://doi.org/10.1517/14740338.4.3.433
Article
CAS
PubMed
Google Scholar
Ozturk Y, Aydini S, Beis R, Baser KH, Berberoglu H (1996) Effect of Hypericum pericum L. and Hypericum calycinum L. extracts on the central nervous system in mice. Phytomedicine 3:139–146
Article
CAS
Google Scholar
Pardo CA, Meffert MK (2018) Animal models in autism research: The legacy of Paul H. Patterson Exp Neurol 299(Pt A):197–198. https://doi.org/10.1016/j.expneurol.2017.11.004
Article
PubMed
Google Scholar
Paudel R, Raj K, Gupta YK, Singh S (2020) Oxiracetam and zinc ameliorates autism-like symptoms in propionic acid model of rats. Neurotox Res 37(4):815–826. https://doi.org/10.1007/s12640-020-00169-1
Article
CAS
PubMed
Google Scholar
Rai KS (2010) Neurogenic potential of Clitoria ternatea aqueous root extract–\a basis for enhancing learning and memory. Int J Pharm Sci Rev Res 4:186–191
Google Scholar
Rai KS, Murthy KD, Karanth KS, Rao MS (2001) Clitoria ternatea (Linn) root extract treatment during growth spurt period enhances learning and memory in rats. Indian J Physiol Pharmacol 45(3):305–313
CAS
PubMed
Google Scholar
Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE (2018) Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol Diagn Ther 22(5):571–593. https://doi.org/10.1007/s40291-018-0352-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosengren LE, Wikkelsø C, Hagberg L (1994) A sensitive ELISA for glial fibrillary acidic protein: application in CSF of adults. J Neurosci Methods 51(2):197–204. https://doi.org/10.1016/0165-0270(94)90011-6
Article
CAS
PubMed
Google Scholar
Sala R, Amet L, Blagojevic-Stokic N, Shattock P, Whiteley P (2020) Bridging the gap between physical health and autism spectrum disorder. Neuropsychiatr Dis Treat 16:1605–1618. https://doi.org/10.2147/NDT.S251394
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarumathy K, Dhana Rajan S, Malli TV, Jayakanthi J (2011) Evaluation of phytoconstituents, nephro-protective and antioxidant activities of Clitoria ternatea. J Appl Pharm Sci 1:164–172
Google Scholar
Schain M, Kreisl WC (2017) Neuroinflammation in neurodegenerative disorders—a review. Curr Neurol Neurosci Rep 17(3):25. https://doi.org/10.1007/s11910-017-0733-2
Article
CAS
PubMed
Google Scholar
Shahnas N, Akhila S (2014) Phytochemical, in vitro and in silico evaluation on Clitoria ternatea for Alzheimer’s disease. Pharma Tutor 2(9):135–149
Google Scholar
Sharma R, Rahi S, Mehan S (2019) Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicol Rep 6:1164–1175. https://doi.org/10.1016/j.toxrep.2019.10.019
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi SR, Cote RJ, Taylor CR (2001) Antigen retrieval techniques: current perspectives. J Histochem Cytochem 49(8):931–937. https://doi.org/10.1177/002215540104900801
Article
CAS
PubMed
Google Scholar
Thirupathi K, Mohan GK, Krishna DR (2010) Neuropharmacological profile of Balanites roxburghii. Pharmacologyonline 2:218–227
Google Scholar
Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81. https://doi.org/10.1002/ana.20315
Article
CAS
PubMed
Google Scholar
Verkhratsky A, Ho MS, Parpura V (2019) Evolution of neuroglia. Adv Exp Med Biol 1175:15–44. https://doi.org/10.1007/978-981-13-9913-8_2
Article
CAS
PubMed
PubMed Central
Google Scholar
Vyawahare NS, Nikam A, Sharma RG, Deshpande MM et al (2007) Effect of Clitoria ternatea extract on radial arm maze task performance and central cholinergic activity in rats. J Cell Tissue Res 7:949–952
CAS
Google Scholar
Witters P, Debbold E, Crivelly K, Vande Kerckhove K, Corthouts K, Debbold B, Andersson H, Vannieuwenborg L, Geuens S, Baumgartner M, Kozicz T, Settles L, Morava E (2016) Autism in patients with propionic acidemia. Mol Genet Metab 119(4):317–321. https://doi.org/10.1016/j.ymgme.2016.10.009
Article
CAS
PubMed
Google Scholar
Yadav R, Agarwala M (2011) Phytochemical analysis of some medicinal plants. J Phytol 3(12):10–14
CAS
Google Scholar
Yang QQ, Zhou JW (2019) Neuroinflammation in the central nervous system: symphony of glial cells. Glia 67(6):1017–1035. https://doi.org/10.1002/glia.23571
Article
PubMed
Google Scholar