A.O.A.C. (1990) Official tentative methods of analysis of Association of Official Analytical Chemists, 15th edn. Washington, DC
Abou-Amer AI, Kamel AS (2011) Growth, yield and nitrogen utilization efficiency of quinoa (Chenopodium quinoa) under different rates and methods of nitrogen fertilization. Egypt J Agron 33(2):155–166. https://doi.org/10.21608/AGRO.2011.156
Article
Google Scholar
Abugoch L, Castro E, Tapia C, Anõn MC, Gajardo P, Villarroel A (2009) Stability of quinoa flour proteins (Chenopodium quinoa Willd.) during storage. Int J Food Sci Technol 44:2013–2020
Article
CAS
Google Scholar
Ascheri JLR, Spehar CR, Nascimento RE (2002) Comparative chemical characterization of instantaneous fours by extrusion-cooking from quinoa (Chenopodium quinoa Willd.), corn and rice. Alimentaria 331:89–92
Google Scholar
Attia MA (2005) Sowing wheat (Triticum aestivum L.) at Matrouh. Ph.D. Thesis, Fac. of Agriculture Ain Shams, Univ. Egypt
Amaliotis D, Therios I, Karatissiou M (2004) Effect of nitrogen fertilization on growth, leaf nutrient concentration and photosynthesis in three peach cultivars. ISHS Acta Hortic 449:36–42
Google Scholar
Awadalla A, Morsy ASM (2017) Influence of planting dates and nitrogen fertilization on the performance of quinoa genotypes under Toshka conditions. Egypt J Agron 39(1):27–40. https://doi.org/10.21608/agro.2017.440.1047
Article
Google Scholar
Basra SMA, Iqbal S, Afzal I (2014) Evaluating the response of nitrogen application on growth, development and yield of quinoa genotypes. Int J Agric Biol 16(5):886–892
Google Scholar
Beaman AR, Gladon RJ, Schrader JA (2009) Sweet basil requires an irradiance of biomass production. HortScience 44:64–67. https://doi.org/10.21273/HORTSCI.44.1.64
Article
Google Scholar
Carbone-Risi JJM (1986) Adaptation of the Andean grain crop quinoa for cultivation in Britain. Ph.D. Thesis, University of Cambridge, Cambridge, UK
Castellion M, Silvia M, Buera P, Sara M (2010) Protein deterioration and longevity of quinoa seeds during long-term storage. Food Chem 121:952–958. https://doi.org/10.1016/j.foodchem.2010.01.025
Article
CAS
Google Scholar
Cha MK, Jeon YA, Son JE, Cho YY (2016) Development of planting-density growth harvest (PGH) charts for quinoa (Chenopodium quinoa Willd.) and sow thistle (Ixeris dentata Nakai) grown hydroponically in closed-type plant production systems. Hort Environ Biotechnol 57(3):213–218. https://doi.org/10.1007/s13580-016-0008-x
Article
CAS
Google Scholar
Chapman HD, Pratt PE (1961) Methods of analysis for soils, plant and water. Division of Agric. Sci., California Univ.
Choukr-Allah R, Rao NK, Hirich A, Shahid M, Alshankiti A, Toderich K, Fill S, Butt KR (2016) Quinoa for marginal environments toward future food and nutritional security in MENA and central Asia regions. Front Plant Sci 7:346. https://doi.org/10.3389/fpls.2016.00346
Article
PubMed
PubMed Central
Google Scholar
Eisa S, Eid MA, Abd El-Samad EH, Hussin SA, Abdel-Ati AA, El-Bordeny NE, Ali SH, Al-Sayed HMA, Lotfy ME, Masoud AM, El-Naggar AM, Ebrahim M (2017) Chenopodium quinoa Willd. A new cash crop halophyte for saline regions of Egypt Aust. J Crop Sci 11:343–351. https://doi.org/10.21475/ajcs.17.11.03.pne316
Article
CAS
Google Scholar
Erazzú LE, Buedo JA, González SE, Prado FE (2016) Effects of sowing density on Chenopodium quinoa (quinoa), incidence on morphological aspects and seed yield in Var. CICA growing in Amaicha del Valle, Tucumán Argentina. Lilloa 53(1):12–22
Google Scholar
Francescangeli N, Sangiacomo MA, Martí H (2006) Effects of plant density in broccoli on yield and radiation use efficiency. Sci Hortic 110:135–143. https://doi.org/10.1016/j.scienta.2006.06.025
Article
Google Scholar
Fric E, Payer K, Schutz E (1964) Determination of phosphorus by ascorbic acid method. Schw Londwirtsch-Forschung Heft 3:318–328
Google Scholar
Geerts S, Raes D, Garcia M, Condori O, Mamani J, Miranda R, Cusicanqui J, Taboada C, Yucra E, Vacher J (2008) Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa Willd.) in the Southern Bolivian Altiplano? Agric Water Manag 95:909–917. https://doi.org/10.1016/j.agwat.2008.02.012
Article
Google Scholar
Geren H (2015) Effects of different nitrogen levels on the seed yield and some yield components of quinoa (Chenopodium quinoa Willd.). Turk J Field Crops. https://doi.org/10.1755/.39586
Article
Google Scholar
Gimplinger DM, Schulte AM, Dobos GG, Kaul HP (2008) Optimum crop densities for potential yield and harvestable yield of seed amaranth are conflicting. Eur J Agron 28:119–125
Article
Google Scholar
Gomaa EF (2013) Effect of nitrogen, phosphorus and biofertilizers on quinoa plant. J Appl Sci Res 9(8):5210–5222
CAS
Google Scholar
González JA, Konishi Y, Bruno MY (2012) Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. J Sci Food Agric 92(6):1222–1229. https://doi.org/10.1002/jsfa.4686
Article
CAS
PubMed
Google Scholar
Hakan G (2015) Effect of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd) under mediterranean climatic conditions. Turk J Field Crops 20(1):59–64. https://doi.org/10.1755/.39586
Article
Google Scholar
Hinojosa L, González J, Barrios-Masias F, Fuentes F, Murphy K (2018) Quinoa abiotic stress responses: a review. Plants 7(4):106. https://doi.org/10.3390/plants7040106
Article
CAS
PubMed Central
Google Scholar
Hirose Y, Ishii T, Fujita T, Ueno N (2010) Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem 119(4):1300–1306. https://doi.org/10.1016/j.eja.2007.05.007
Article
CAS
Google Scholar
Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177. https://doi.org/10.1081/FRI-120018883
Article
Google Scholar
Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19:99–109. https://doi.org/10.1081/FRI-120018872
Article
Google Scholar
Kakabouki I, Bilalis D, Karakanis A, Zervas G, Tsiplakou E, Hela D (2014) Effects of fertilization and tillage system on growth and crude protein content of quinoa (Chenopodium quinoa Wild.): an alternative forage crop. Emir J Food Agric 26(1):18–24. https://doi.org/10.9755/ejfa.v26i1.16831
Article
Google Scholar
Kenawy MK (2014) Evaluation of barley (Hordeum vulgure, l.) productivity under rainfed conditions in wadi hashem (east matrouh). Ph.D Thesis, Fac. of Agriculture Alexandria, Univ. Egypt
Koyro HW, Lieth H, Eisa S (2008) Salt tolerance of Chenopodium quinoa willd, grains of the Andes: influence of salinity on biomass production, yield, composition of reserves in the seeds, water and solute relations. Tasks Veg Sci 42(3):133–145. https://doi.org/10.1007/978-1-4020-6720-4_13
Article
Google Scholar
Koyro HW, Eisa SS (2008) Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 302:79–90. https://doi.org/10.1007/s11104-007-9457-4
Article
CAS
Google Scholar
Leskovar DI, Stein LA, Dainello FJ (2000) Planting systems influence growth dynamics and quality of fresh market spinach. HortSci 35:1238–1240
Article
Google Scholar
Maliro M, Guwela V, Nyaika J, Murphy KM (2017) Preliminary studies of the performance of Quinoa (Chenopodium quinoa Willd.) genotypes under irrigated and rainfed conditions of central Malawi. Front Plant Sci 8:227. https://doi.org/10.3389/fpls.00227
Article
PubMed
PubMed Central
Google Scholar
Maradini-Filho AM, Pirozi MR, Borges JTS, Chaves HMP, Santana JBP, Reis-Coimbra JSD (2017) Quinoa: nutritional, functional and anti-nutritional aspects. Crit Rev Food Sci Nutr 57:1618–1630. https://doi.org/10.1080/10408398.1001811
Article
Google Scholar
Martínez EA, Veas E, Jorquera C, San Martín R, Jara P (2009) Re-introduction of quinoa into Arid Chile: cultivation of two lowland races under extremely low irrigation. J Agron Crop Sci 195(1):1–10. https://doi.org/10.1111/j.1439-037X.2008.00332.x
Article
Google Scholar
Mujica A, Izquierdo J, Marathee JP, Jacobsen SE (ed) (2004) Quinua: Ancestral Cultivo Andino, Alimento del Presente y Futuro, Puno, Peru: FAO; CIP; UNA.
Ning W, Fengxin W, Shock CC, Meng C, Lifang Q (2020) Effects of management practices on quinoa growth, seed yield, and quality. Agronomy 2020(10):445. https://doi.org/10.3390/agronomy10030445
Article
CAS
Google Scholar
Oelke EA, Putnam DH, Teynor TM, Oplinger ES (1992) In “Quinoa”. Alternative Field Crops Manual. University of Wisconsin Cooperative Extension Service, University of Minnesota Extension Service, Center for Alternative Plant and Animal Products
Rashid N, Basra SMA, Shahbaz M, Iqbal S, Hafeez MB (2018) Foliar applied moringa leaf extract induces terminal heat tolerance in Quinoa. Int J Agric Biol 20(1):157–164. https://doi.org/10.17957/IJAB/15.0469
Article
CAS
Google Scholar
Risi J, Galwey NW (1991) Effects of sowing date and sowing rate on plant development and seed yield of quinoa (Chenopodium quinoa)in a temperate environment. J Agric Sci 117:325–332. https://doi.org/10.1017/S002185960006706X
Article
Google Scholar
Roggatz U, Mcdonald AJS, Stadenberg I, Schrr U (1999) Effects of nitrogen deprivation on cell division and expansion in leaves of Ricinus Communis. Plant Cell Environ 22:81–89. https://doi.org/10.1046/j.1365-3040.1999.00383.x
Article
Google Scholar
Sangoi L, Ender M, Guidolin AF (2000) Evolução da resistência a doenças de híbridos de milho de diferentes épocas em três populações de planta. Revista Ciência Rural Santa Maria 30(1):17–21
Article
Google Scholar
Santos RLB (1996) Estudos iniciais para o cultivo de quinoa (Chenopodium quinoa Willd.) no Cerrado. Dissertation (Masters degree). Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, 129p
Sayed SE, Abd El-Samad EH, Hussin SA, Ali EA, Ebrahim M, Juan A, González MO, Luis Erazzú E, El-Bordeny NE, Abdel-Ati AA (2018) Quinoa in Egypt-plant density effects on seed yield and nutritional quality in marginal regions. Middle East J Appl Sci 8(2):515–522. ISSN: 2077-4613
Schulte AM, Erley G, Kaul HP, Kruse M, Aufhammer W (2005a) Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. Eur J Agron 2005(22):95–100. https://doi.org/10.1016/j.eja.2003.11.002
Article
CAS
Google Scholar
Shams AS (2012) Response of quinoa to nitrogen fertilizer rates under sandy soil conditions. In: 13th international conference of Agron Faculty of Agriculture, Benha University, Egypt, 9–10 September, pp 195–205
Siavoshi M, Nasiri A, Lawre S (2010) Effect of organic fertilizer on growth and yield components in rice (Oryza sativa L.). J Agric Sci 3:15–28. https://doi.org/10.5539/jas.v3n3p217
Article
Google Scholar
Sief A, El-Deepah H, Kamel A, Ibrahim J (2015) Effect of various inter and intra spaces on the yield and quality of Quinoa (Chenopodium quinoa Willd). J Plant Prod 6(3):371–383. https://doi.org/10.21608/jpp.49331
Article
Google Scholar
Snedecor GW, Cochran WG (1969) Statistical methods 6th. Iowa State Univ. Press, Ames
MATH
Google Scholar
Spehar CR, Rocha EDSJ (2009) Effect of sowing density on plant growth and development of quinoa, genotype4.5, in the Brazilian Savannah highlands. Biosci J 2009(25):53–58
Google Scholar
Schulte AEG, Kaul HP, Kruse M, Aufhammer W (2005b) Yield and nitrogen utilization efficiency of the pseudo cereals amaranth, quinoa, and buck wheat under differing nitrogen fertilization. Eur J Agron 22(1):95–100. https://doi.org/10.1016/j.eja.2003.11.002
Article
CAS
Google Scholar
Vega-Galvez A, Miranda M, Vergara J, Uribe E, Puente L, Martinez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Soc Chem Ind 90:2541–2547. https://doi.org/10.1002/jsfa.4158
Article
CAS
Google Scholar
Weisany W, Raei Y, Allahverdipoor KH (2013) Role of some of mineral nutrients in biological nitrogen fixation. Bull Environ Pharmacol Life Sci 2(4):77–84
CAS
Google Scholar