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Abstract 

Background:  Diabetes mellitus (DM) is one of the most defying health risk in the twenty-first century promoting a 
high rate of morbidity and mortality that could possibly increase if no intervention is in place. However, drugs for cur-
ing DM are available but are associated with adverse side effect necessitating the pursuit for a safe antidiabetic drugs. 
The present study was conducted in order to develop a QSAR model that would be used to predict the activities of 
salicylic acid derivatives, as well as to determine the binding interactions of the compounds with α-glucosidase using 
molecular docking studies.

Results:  Model one was selected and reported as the best model based on its fitness with the following validation 
keys: R2

(trng set) = 0.968, R2
(adj) = 0.957, Q2

(cv) = 0.932, LOF = 0.085 and R2
(test set) = 0.864. Five potent analogues were 

designed using the ligand-based method with their predicted activities been calculated and found to be higher com-
pared to the lead compound. Furthermore, binding interactions of the designed analogues within the active site of 
α-glucosidase (pdb id:3L4V) illustrate a good binding affinities than kotalanol and acarbose. However, the ADMET and 
drug-likeness properties predicted the design analogues to be pharmacologically and orally safe by not having more 
than one violation of Lipinski’s (Ro5) criteria.

Conclusions:  The present findings therefore showed that the salicylic acid derivatives could serve as α-glucosidase 
inhibitors. The compounds can be studied further for a hunts of promising drug candidates against diabetes mellitus.

Keywords:  Diabetes mellitus, Quantitative structure activity relationship, α-glucosidase, Salicylic acid derivatives, 
Molecular docking
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Background
Diabetes mellitus (DM) is a metabolic disease defined 
by hyperglycemia as a result of a shortage in insu-
lin action and/or secretion promoting disturbances in 
metabolic pathways of the body’s nutrients. Globally, 
the disease is considered to be among the most seri-
ous threats to humans affecting approximately 173 mil-
lion people worldwide leading to higher morbidity and 
mortality rates that could increase severely by 2030 if no 

intervention is in place (Wu et al. 2014). A high quantity 
of blood glucose level can render severe health complica-
tions such as neuropathy, retinopathy, microangiopathy 
and cardiovascular diseases (Chenafa et al. 2021).

The approach utilized for blood glucose control in 
DM relies on retarding the glucose absorption in the 
intestinal system by inhibiting α-glucosidase enzymes 
which is a key enzyme in catabolism of complex carbo-
hydrates (Chaidam et  al. 2021). Considering the impor-
tance of the enzyme in DM, a lot of scientific endeavors 
were put in place to finding promising agents to inhibit 
the enzyme activity coupled with the fact that the already 
available drugs are faced with drawbacks (Barber et  al. 
2021). A study conducted showed natural compounds 
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from Salacia reticulata to possessed excellent efficacy 
against N-terminal human intestinal-maltase glucoam-
ylase (ntMGAM), and therefore, inhibiting the enzyme 
by the compounds could help in alleviating the negative 
consequences of DM, since the investigated Ki values of 
the salacinol compounds against the enzyme were lower 
compared to acarbose suggesting their higher potencies 
than the standard drug (Sim et al. 2010).

Also, another study conducted showed the possibil-
ity of salicylic acid derivatives as potential α-glucosidase 
inhibitors where a series of salicylic acid derivatives 
generated from phthalimide exhibited a promising anti- 
α-glucosidase activities (Chen et al. 2019). These increase 
our quest towards searching of structural scaffolds from 
the salicylic acid derivatives against ntMGAM in com-
plex with kotalanol (pdb id: 3L4V) by exploring quantita-
tive structure–activity relationship (QSAR).

QSAR enables the identification of the structural and 
physicochemical properties of compounds by modulating 
their activities as well as helping and guiding the design 
and adoption of effective and reliable drug candidates 
(Ferreira et al. 2021). To this effect, we herein, aimed to 
develop a QSAR model from salicylic acid derivatives and 
use the model to predict the activities of the derivatives. 
Based on the derivatives, new structural analogues were 
designed and their activities, alongside molecular dock-
ing and their in silico ADMET and drug-likeness proper-
ties were evaluated.

Methods
Generation of datasets, structure and geometry 
calculations
A set of thirty-one (31) salicylic acid derivatives (Chen 
et  al. 2019) with their inhibitory concentrations (IC50) 
measured in mM against α-glucosidase inhibitors were 
selected for the study. The IC50 of all the compounds were 
normalized to pIC50 using Eq. 1 (Ibrahim et al. 2020).

Thereafter, Chemdraw version 12.0 was used to draw 
the 2-dimensional structures of all the compounds and 
the resultant structures were transformed automatically 
to 3-dimensional using the Spartan versions 14 software. 
Energy minimization and stability geometry of the mol-
ecules were carried out to reduce constraint in the struc-
tures as well as finding the most stable geometry of the 
studied molecules using density functional theory (DFT) 
utilizing Bee -3- Lee Yang Par method (B3LYP) and 
6-311G* level of theory (Abdullahi et al. 2021). The opti-
mized compounds were saved in a Spatial Document file 
format (sdf ).

(1)pIC50 = − log
(

IC50 × 10−3
)

Descriptors calculation, data pretreatment and dataset 
splitting
To gain more information on the compounds under 
study, the thermodynamic, electronic, autocorrela-
tion and geometric descriptors of each compound were 
determined by importing the 3D structures in (sdf ) file 
format into the Pharmaceutical Data Exploration Labo-
ratory (PaDEL) descriptor tool kit and the calculation 
was performed (Lawal et  al. 2020). Data pretreatment 
software version 1.2 was used to pretreat the calculated 
descriptors of all the compounds under study followed 
by manual pretreated to eliminate unwanted and persis-
tent descriptors. Following pretreatment, data splitting 
software was used to split the data into training (model-
ling) set and test (validation) set by the application of the 
Kennard–Stone algorithm (Idris et al. 2021). In this study, 
twenty-one (21) compounds were used as training sets 
and ten (10) compounds were used as test sets.

Models building, validation and assessments of the chosen 
model
Models were developed using material studio version 8.0 
software and also applying the genetic function approxi-
mation (GFA) which takes into consideration pIC50 as 
dependent variables and molecular descriptors as the 
independent variables. The models were scored based 
on Friedman’s lack of fit (Abdullahi et  al. 2021). Fur-
thermore, the equation length including both (initial 
and maximum equation length) was set at 5, mutation 
probability of 0.1, population and maximum generation 
parameters were set at 1000 each, and the number of top 
equations returned was set at 4, respectively. The square 
correlation coefficient of the training set, adjusted (R2

adj), 
lack of fit (LOF) and cross-validation coefficient (Q2

cv) 
were determined from the generated models.

External validation was conducted on the developed 
QSAR models using the test sets compounds in which 
the R2

test value was calculated using Eq.  (2) and the best 
model was chosen. For an external regression equation, 
the value of R2 should be closed to one (Abdullahi et al. 
2021).

where Yexp, Ypred and Ytrain are experimental, pre-
dicted and average training set activities of the model 
compounds.

The selected model was assessed by the following 
numerical measures: mean effect and Y- scrambling test. 
The mean effect was used to estimate the contribution 
of each descriptor to the chosen model using Eq.  (3). 

(2)R2
test = 1−

∑

(Y exp−Ypred)2
∑

(Y exp−Y train)2
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However, the signicance of these descriptors coupled 
with their mean effect values indicates their influence on 
the activities of the compounds (Umar et al. 2021).

where MEj is the mean effect of descriptor j in a model, 
Bj is the coefficient of the descriptor j in that model and 
dij is the value of the descriptor in the data matrix for 
each molecule in the model building set, m is the num-
ber of descriptors that appear in the model and n is the 
number of molecules in the model building set (Ibrahim 
et al. 2020). Furthermore, the Y-scrambling test was used 
to justify the robustness of the chosen model. The test 
was performed by evaluating the coefficient of validation 
parameter for Y-randomization cR2p which is done by 
rearranging the actual activities and keeping the descrip-
tors unchanged. It was expected that the new QSAR 
model will have low Q2 and R2 values and cR2p must be 
greater than 0.5 (Idris et al. 2021).

Applicability domain
The applicability domain was assessed using William’s 
plot (i.e., plot of standardized residuals versus the lev-
erage values) in other to determine whether the chosen 
model has a prevailing or peripheral molecules in the 
specific datasets (Umar et al. 2021). The assessment was 
carried out by evaluating the leverage approach as well as 
the warning leverage using Eqs. (4) and (5):

where hi is the leverage approach, X is the n × k descrip-
tor matrix of the training sets, XT is the transpose matrix 
used in generating the model, h* is the warning leverage, 
x is the number of descriptors of the selected model and 
q is the number of compounds in the training sets (Umar 
et al. 2021).

Ligand‑based analogues design
The selection criteria for the choice of a compound to 
be considered as a lead compound for analogues design 
were focused solely on the information obtained from the 
model (i.e., compound with low residual value, reason-
able/high pIC50, found to be within the preferred domain 
(AD) and do not violates Lipinski’s rule of five. How-
ever, compound 6 from the salicylic acid derivatives was 
selected (lead compound) and was modified by insertion 
and substitution of different groups on XYZ positions 

(3)MEj =
Bj

∑i=n
j=1 dij

∑m
j Bj

∑n
i dij

(4)hi = xi(X
TX)− KxTi

(5)h∗ = 3(x + 1)/q

(template compound) based on their notable mean effect 
value.

Molecular docking
A HP Z-Book computer system having the following 
specifications: An Intel ® CoreTM i7-4800MQ vPro Dual 
CPU @2.70 GHz 2.70 GHz, 12 GB of RAM and also uti-
lizing Molegro Virtual Docker (MVD) 2013 version 6.0.1 
was used to investigate the binding interactions between 
the active site of α-glucosidase and the design analogues. 
Before docking analysis, analogues were prepared and 
optimized using Spartan versions 14 software and saved 
in sdf file format (Ibrahim et  al. 2020). α-Glucosidase 
with (pdb id: 3L4V) in complex with kotalanol as the co-
crystallized ligand was obtained from protein data bank 
database (https://​www.​rcsb.​org/) and MVD was used to 
prepare the enzyme before proceeding to dock study. 
During the preparation, water molecules and co-crystal 
ligands were removed from the crystal structure, the 
surface was generated and a maximum number of cavi-
ties was identified and fixed to 5 for detection of possible 
binding cavities; execution of docking study was carried 
out by importing the prepared analogues into the MVD 
software. MolDock score grid as the scoring function, 
binding site radius of 15A°, grid resolution of 0.30A° 
were selected while keeping other parameters as default 
(Abdullahi et  al. 2021). Following a successful docking 
technique, the MolDock score and hydrogen bond energy 
were computed. The docked complexes were stored in a 
PDB file format, and discovery studio version 16.1.0 soft-
ware was utilized to further visualize the interactions of 
the docked complexes.

ADMET and Drug‑likeness of the design analogues
It is viable to assess the absorption, distribution, metabo-
lism, excretion, toxicity and drug-likeness of analogues 
via silico assays. The drug-likeness and ADMET proper-
ties of the design analogues were carried out using SWIS-
SADME (http://​www.​swiss​adme.​che/​index.​php) and 
pkCSM (http://​struc​ture.​bioc.​cam.​ac.​uk/​pkcsm) which 
happens to be a certified free web tool for predicting and 
evaluating the ADMET and drug-likeness of small com-
pounds (Kar and Chatterjee 2020). However, one of the 
main aspects in the preclinical phase of analogues design 
is to know whether if those analogues are orally bioavail-
able, in this regard the Lipinski’s rule of five criteria was 
used to access the analogues under study which states 
that a chemical is weakly absorbed if it disobeys more 
than two of these conditions (molecular weight  ˂  500, 
number of hydrogen bond donors  ˂  5, number of hydro-
gen bond acceptors  ˂  10 and calculated Log p ˂  5) (Chen 
et al. 2020) which were applied to the design analogues to 
predict their drug-likeness and ADMET properties.

https://www.rcsb.org/
http://www.swissadme.che/index.php
http://structure.bioc.cam.ac.uk/pkcsm
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Results
QSAR analysis
The experimental activities of the datasets were nor-
malized to pIC50. Also, the predicted pIC50(s) of the 
compounds was determined (Table  1). The differences 
between the experimental and predicted activities of 
the compounds (residual values) were further calcu-
lated (Table 1).

Subsequently, models were generated using the 
genetic function approximation. Four models were gen-
erated and shown thus;

Following models building, validation was conducted 
(Table 2). The R2

trng set, R2
adj, Q2

cv, as the internal valida-
tion parameters of the models were greater than 0.920 
(closer to 1) while only model one passed the external 
validation with R2

test set of 0.864 (Table 2). Furthermore, 
an XY (scatter) plot of residuals against experimental 
pIC50 from both the training and test sets compounds 
is shown in Fig. 1. The anomalous occurrence of these 
residuals on both side of zero on the plot indicates 
the absence of feasible mistakes in the model building 
(Fig. 1).

Based on the initial validations, model one was selected 
as the best model due to the fact that it has the highest 
R2

test set of 0.864 and was subjected for further assess-
ment. From the ME analysis, positive ME values were 
observed in ATSC2e, MATS1e, GATS2c and Crippen-
LogP with CrippenLogP descriptor having the highest 
ME value. Conversely, negative ME value of -1.01 with 
SpMin6-Bhm descriptors was noticeable (Table 3).

Moreover, assessment on the robustness and obtain-
ability of the model whether by chance correlation or not 
was conducted using the Y-randomization test (Table 4). 
From the result obtained, the R2 and Q2 values were 0.19 
and − 0.57, respectively, while the cR2p of the model was 
0.79 (Table 4).

Model 1 : pIC50 = 1.45 ∗ (ATSC2e)− 14.87 ∗ (MATS1e)+ 2.23 ∗ (GATS2c)− 3.04 ∗ (SpMin6_Bhm)

+ 0.71 ∗ (CrippenLogP)− 0.51

Model 2 : pIC50 =− 2.04 ∗ (ATSC1e)+ 0.03 ∗ (ATSC2s)− 0.06 ∗ (VR2_Dzs)− 5.40 ∗ (SpMin8_Bhp)

+ 0.93 ∗ (CrippenLogP)+ 4.56

Model 3 : pIC50 =1.50 ∗ (ATSC2e)− 0.16 ∗ (AATSC2m)− 3.79 ∗ (AATSC6s)− 5.57 ∗ (MATS1e)

+ 7.26 ∗ (MATS8s)+ 0.07

Model 4 : pIC50 = 0.02 ∗ (AATS8v)− 1.21 ∗ (ATSC1e)+ 1.62 ∗ (ATSC2e)− 2.71 ∗ (AATSC6s)

+ 3.69 ∗ (MATS8s)− 2.77

Williams plot was used in order to find compounds 
that undesirably stimulate the performance of the model 
within the domain of the model (Fig. 2). From the plot, 
one compound from the test set was found to be out-
side the favored domain, i.e., warning leverage (h* ˃  0.86) 
(Fig. 2). The compound was identified as compound 28.

After establishing the applicability domain, ligands 
were designed using the ligand-based approach coupled 
with information obtained from the model, compound 
6 was tag as the lead compound (Fig. 3A), and template 
(Fig.  3B) was adopted. The design was performed by 

addition of different groups on the X, Y and Z position on 
the template with model one utilized in predicting their 
activities.

Among the designed analogues, five had predicted 
pIC50 relatively higher than the lead compound (Table 5). 
Interestingly, the analogues showed values between 4.32 
and 5.11 with analogue A4 having the highest value of 
5.11 (Table 5).

Molecular docking studies conducted between the 
designed analogues and α-glucosidase (pdb id:3L4V) 
showed an interesting finding. The graphical structure of 
the protein was shown, and the active site of the enzyme 
was encircled (Fig. 4).

The MolDock scores of the analogues were in the order 
Analogue A2 < Analogue A3 < Analogue A1 < Analogue 
A5 < Analogue A4 (having a value of − 196.1). However, 
it is important to note that the co-crystallized ligand 
(kotalanol) and acarbose have MolDock scores of − 148.4 
and − 146.6, respectively (Table 6).

Visualization of the docking results was performed 
using discovery studio visualizer. Notably, Analogue 
A1 interacted with Ser288, Ile523, Lys776, Phe535 and 
Leu286 residues of the protein through conventional 
hydrogen bond interactions, respectively (Table 6, Fig. 5A 
and a). Also, Analogue A2 was bound to the protein via 
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Table 1  The structures, experimental pIC50, predicted pIC50, and the residual values of salicylic acid derivatives against α-glucosidase
Compounds Structures Experimental pIC50 Predicted pIC50 Residuals

1X 2.76 2.53 0.23

2Y 3.00 3.01  − 0.01

3Y 3.29 3.25 0.04

4Y 3.05 3.21  − 0.15

5Y 3.46 3.41 0.05

6Y 3.33 3.32 0.01

7Y 3.36 3.54  − 0.19

8X 3.70 3.67 0.03

9Y 3.82 3.87  − 0.04

10Y 4.07 4.02 0.05

11Y 3.02 3.06  − 0.04

12X 2.40 2.34 0.05
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Table 1  (continued)

Compounds Structures Experimental pIC50 Predicted pIC50 Residuals

13X 2.52 2.56  − 0.04

14X 2.78 2.68 0.10

15Y 1.72 1.99  − 0.27

16Y 3.10 3.00 0.10

17Y 3.72 3.63 0.10

18Y 2.24 2.12 0.12

19Y 2.60 2.62  − 0.02

20X 2.65 2.30 0.35

21X 2.22 1.94 0.28

22Y 2.76 2.60 0.15
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Table 1  (continued)

Compounds Structures Experimental pIC50 Predicted pIC50 Residuals

23X 2.45 2.48  − 0.03

24X 2.62 2.71  − 0.09

25Y 2.63 2.70  − 0.07

26Y 3.22 3.20 0.01

27X 2.92 3.09  − 0.18

28Y 2.12 2.04 0.08

29Y 1.72 1.66 0.06

30Y 2.90 3.05 -0.15

31Y 3.50 3.32 0.17

Reference drug (Acarbose) 6.35 – –

Y Training set
X Test set
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four conventional H-bond with Ser288, Ile523, Leu286 
and Arg520, respectively (Table  6, Fig.  5B and b). Two 
conventional H-bond interaction was observed in Ana-
logue A3 with Arg283 and Leu286, respectively (Table 6, 
Fig.  5C and c). Moreover, compound A4 was bound to 

the protein via Ser288, Lys776, Met567, Gly533, Leu286 
and Phe535 conventional H-bond (Table  6, Fig.  5D and 
d). Also, Analogue A5 interacted with the protein via 
five conventional H-bond with Pro287, Ser288, Lys776, 
Arg283 and Pro284, respectively (Table  6, Fig.  5E and 

Table 2  Validation parameters of the models generated with the recommended values for assessing a valid QSAR model

Models Parameters

R2
trng set R2

adj Q2
cv R2

trng set—Q2
cv LOF R2

test set

Model 1 0.968 0.957 0.932 0.036 0.085 0.864

Model 2 0.966 0.955 0.931 0.035 0.087 0.116

Model 3 0.966 0.955 0.931 0.035 0.088 0.451

Model 4 0.965 0.954 0.936 0.029 0.091 0.275

Recommended 
values

Close to unity Close to unity  > 0.5  ≤ 0.3 –  ≥ 0.6
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Fig. 1  XY (scatter) plot of residuals against experimental pIC50 of both the training and test sets compounds

Table 3  Pearson’s correlation and mean effect values of the descriptors for model one

Symbol ATSC2e MATS1e GATS2c SpMin6_Bhm CrippenLogP ME

ATSC2e 1 0.71

MATS1e 0.85 1 0.11

GATS2c  − 0.05 0.39 1 0.47

SpMin6_Bhm 0.19 0.34 0.56 1  − 1.01

CrippenLogP 0.67 0.62 0.21 0.59 1 0.72
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e). However, the kotalanol and acarbose was bound to 
the protein through six and eight conventional H-bond 
interactions, respectively (Table  6, Fig.  5F and f, G and 
g). Noticeably, other interactions such as carbon H-bond, 
alkyl, pi-alkyl, pi-sulfur, pi-cation, pi-sigma and pi-donor 
H-bond were observed (Table 6).

The ADMET properties of the designed analogues 
(Table  7) showed an excellent intestinal absorption 
ranging between 91.087 and 92.961%, The BBB perme-
ability and central nervous system permeability were also 

found to be within the recommended value which is log 
BB <  − 1 and log PS <  − 3 , respectively. The cytochrome 
P450 (CYP) superfamily which are responsible for so 
many drug interactions were examined with the designed 
analogues serving as substrate of 3A4 and inhibitors of 
2C19, 2C9 and 3A4, respectively. Moreover, the designed 
analogues are found to be nontoxic with good total 
clearance potential within the range of − 0.367 to 0.007 
(Table 7).

Subsequently, the drug-likeness properties depicted in 
(Table 8) of the design analogues showed that only ana-
logue A1 was found to respect Lipinski’s (Ro5) without 
violating any of the criteria set by the rule while ana-
logues A2, A3, A4 and A5 were found to have one vio-
lation (i.e., their molecular weight exceeds 500). The 
bioavailability score was also observed to be 0.55 except 
for analogue A4 which is 0.17. The synthetic accessibil-
ity having a recommended range from 1(very easy to syn-
thesize) to 10(very hard to synthesize) was also analyzed 
with the designed analogues found to be within the range 
of 3.14 to 3.43 (Table 8).

Table 4  Y-randomization test result

Iterations R R2 Q2

Original 0.93 0.87 0.74

Random 1 0.75 0.56 0.02

Random 2 0.55 0.30  − 0.25

Random 3 0.09 0.01  − 1.04

Random 4 0.35 0.12  − 0.66

Random 5 0.51 0.26  − 0.44

Random 6 0.29 0.08  − 0.73

Random 7 0.19 0.04  − 0.88

Random 8 0.52 0.27  − 0.40

Random 9 0.47 0.22  − 0.37

Random 10 0.22 0.05  − 0.90

Random models parameters

Average R: 0.39

Average R2: 0.19

Average Q2:  − 0.57

cRp2: 0.79
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Fig. 2  Williams plot of the model one
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template
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Discussions
Globally, the increased occurrence of DM is disturb-
ing (Wu et  al. 2014). The adverse side effects of the 
synthetic antidiabetic agents hassle the search for 
new therapeutic candidates (Banerjee et  al. 2020). 
In this study, the fascinating in  vitro activities of sali-
cylic acid derivatives against α-glucosidase (Chen et al. 
2019) led to the structural activity relationship analy-
sis of the derivatives. Most importantly, designing 

potent analogues from the derivatives could serve as 
α-glucosidase inhibitors.

The QSAR models were generated using genetic func-
tion approximation. This is because the GFA delivers 
more than one model which gives a degree of freedom to 
select the best (Abdullahi et al. 2021). Subsequently, the 
generated models were validated in order to ascertain 
their fitness and predictive power to improve the com-
pound’s biological activities (Umar et  al. 2021). Model 
one was selected as the best based on the R2

test set value 
of 0.864 which shows that the model was not over-fitted 
and sensible predictive activities for designed analogues 
is promising compared to other models.

The Pearson’s correlation shows the correlation of the 
descriptors in the model, and the mean effect values ME 
of the molecular descriptors represent the physicochemi-
cal properties that provides a structural information of 
each descriptor but in a numerical form, i.e., a unique 
information of each descriptor that can be employed to 
improve the activities of the compounds (Umar et  al. 
2021). However, positive coefficient descriptors ATSC2e, 
MATS1e, GATS2c and CrippenLogP as seen from the 
result indicate a positive influence of these descrip-
tors to the activities of salicylic acid derivatives, i.e., the 
greater the value of these types of descriptors the greater 
the antidiabetic activity and vice versa. Consequently, 
the descriptor with a negative coefficient SpMin6-Bhm 
indicates a negative influence to the activities of salicylic 
acid derivatives, i.e., the lower the value of this type of 
descriptor, the greater the antidiabetic activities. Thus, 
this shows the role of steric and electrostatic interac-
tions in inducing the activities of salicylic acid deriva-
tives against α-glucosidase (Umar et  al. 2021). Also, a 
cR2p of 0.79 obtained indicates the robustness of model 
one and obtainability was not based on probability. This 
is because the recommended value for the parameter is 
greater than 0.5 (Idris et al. 2021).

Moreover, the salicylic acid derivatives were exposed 
to Williams plot in order to inspect for influential com-
pounds that might undesirably affect the model perfor-
mance (Ibrahim et  al. 2020). Among the derivatives, 
compound 28 was considered as an outlier. The change 
in substituent and position of attachment could be the 
cause for the compound to be found outside the pre-
ferred domain.

Among the derivatives within the defined domain, 
compound 6 with low residual value, good pIC50 value 
was tag as lead compound and positions X, Y and Z were 
added as point of attachments as indicated in the adopted 
template. The choice of the substituent to be added was 
based on ATSC2e and CrippenLogP descriptors as it has 
earlier reported to have highest ME values. Based on 
the descriptors, five designed analogues were found to 

Table 5  Structures, predicted pIC50 of the lead compound and 
the designed analogues

S/No Structures Predicted pIC50

Lead compound 3.32

A1 4.32

A2 4.80

A3 4.48

A4 5.11

A5 4.50

Fig. 4  Graphical representation of α-glucosidase (3L4V) indicating 
active site where the docking was performed
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Fig. 5  3D and 2D Interactions of Analogue A1 (A and a), Analogue A2 (B and b), Analogue A3 (C and c), Analogue A4 (D and d), Analogue A5 (E 
and e), kotalanol (F and f) and acarbose (G and g) with α-glucosidase (3L4V)
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have a higher activities relative to the lead compound. 
Electron-withdrawing group particularly bromine group 
have shown to significantly enhance the activities of the 
designed analogues. However, similar substituents were 
shown to be used in recent studies conducted which were 
found to be promising in enhancing the activities of com-
pounds (Abdullahi et al. 2021).

The docking studies of the five designed analogues 
against α-glucosidase (pdb id:3L4V) were conducted. 
MolDock score is the scoring function which gives 
information on the binding energy of interaction. It was 
adopted for evaluating the interactions of the designed 
analogues against the active site of the α-glucosidase. The 
result of the docking studies show that they were bind 
at the active site of the receptor with a good MolDock 
score compared to kotalanol and acarbose. Observably, 
the higher number of H-bond energies in acarbose and 
kotalanol was as a result of higher number of hydroxyl 
functional group which portrays a greater number of 
hydrogen bond interactions at the active site of the recep-
tor after docking. Most of the interactions occur with the 
amino acid residues found within the active sites (Mau-
rya et al. 2020).

The ADMET results showed that the analogues had 
passed the adsorption, distribution, metabolism, excre-
tion and toxicity parameters with good bioavailability 

score and orally safe. Most at times determines the suc-
cess of a drug candidate (Zafar et al. 2020).

Conclusions
The present findings therefore showed that model one 
generated from genetic function approximation was 
the best due to its fitness with the following internal 
and external validation parameters of R2

(trng set) = 0.968, 
R2

(adj) = 0.957, Q2
cv = 0.932, LOF = 0.085 and R2

(test 

set) = 0.864. However, the five potent analogues designed 
using the ligand-based were found to have higher activi-
ties than the lead compound. The compounds interacted 
reasonably well with the active site of the α-glucosidase. 
Based on the present findings, the compounds could 
be used subsequently for the search of new antidiabetic 
agent.
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Table 7  ADMET properties of the designed analogues

Absorption Distribution CNS Metabolism Excretion Toxicity 

Intestinal 
absorption 
(Human)

BBB perm. (Log BB) Perm. (Log PS) Substrate and inhibitors CYP Total clearance AMES toxicity

Substrate 
of CYP

Inhibitors of CYP

2D6 3A4 1A2 2C19 2C9 2D6 3A4

A1 92.552  − 0.756  − 2.072 No Yes No Yes Yes No Yes 0.007 No

A2 93.752  − 0.896  − 1.949 No Yes No Yes Yes No Yes 0.110 No

A3 92.024  − 0.756  − 2.026 No Yes No Yes Yes No Yes  − 0.229 No

A4 92.961  − 0.921  − 1.881 No Yes No Yes Yes No Yes  − 0.367 No

A5 92.024  − 0.773  − 2.026 No Yes No Yes Yes No Yes  − 0.347 No

Table 8  Drug-likeness properties of the designed analogues

Molecular weight H-bond 
acceptor

H-bond donor MLog P Lipinski’s 
violations

Bioavailability score Synthetic 
accessibility

A1 466.33 5 2 3.66 0 0.55 3.33

A2 500.78 5 2 4.13 1 0.55 3.38

A3 555.24 5 2 3.87 1 0.55 3.35

A4 634.13 5 2 4.45 1 0.17 3.43

A5 555.24 5 2 3.87 1 0.55 3.37
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