A.O.A.C. Association of Official Analytical Chemists. 16th Edn., Official methods of analysis, Washington, DC. 1995.
Abbas SH, Sohail M, Saleem M, Tariq M, Aziz I, Qammar M, Majeed A, Arif M (2013) Effects of l-tryptophan on plant weight and pod weight in chickpea under rain fed conditions. Science, Technology and Development. 32(4):277–280
Google Scholar
Abd El-Aal MMM (2012) Response of Ananas Melon plants to foliar spray with some natural extracts. Res. J. Agric. & Biol. Sci. 8(2):201–212
CAS
Google Scholar
Abdel-Mawly SE, Zanouny I (2004) Response of sugar beet (Beta vulgaris L.) to potassium application and irrigation with saline water. Ass. Univ. Bull. Environ. Res. 7(1):123–136
Google Scholar
Abdelraouf EA (2017) Effect of presoaking sugar beet (Beta vulgaris L.) seeds with gibberellic, abscisic or ascorbic acids on alleviation of salinity stress. Alex. Sci. Exch. J 38(1):74–81
Google Scholar
Bakry BA, Ibrahim MF, Abdallah MMS, El-Bassiouny HMS (2016) Effect of banana peel extract or tryptophan on growth, yield and some biochemical aspects of quinoa plants under water deficit. International Journal PharmTech Research. 9(8):276–287
CAS
Google Scholar
Cooke DA, Scott RK. The sugar beet crop. Sciencient Practice published by Chapman and Hall, London.1993; pp: 675.
Dadkhah AR. Response of root yield and quality of sugar beet (Beta vulgaris L.) to salt stress. Iran Agricultural Research. 2005;23-24:33-42.
Dadkhah AR. Effect of salinity on growth and leaf photosynthesis of two sugar beet (Beta vulgaris L.) cultivars. Journal of Agricultural Science and Technology. 2011;13.
Darwesh RS (2013) Improving growth of date palm plantlets grown under salt stress with yeast and amino acids applications. Ann Agric Sci 58(2):247–256
Article
Google Scholar
Debez A, Chaibi W, Bouzid S (2001) Effet du NaCl et de régulateurs de croissancesur la germination d'Atriplexhalimus L. Cahiers Agric 10(2):135–138
Google Scholar
El-Awadi ME, Dawood MG, Abdel-Baky YR, Hassan EA. Physiological effect of melatonin, IAA and their precursor on quality and quantity of chickpea plants grown under sandy soil conditions. Agricultural Engineering International: CIGR Journal, Special issue. 2017;35–44.
El-Awadi ME, El-Bassiony AM, Fawzy ZF, El-Nemr MA (2011) Response of snap bean (Phaseolus vulgaris L) plants to nitrogen fertilizer and foliar application with methionine and tryptophan. Nat Sci 9(5):87–94
Google Scholar
El-Bassiouny HMS (2005) Physiological responses of wheat to salinity alleviation by nicotinamide and tryptophan. Int J Agric Biology. 7(4):653–659
CAS
Google Scholar
El-Desouky SA, Ismaeil FH, Wanas AL, Fathy ESL, AbdEl-All MM, Abd MM (2011) Effect of yeast extract, amino acids and citric acid on physio-anatomical aspects and productivity of tomato plants grown in late summer season. Minufiya J Agric Res 36(4):859–884
Google Scholar
El-Gamal IS, Abd El Aal MMM, El Desouky SA, Khedr ZM, Abo Shady KA (2016) Effect of some growth substances on growth, chemical compositions and root yield productivity of sugar beet (Beta vulgaris L.) plant. Middle East J Agri Res 5:171–185
Google Scholar
El-Tantawy AA, Arafa AMS, El-Banna AE, Darwesh RSS. Effect of salts stress on growth and development on vitro culture, acclimatization stage on Phoenix dactylifera L. and Arecastrum romanzoffianum Becc. Seedlings in greenhouse, Ph.D. Thesis, Faculty of Agriculture, Cairo Univ. 2006;55 pp.
FAOSTAT. The data set “sugar beet, production quantity (tons)” for Egypt contains data from the year 1961 until 2016. http://www.factfish.com/statistic-country/Egypt/sugar+beet+production . 2016.
Feizi M, Fallahzade J, Noorshargh P (2018) Sugar beet yield response to different levels of saline irrigation water and leaching in an arid region. J Plant Nutr 41(5):654–663
Article
CAS
Google Scholar
Franzen D. Salt accumulation processes. North Dakota state Univ., Fargo ND. 2007;58105.
Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom:1–18
Hajiboland R, Joudmand A, Fotouhi K (2009) Mild salinity improves sugar beet (Beta vulgaris L.) quality. Acta Agric Scand Sec B Soil Plant Sci 59(4):295–305
CAS
Google Scholar
Hozayn M, Ahmed AA, El-Saady AA, Abd-Elmonem AA (2019) Enhancement in germination, seedling attributes and yields of alfalfa (Medicago sativa, L.) under salinity stress using static magnetic field treatments. Eur Asian J BioSci 13(1):369–378
CAS
Google Scholar
Hussain K, Majeed A, Nisar MF, Nawaz K, Bhatti KH, Afghan S (2009) Growth and ionic adjustments of chaksu (Cassia absus L.) under NaCl stress. Am Eur J Agric Environ Sci 6(5):557–560
CAS
Google Scholar
Hussein MM, Faham SY, Alva AK (2014) Role of foliar application of nicotinic acid and tryptophan on onion plants response to salinity stress. J Agric Sci 6(8):41–51
Google Scholar
Jamil M, Rha ES (2007) Gibberellic acid (GA3) enhance seed water uptake, germination and early seedling growth in sugar beet under salt stress. Pakistan J Biol Sci 10(4):654–658
Article
CAS
Google Scholar
Kandil SA, Abo El-Khier MS, Abo-ElLiell AA (2001) Physiological response of some sugar beet (Beta vulgaris L.) genotypes to irrigation with different chloride salinity. Bull NRC Egypt 26(1):76–92
Google Scholar
Khafagy MA, Arafa AA, El-Banna MF (2009) Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. Aust J Crop Sci 3(5):257
CAS
Google Scholar
Khan A, Ahmad MSA, Athar HUR, Ashraf M (2006) Interactive effect of foliarly applied ascorbic acid and salt stress on wheat (Triticum aestivum L.) at the seedling stage. Pak J Bot 38:1407–1414
Google Scholar
Khan AH, Ashraf MY, Naqvi SSM, Khanzada B, Ali M (1995) Growth and ion and solute contents of sorghum grown under NaCl and Na2SO4 salinity stress. Acta Physiol Plant 17:261–268
CAS
Google Scholar
Khayamim S, Tavakkol Afshari R, Sadeghian SY, Poustini K, Rouzbeh F, Abbasi Z (2014) Seed germination, plant establishment, and yield of sugar beet genotypes under salinity stress. J Agric Sci Technol 16:779–790
Google Scholar
Masri MI, Ramadan BSB, El-Shafaiand AMA, El-Kady MS (2015) Effect of water stress and fertilization on yield and quality of sugar beet under drip and sprinkler irrigation systems in sandy soils. Int J Agric Sci 5(3):414–425
Google Scholar
Memon YM, Khan I, Panhwar RN (2004) Adoptability performance of some exotic sugar beet varieties under agro-climatic conditions of Thatta. Pakistan Sugar J. 19(6):42–46
Google Scholar
Mohamed HF. Chemical and technological studies on sugar beet. Ph.D. Thesis, Faculty of Agriculture, Minia University, Egypt. 2002.
Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr. 13(3):638–649
Google Scholar
MSTAT-C program. A software program for the design, management and analysis of Agronomic research experiments. Michigan State University, USA. 1983.
Rai VK (2002) Role of amino acid in plant responses to stresses. Biol Plantarum J. 45:481–487
Article
CAS
Google Scholar
Razavizadeh R, Rostami F (2013) Changes in growth and antioxidant capacity of canola by salinity and salicylic acid under in vitro
Google Scholar
Rezaee Z, Chehrazi M, Moalemi N (2012) Effect of Salinity Stress on Seed Germination Catharanthusroseus Don. Cvs. Rosea and Alba. Asian J Agric Sci. 4(2):117–121
Google Scholar
Sadeghi H, Shourijeh FA (2012) Salinity induced effects on growth parameters, chemical and biochemical characteristics of two forage sorghum (Sorghum bicolor L.) cultivars. Asian J Plant Sci 11(1):19–27
Article
CAS
Google Scholar
Saranya N (2017) Seed priming studies for vigour enhancement in onion CO onion (5). J Pharm Phytochem 6(3):77–82
CAS
Google Scholar
Wu G, Liang N, Feng R, Zhang J (2013) Evaluation of salinity tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using proline, soluble sugars and cation accumulation criteria. Acta Physiologiae Plantarum. 35:2665–2674
Article
CAS
Google Scholar
Younis M, El-Shahaby O, Alla MMN, El-Bastawisy Z (2003) Kinetin alleviates the influence of waterlogging and salinity on growth and affects the production of plant growth regulators in Vignasinensis and Zea mays. Agronomie. 23(4):277–285
Article
Google Scholar