Skip to main content

Table 2 Antibacterial properties of metal oxide nanoparticles in water treatment of impactful study works from 2010

From: Severity of waterborne diseases in developing countries and the effectiveness of ceramic filters for improving water quality

References

Metal oxide

Preparation method (Synthesis)

Antimicrobial Efficiency

Contaminants REMOVAL

Wang et al. (2010)

CuO

Fe2O3

ZnO

TiO2

NiO

Co3O4

Top-down methods (i.e., Diffusion, Irradiation and thermal decomposition)

Bottom-up (i.e., Chemical polyol fabrication method, Electrochemical synthesis and Chemical reduction)

Excellent ZnO (71%), CuO (77%) and NiO (85%)

Low Fe2O3, Co3O4, Ti2O

E. coli

Vargas-Reus et al. (2012)

CuO

Cu2O

ZnO

Ag-CuO

Sonochemical

photo reduction

Sol gel combustion

100% bacterial removal by the oxides

P. intermedia

P. gingivalis

F. nuclatum

A. actionmycetemeomitans

Azam et al. (2012)

ZnO

CuO

Fe2O3

Sonochemical

photo reduction

Sol gel combustion

Excellent ZnO, i.e., 72–88%

Moderate CuO, i.e., 50–72%

Low Fe2O3, i.e., 27–50%

Gram-positive (S. aureus and B. subtilis)

Gram-negative (E. coli and P. aeruginosa)

Tsao et al. (2015)

Fe2O3

Top-down methods (i.e., Diffusion, Irradiation and thermal decomposition)

Bottom-up (i.e., Chemical polyol fabrication method, Electrochemical synthesis and Chemical reduction)

Bacterial removal, i.e., E. coli 99.9%

Viral, i.e., bacteriophage 98.83%

E. coli

Viral, i.e., bacteriophage

Hoseinnejad et al. (2018)

ZnO

TiO2

MgO*

CuO**

Al2O3

Top-down methods (i.e., Diffusion, irradiation and thermal decomposition)

Bottom-up (i.e., Chemical polyol fabrication, Electrochemical synthesis)

Bacterial removal, i.e., E. coli 99.9%

Viral, i.e., bacteriophage 98.83%

S. aureus and B. subtilis

E. coli and P. aeruginosa

P. mirabilis

Raghunath and Perumal (2017)

ZnO

TiO2

MgO

CuO

Al2O3

Fe2O3

CaO

Chemical methods

Biosynthesis (i.e., (CuO, Fe3O4 and ZnO)

Co-precipitation (i.e., Fe3O4 and ZnO)

Electrochemical (i.e., Cr2O3 and CuO)

Wet chemical (i.e., CuO, Fe3O4 and ZnO)

Hydrothermal (i.e., MgO and ZnO)

Sonochemical i.e., CuO

Sol gel (i.e., ZnO and TiO2)

NS

Gram-positive (S. aureus and B. subtilis)

Gram-negative (E. coli and P. aeruginosa)

Viral contaminants

Gold et al. (2018)

ZnO

TiO2

MgO

Colloidal method

Atomic layer deposition

Sol gel nanofabrication

High for small size (30–50 nm) fabricated NPs

Low for larger size (70–130 nm) fabricated NPs

Gram-positive (S. aureus and B. subtilis)

Gram-negative (E. coli and P. aeruginosa)

Nigay et al. (2019)

MgO

Al2O3

Wet chemical

Hydrothermal

Sonochemical

Sol gel

Bacterial removal, i.e., E. coli 99.98%

Viral removal 99.45%

E. coli

Viral (not specified)

Vega-Jiménez et al. (2019)

MgO

Mn3O4

Fe2O3

ZnO

Top-down methods (i.e., Diffusion, Irradiation and thermal decomposition)

Bottom-up (i.e., Chemical polyol fabrication method, Electrochemical synthesis and Chemical reduction)

Excellent ZnO, MgO

Low Fe2O3, Mn3O4

S. aureus and B. subtilis

E. coli and P. aeruginosa

S. mutans

S. epidermis

V. cholerae and

Shingella sp. (i.e., Mn3O4)

Makvandi et al. (2020)

MgO

Ag2O

Fe2O3

ZnO

TiO2

Al2O3

Excellent ZnO, MgO

Low Fe2O3, Mn3O4

Viral (i.e., HIV-1) 98% (Ag2O)

99.99% for Ag-TiO2) HIV-1

Gram-positive (S. aureus and B. subtilis)

Gram-negative (E. coli and P. aeruginosa)

  1. *define that; Higher concentrations of MgO inhibit bacteria’s growth against E. coli being higher than Bacillus sp.
  2. ** define that CuO provides more room to be used as a biocidal agent i.e. against B. subtilis even at low concentration