Abd El-Latief MH (2015) Protective effect of quercetin and or zinc against lead toxicity on rat testes. Glob J Pharmacol 9(4):366–376
CAS
Google Scholar
Abdel-Daim MM, Alkahtani S, Almeer R, Gadah A (2020) Alleviation of lead acetate-induced nephrotoxicity by Moringa oleifera extract in rats: highlighting the antioxidant, anti-inflammatory, and anti-apoptotic activities. Environ Sci Pollut Res 27(27):33723–33731. https://doi.org/10.1007/s11356-020-09643-x
Article
CAS
Google Scholar
Ademosun AO, Oboh G, Bello F, Ayeni PO (2016) Antioxidative properties and effect of quercetin and its glycosylated form (rutin) on acetylcholinesterase and butyrylcholinesterase Activities. J Evidence Based Complement Altern Med 21(4):11–17. https://doi.org/10.1177/2156587215610032
Article
CAS
Google Scholar
Annapurna A, Ansari MA, Manjunath PM (2013) Partial role of multiple pathways in infarct size limiting effect of quercetin and rutin against cerebral ischemia-reperfusion injury in rats. Eur Rev Med Pharmacol Sci 17(4):491–500
CAS
PubMed
Google Scholar
Ayinde CO, Ogunnowo S, Ogedegbe AR (2012) Influence of Vitamin C and Vitamin E on testicular zinc content and testicular toxicity in lead exposed albino rats. BMC Pharmacol Toxicol 13:17–24. https://doi.org/10.1186/2050-6511-13-17
Article
CAS
PubMed
PubMed Central
Google Scholar
Batra N, Nehru B, Bansal MP (2001) Influence of lead and zinc on rat male reproduction at ’biochemical and histopathological levels. J Appl Toxicol 21:507–512. https://doi.org/10.1002/jat.796
Article
CAS
PubMed
Google Scholar
Chander K, Vaibhav K, Ejaz Ahmeh M, Javed H, Tabassum R, Khan A, Kumar M, Katyal A, Islam F, Siddiqui MS (2014) Quercetin mitigates lead acetate-induced behavioural and histological alterations via suppression of oxidative stress, Hsp-70, Bak and upregulation of Bcl-2. Food Chem Toxicol 68:297–306. https://doi.org/10.1016/j.fct.2014.02.012
Article
CAS
PubMed
Google Scholar
Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61(2):192–208. https://doi.org/10.1007/s00018-003-3206-5
Article
CAS
PubMed
Google Scholar
Cheng LC, Li LA (2012) Flavonoids exhibit diverse effects on CYP 11B1 expression and cortisol synthesis. Toxicol Appl Pharmacol 258(3):343–350. https://doi.org/10.1016/j.taap.2011.11.017
Article
CAS
PubMed
Google Scholar
Elgawish RA, Abdelrazek HMA (2014) Effects of lead acetate on testicular function and caspase-3 expression with respect to the protective effect of cinnamonin albino rats. Toxicol Rep 1:795–801. https://doi.org/10.1016/j.toxrep.2014.10.010
Article
CAS
PubMed
PubMed Central
Google Scholar
El-khadragy M, Al-Megrin WA, AlSadhan NA, Metwally DM, El-Hennamy RE, Salem FEH, Kassab RB, Abdel-Moneim AE (2020) Impact of coenzyme Q10 administration on lead acetateinduced testicular damage in rats. Oxid Med Cell Longev. https://doi.org/10.1155/2020/4981386
Article
PubMed
PubMed Central
Google Scholar
El-Sayed SY, El-Neweshy SM (2010) Impact of lead toxicity on male rat reproduction at hormonal and histopathological levels. Toxicol Environ Chem 92(4):765–774. https://doi.org/10.1080/02772240902984453
Article
CAS
Google Scholar
Etsuto K (2014) Role of Vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radical Biol Med 66:3–12. https://doi.org/10.1016/j.freeradbiomed.2013.03.022
Article
CAS
Google Scholar
Farombi EO, Ekor M, Adedara IA, Tonwe KE, Ojujoh TO, Oyeyemi MO (2012) Quercetin protects against testicular toxicity induced by chronic administration of therapeutic dose of quinine sulfate in rats. J Basic Clin Physiol Pharmacol 23(1):39–44. https://doi.org/10.1515/jbcpp-2011-0029
Article
CAS
PubMed
Google Scholar
Galati G, Sabzevari O, Wilson JO, Brien PJ (2002) Pro-oxidant activity and cellular effects of phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 177:91–104. https://doi.org/10.1016/S0300-483X(02)00198-1
Article
CAS
PubMed
Google Scholar
Giera M, Lingeman H, Niessen WM (2012) Recent advancements in the LC-and GC-based analysis of malondialdehyde (MDA): a brief overview. Chromatographia 75(9–10):433–440. https://doi.org/10.1007/s10337-012-2237-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Golpour A, Psenicka M, Niksirat H (2016) Ultrastructural localization of intracellular Ca during spermatogenesis of Sterlet (Acipenser ruthenus). Microsc Microanal 22(6):1155–1161. https://doi.org/10.1017/S1431927616011958
Article
ADS
CAS
PubMed
Google Scholar
Golpour A, Psenicka M, Niksirat H (2017) Subcellular distribution of calcium during apermatogenesis of zebrafish. Danio Rerio J Morpholol 278(8):1149–1159. https://doi.org/10.1002/jmor.20701
Article
CAS
Google Scholar
Graca A, Ramalho-Santos J, de Lourdes PM (2004) Effect of lead chloride on spermatogenesis and sperm parameters in mice. Asian J Androl 6:237–241. https://doi.org/10.1111/j.1745-7262.2005.012_1_1.x
Article
CAS
PubMed
Google Scholar
Halliwell B, Gutteridge JMC (2007) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 187–267
Google Scholar
Hari MS, Sayati M, Bambang R, Nastiti W (2016) Antioxidant properties of Liverwort (Marchantia polymorphia L.) to lead-induced oxidative stress on HEK293 Cells. J Biol Sci 16:77–85
Article
Google Scholar
Hernandez-Ochoa I, Garcia-Vargas G, Lopez-Carrillo L, Rubio-Andrade M, Moran-Martinez J, Cebrian ME (2005) Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reprod Toxicol 20:221–228. https://doi.org/10.1016/j.reprotox.01.007
Article
CAS
PubMed
Google Scholar
Institution for Laboratory Animals Research (2011). Guide for the care and use of laboratory animals, 8th edn. National Academic Press
Justesen U, Knuthsen P (2001) Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem 73(2):245–250. https://doi.org/10.1016/S0308-8146(01)00114-5
Article
CAS
Google Scholar
Kalthur G, Raj S, Thiyagarajan A, Kumar S, Kumar P, Adiga SK (2011) Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw–induced DNA damage. Fertil Steril 95(3):1149–1151. https://doi.org/10.1016/j.fertnstert.2010.10.005
Article
CAS
PubMed
Google Scholar
Kasperczyk S, Birkner E, Kasperczyk A, Zalejska-Fiolka J (2004) Activity of superoxide dismutase and catalase in people protractedly exposed to lead compounds. Ann Agric Environ Med 11:291–296
CAS
PubMed
Google Scholar
Katarzyna K, Michal W, Malgorzata S (2011) Ultrastructural changes in lung tissue after acute lead intoxication in the rat. J Electron Microsc 60(4):289–294. https://doi.org/10.1093/jmicro/dfr035
Article
CAS
Google Scholar
Kumawat KL, Kaushik DK, Goswami P, Basu A (2014) Acute exposure to lead acetate activates microglia and induces subsequent bystander neuronal death via caspase-3 activation. Neurotoxicology 41:143–153. https://doi.org/10.1016/j.neuro.2014.02.002
Article
CAS
PubMed
Google Scholar
Liu CM, Zheng GH, Ming QL, Sun JM, Cheng C (2013) Protective effect of quercetin on lead-induced oxidative stress and endoplasmic reticulum stress in rat liver via the IRE1/JNK and PI3K/Akt pathway. Free Radical Res 47(3):192–201. https://doi.org/10.3109/10715762.2012.760198
Article
CAS
Google Scholar
Matovic V, Buha A, Dukic-Cosic D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140. https://doi.org/10.1016/j.fct.2015.02.011
Article
CAS
PubMed
Google Scholar
Mitchell AE, Hong YJ, Koh E, Barrett DM, Bryant DE, Denison RF, Kaffka S (2007) Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. J Agric Food Chem 55(15):6154–6159. https://doi.org/10.1021/jf070344+
Article
CAS
PubMed
Google Scholar
Muralidhara SB (2007) Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: its progression and genotoxic consequences. Reprod Toxicol 23(4):578–587. https://doi.org/10.1016/j.reprotox.2007.02.001
Article
CAS
PubMed
Google Scholar
Nosratola DV (2008) Mechanisms of lead-induced hypertension and cardiovascular disease. Am J Physiol Heart Circ Physiol 295(2):H454–H465. https://doi.org/10.1152/ajpheart.00158
Article
Google Scholar
Oyeyemi AW, Shittu ST, Kolawole TA, Ubaneche P, Akinola AO (2015) Protective effect of vitamin E on nicotine induced reproductive toxicity in male rats. Niger J Basic Appl Sci 23(1):7–13. https://doi.org/10.4314/njbas.v23i1.2
Article
Google Scholar
Oyeyemi AW, Anyanwu CP, Akinola AO, Daramola OO, Alli OB, Ehiaghe FA (2019) Clomiphene citrate ameliorated lead acetate-induced reproductive toxicity in male Wistar rats. JBRA Assist Reprod 23(4):336–343. https://doi.org/10.5935/1518-0557.20190038
Article
Google Scholar
Oyeyemi WA, Daramola OO, Akinola AO, Idris AO, Aikpitanyi I (2020) Hepatic and reproductive toxicity of sub-chronic exposure to dichlorvos and lead acetate on male Wistar rats. Asian Pacific J Reprod 9:283–290. https://doi.org/10.4103/2305-0500.298776
Article
CAS
Google Scholar
Pandya C, Pillai P, Nampoothiri LP, Bhatt N, Gupta S, Gupta S (2012) Effect of lead and cadmium co-exposure on testicular steroid metabolism and antioxidant system of adult male rats. Andrologia 44:813–822. https://doi.org/10.1111/j.1439-0272.2010.01137.x
Article
CAS
PubMed
Google Scholar
Patra RC, Rautray AK, Swarup D (2011) Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int. https://doi.org/10.4061/2011/457327
Article
PubMed
PubMed Central
Google Scholar
Ranawat P, Kaushik G, Saikia UN, Pathak CM, Khanduja KL (2013) Quercetin impairs the reproductive potential of male mice. Andrologia 45(1):56–65. https://doi.org/10.1111/j.1439-0272.2012.01311.x
Article
CAS
PubMed
Google Scholar
Sajitha GR, Jose R, Andrews A, Ajantha KG, Augustine P, Augusti KT (2010) Garlic oil and vitamin E prevent the adverse effects of lead acetate and ethanol separately as well as in combination in the drinking water of rats. Indian J Clin Biochem 25:280–288. https://doi.org/10.1007/s12291-010-0042-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Seifi-Jamadi A, Kohram H, Shahneh AZ, Ansari M, Macías-García B (2016) Quercetin ameliorate motility in frozen-thawed Türkmen stallion’s sperm. J Equine Vet 45:73–77. https://doi.org/10.1016/j.jevs.2016.06.078
Article
Google Scholar
Siu ER, Mruk DD, Porto CS, Cheng CY (2009) Cadmium-induced testicular injury. Toxicol Appl Pharmacol 2382:240–249. https://doi.org/10.1016/j.taap.2009.01.028
Article
CAS
Google Scholar
Smith C, Lombard KA, Peffley EB, Liu W (2003) Genetic analysis of querectin in onion. TX J Agric Nat Resour 16:24–28. https://doi.org/10.1111/j.1469-8137.1995.tb01829.x
Article
Google Scholar
Sokol RZ, Wang S, Wan YJ, Stanczyk FZ, Gentzschein E, Chapin RE (2002) Long-term, low-dose lead exposure alters the gonadotropin-releasing hormone system in the male rat. Environ Health Perspect 110:871–874. https://doi.org/10.1289/ehp.02110871
Article
CAS
PubMed
PubMed Central
Google Scholar
Traber MG, Shils ME, Shike M, Ross AC, Caballero B, Cousins R (2006) Modern nutrition in health and disease, 10th edn. Lippincott Williams and Wilkins, pp 396–411
Google Scholar
Uzun FG, Demir FS, Kalender HB, Kalender Y (2010) Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats. Food Chem Toxicol 48:1714–1720. https://doi.org/10.1016/j.fct.2010.03.051
Article
CAS
PubMed
Google Scholar
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40. https://doi.org/10.1016/j.cbi.2005.12.009
Article
CAS
PubMed
Google Scholar
Valko MD, Leibfritz J, Moncol MT, Cronin M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001
Article
CAS
PubMed
Google Scholar
Verhagen H, Buijsse B, Jansen E, Bueno-de-Mesquita B (2006) The state of antioxidant affairs. Nutr Today 41:244–250. https://doi.org/10.1097/00017285-200611000-00003
Article
Google Scholar
Wang X, Wang M, Dong W, Li Y, Zheng X, Piao F, Li S (2013) Subchronic exposure to lead acetate inhibits spermatogenesis and down regulates the expression of Ddx3y in testis of mice. Reprod Toxicol 42:242–250. https://doi.org/10.1016/j.reprotox.2013.10.003
Article
CAS
PubMed
Google Scholar
Williams KM, Ford WCL (2003) Effects of Ca-ATPase inhibitors on the intracellular calcium activity and motility of human spermatozoa. Int J Androl 26(6):366–375. https://doi.org/10.1111/j.1365-2605.2003.00438.x
Article
CAS
PubMed
Google Scholar
Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signaling molecules. Free Radical Biol Med 36(7):838–849. https://doi.org/10.1016/j.freeradbiomed.2004.01.001
Article
CAS
Google Scholar
Winn E, Whitaker BD (2018) Quercetin supplementation during boar semen thawing and incubation improves sperm characteristics. J Anim Sci 96:261–262. https://doi.org/10.1093/jas/sky073.486
Article
Google Scholar
Xiao X, Zhang C, Liu D, Bai W, Zhang Q, Xiang Q, Huang Y, Su Z (2016) Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein. Sci Rep 6:23716. https://doi.org/10.1038/srep23716
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi S, Miura C, Kikuchi K, Celino FT, Agusa T, Tanabe S, Miura T, Yanagimachi R (2009) Zinc is an essential trace element for spermatogenesis. Proc Natl Acad Sci USA 106(26):10859–10864. https://doi.org/10.1073/pnas.0900602106
Article
ADS
PubMed
PubMed Central
Google Scholar