
Ugbe et al. 
Bulletin of the National Research Centre           (2022) 46:92  
https://doi.org/10.1186/s42269-022-00779-z

RESEARCH

Theoretical activity prediction, 
structure‑based design, molecular docking 
and pharmacokinetic studies of some 
maleimides against Leishmania donovani 
for the treatment of leishmaniasis
Fabian Audu Ugbe*  , Gideon Adamu Shallangwa, Adamu Uzairu and Ibrahim Abdulkadir 

Abstract 

Background:  Leishmaniasis is a neglected tropical disease caused by a group of protozoan of the genus Leishmania 
and transmitted to humans majorly through the bite of the female sand fly. It is prevalent in the tropical regions of 
the world especially in Africa and estimated to affect a population of about 12 million people annually. This theoreti-
cal study was therefore conducted in support of the search for more effective drug candidates for the treatment of 
leishmaniasis. This study focuses on the in silico activity prediction of twenty-eight (28) maleimides, structure-based 
design, molecular docking study and pharmacokinetics analysis of the newly designed maleimides. All the studied 
compounds were drawn using ChemDraw Ultra and optimized by the density functional theory (DFT) approach 
using B3LYP with 6-31G⁄ basis set.

Results:  The built QSAR model was found to satisfy the requirement of both internal and external validation tests for 
an acceptable QSAR model with R2 = 0.801, R2

adj = 0.748, Q2
cv = 0.710, R2

test = 0.892 and cRp
2 = 0.664 and has shown 

excellent prediction of the studied compounds. Among the five (5) protein receptors utilized for the virtual docking 
screening, pyridoxal kinase (PdxK) receptor (Pdb id = 6k91) showed the strongest binding interactions with com-
pounds 14, 21 and 24 with the highest binding affinities of − 7.7, − 7.7 and − 7.8 kcal/mol, respectively. The selected 
templates (14, 21 and 24) were used to design twelve (12) new compounds (N1–N12) with higher docking scores 
than the templates. N7 (affinity =  − 8.9 kcal/mol) and N12 (− 8.5 kcal/mol) showed higher binding scores than the 
reference drug pentamidine (− 8.10 kcal/mol), while N3 and N7–N12 showed higher predicted pIC50 than the tem-
plates. Also, the pharmacokinetics properties prediction revealed that the newly designed compounds, obeyed the 
Lipinski’s rule for oral bio-availability, showed high human intestinal absorption (HIA), low synthetic accessibility score, 
CNS and BBB permeability and were pharmacologically active.

Conclusions:  The activities of the various maleimides were predicted excellently by the built QSAR model. Based on 
the pharmacokinetics and molecular docking studies therefore, the newly designed compounds are suggested for 
further practical evaluation and/or validation as potential drug candidates for the treatment of leishmaniasis.

Keywords:  DFT, Leishmaniasis, L. Donovani, Molecular docking, Pharmacokinetics, QSAR

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Bulletin of the National
Research Centre

*Correspondence:  ugbefabianaudu@gmail.com
Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello 
University, P.M.B. 1044, Zaria, Kaduna State, Nigeria

http://orcid.org/0000-0001-7052-4959
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42269-022-00779-z&domain=pdf


Page 2 of 23Ugbe et al. Bulletin of the National Research Centre           (2022) 46:92 

Background
Leishmaniasis is among those diseases which are classi-
fied as neglected tropical diseases. It was reported as the 
second most prevalent parasite infection after malaria 
(Tonelli et  al. 2018). Leishmaniasis is known to affect a 
population of about 350 million people majorly living 
in the tropical impoverished regions of the world, with 
approximately 12 million people been infected annually 
(Baquedano et al. 2016). It is caused by a group of proto-
zoan parasites of the genus leishmania, which are respon-
sible for the three common clinical types: cutaneous, 
mucocutaneous and visceral leishmaniasis (VL) among 
which VL is the most fatal if left untreated (Keurulainen 
et  al. 2018). VL is majorly caused by Leishmania Dono-
vani (L. donovani) and L. infantum, inherited through 
the bite of the female sand fly (Abdelhameed 2018). 
The challenge remains that only few drugs are available 
for the treatment of leishmaniasis including Pentostam 
(contains heavy metal antimony), pentamidine, ampho-
tericin B, paromomycin and miltefosine with varying 
shortcomings such as high cost, toxicity and less effi-
cacy among others (Fan et al. 2018). For example, fever, 
chill, nephrotoxicity, hypokalemia and myocarditis are 
the major adverse effects associated with amphotericin 
B (Ghorbani and Farhoudi 2018). Miltefosine has been 
linked to contraindication in pregnancy and mandatory 
contraception for women in child bearing age (Ghorbani 
and Farhoudi 2018). The major safety concern associated 
with pentamidine is induction of insulin-dependent dia-
betes mellitus, while ototoxicity and nephrotoxicity are 
associated with paromomycin (Seifert 2011). Also, the 
parasites which are increasingly becoming drug-resistant 
pose a great threat to the treatment of leishmanial infec-
tions (Fan et  al. 2018), and more so that it has received 
only a little global attention compared to other infections 
such as malaria, tuberculosis and cancer. Therefore, the 
development of new medicines with clinical attributes 
that overcome all of these drawbacks is highly necessary.

In this study, a computer-aided drug design approach 
was utilized to propose some set of new compounds for 
further evaluation as leishmania inhibitors. In the process 
of new drug development, computational tools play a 
critical role because it saves time and cost and has proven 
to be more effective than the crude traditional methods 
(Lawal et al. 2021). Notable computational tools include 
quantitative structure activity relationship (QSAR), 
molecular docking, molecular dynamics, pharmacoki-
netics and homology modeling among others (Adeniji 
et al. 2019; Ibrahim et al. 2020, 2021). The knowledge of 
QSAR helps in establishing a relationship between vari-
ous molecular structures of molecules and their experi-
mental activities (Adeniji et al. 2019). Molecular docking 
simulation is a computer-aided virtual screening method 

which probes the binding of ligands in the active sites 
of the protein target using a valid docking tool (Ibrahim 
et  al. 2020). Pharmacokinetics analysis is important in 
the preclinical study of new drug compounds in order 
to ascertain how such drug compounds affect the living 
organism when administered. Some of the most impor-
tant pharmacokinetics properties to be determined dur-
ing preclinical testing include absorption, distribution, 
metabolism, excretion and toxicity (ADMET) (Lawal 
et  al. 2021; Ibrahim et  al. 2021). Physicochemical prop-
erties such as molecular weight, topological polar sur-
face area (TPSA), lipophilicity, water solubility, hydrogen 
bond donors, and hydrogen bond acceptors are necessary 
to predict drug’s likelihood of being orally bioavailable 
(Lipinski et  al. 2001). The choices of molecules for oral 
bioavailability have been guided by several rules such as 
the Lipinski’s ‘rule of 5’ (RO5), Veber rule, Ghose rule, 
Egan and Muegge (Sun et al. 2020).

Some therapeutic protein targets of Leishmania spp 
available in the protein data bank for docking with drug 
ligands include Ribokinase from L. donovani (5ZWY) (. 
Gatreddi et  al. 2019), L. major mitochondrial ribosome 
(7ANE) (Soufari et  al. 2020), pyridoxal kinase from L. 
donovani in complex with ADP and pyridoxine (6K91) 
(Are et al. 2020) and L. donovani UMP synthase (3QW4) 
(French et  al. 2011). Pyridoxal kinase (PdxK) from L. 
donovani is an interesting drug target; it was reported to 
catalyze the phosphorylation of the 5′ hydroxyl group of 
pyridoxal to form pyridoxal-5′-phosphate, the biologi-
cally active form of vitamin B6 (Are et  al. 2020). PdxK 
was in a recent study shown to be significant for para-
site growth and key to host infection (Kumar et al. 2018). 
Known anti-malaria medicines like chloroquine and 
primaquine had earlier shown inhibition against PdxK 
(Kimura et al. 2014). Therefore, PdxK represents a prom-
ising target for designing novel anti-leishmanial agents. 
Structure-based drug design (SBDD) otherwise referred 
to as the direct drug design is a critical part of industrial 
drug discovery processes, and a useful tool in academic 
researches. This is because it deals with the knowledge of 
the 3D structures of the target enzymes and the related 
diseases at the molecular level (Batool et  al. 2019). The 
method comprises of steps such as obtaining useful infor-
mation on the 3D structure of the target protein deter-
mined via X-ray crystallography; NMR spectroscopy or 
homology modeling; retrieval and preparation of such 
enzyme target; and the actual design of novel compounds 
(Abdullahi et al. 2022).

Maleimides have been reported as antimicrobial 
compounds (Chen et al. 2015; Li et al. 2012; Shen et al. 
2013) and also have shown excellent enzyme inhibitory 
activities (Silvia and Maria 2005; Slavica et  al. 2007). 
Additionally, maleimides had earlier been described as 
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anti-inflammatory (Nara et al. 2010), anti-cancer (Khan 
et  al. 2004) and anti-anxiety (Jerzy 2003). In order to 
exploit the anti-leishmanial effect of maleimides there-
fore, Fan et  al. (2018) synthesized a series of maleim-
ides and reported their biological activities against L. 
donovani. Consequently, this study was undertaken to 
develop a QSAR model for predicting with precision 
the activities of some maleimides as potent anti-leish-
manial agents, conduct a virtual docking screening with 
different protein receptors, carry out a structure-based 
design of new maleimides and subjecting same to phar-
macokinetics and molecular docking studies in order 
to evaluate their drug-likeness properties and binding 
interaction pattern, respectively.

Methods
Data collection
A series of 28 maleimides with reported anti-leishma-
nial activities (IC50 in µg/mL) were obtained from the 
literature (Fan et al. 2018). The bioactivities (IC50) were 
first converted from g/L to Molar (M) using Eq. (1) and 
thereafter to logarithmic scale (pIC50) using Eq.  (2) 
(Wang et  al. 2020). The molecular structures of the 
various maleimides with their observed IC50 and pIC50 
values are shown in Table 1.

Molecular geometry optimization
The two-dimensional (2-D) structures of the various 
compounds were drawn using ChemDraw Ultra (ver-
sion 12.0.2) and saved as MDL mol file format. The 
resulting files were then fed separately onto the Spar-
tan’14 (version 1.1.4) graphical user interface in three-
dimensional (3-D) structural form. The 3-D structures 
were first subjected to energy minimization and molec-
ular mechanics force field (MMFF) in order to mini-
mize their chemical structures and to remove tension 
energy of the molecules’ conformation. The main opti-
mization process was then conducted using density 
functional theory (DFT) with Becke’s three-parameter 
read-Yang-Parr hybrid (B3LYP) option and utilizing the 
6-31G basis set. The thoroughly optimized structures 
were then saved in SD file and PDB formats for use in 
descriptor calculation and molecular docking, respec-
tively (Wang et al. 2020; Li et al. 2004).

(1)IC50

(

molL−1
)

=
IC50

(

gL−1
)

Molar mass
(

gmol−1
) .

(2)pIC50 = − log10

(

IC50 × 10−9
)

Generation of molecular descriptors
The resulting data in SD file format obtained earlier 
from the optimization process were imported into the 
Pharmaceutical Data Exploration Laboratory (PaDEL)-
Descriptor software (version 2.20) in order to calculate 
the molecular descriptors for all twenty-eight (28) com-
pounds (Lawal et al. 2021).

Dataset pretreatment and division into training and test 
sets
The Drug Theoretical and Chem-informatics Laboratory 
(DTC Lab)-based software GUI 1.2 was used to remove 
non-informative descriptors from the generated descrip-
tor pool (Adeniji et  al. 2020). The pretreated data were 
then divided into the modeling train set data and external 
evaluation test set data in the ratio of 70:30, respectively, 
with the help of DTC Lab-derived software which utilizes 
the Kennard Stone method for dataset division (Kennard 
and Stone 1969). The splitting of dataset into training and 
test sets was based on the closeness of the representa-
tive points of the test set to the representative points of 
the training set in the multidimensional descriptor space 
(Ugbe et al. 2021).

Model building
The genetic function approximation (GFA) as a statisti-
cal technique in the Material Studio software (version 
8.0) was used to generate the models based on multi-lin-
ear regression (MLR) approach. GFA was used to obtain 
the optimum descriptor combinations constituting the 
QSAR models, while MLR helps to establish the relation-
ship between the biological activities, pIC50 (dependent 
variable) and the molecular descriptors (independent 
variables) (Arthur et  al. 2020). The multi-linear regres-
sion equation assumes the following form (Eq.  3) (Ada-
wara et al. 2020):

where Y represents the dependent variable; ‘k’s and ‘x’s 
represent, respectively, regression coefficients and inde-
pendent variables; ‘C’ equals intercept or regression 
constant.

Assessment of model quality
Internal validation assessment of the built model was car-
ried out on Material studio by GFA approach using the 
Friedman formula, correlation coefficient (R2) and cross-
validation coefficient (Q2cv), and also by the Y-randomi-
zation test in order to show how well the model predict 
the activity values of the model building compounds 
(Adeniji et  al. 2018; Adawara et  al. 2020). The model’s 
predictive power was also assessed externally to show 
if the model could predict the activity values of the test 

(3)Y = k1x1 + k2x2 + k3x3 + · · ·C
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set compounds. This involves calculating the correlation 
coefficient (R2 test) for the test set, upon which the pre-
dictive strength of the model depends (Isyaku et al. 2020). 
Furthermore, the data were subjected to the Golbraikh 
and Tropsha acceptable model criteria using the MLR-
plusValidation tool (version 1.3) (Roy et al. 2013; Edache 
et al. 2020). The various equations and parameters used 
for the model validation are presented in Table 2.

Evaluation of descriptors’ mean effects
The mean effect (ME) value shows the relative contribu-
tion of each descriptor in a model, defined as (Eq. 10):

(10)ME =
Bj

∑n
i Dj

∑m
j

(

Bj
∑n

i Dj

)

Table 1  Molecular structures of maleimides and their anti-leishmanial activities (IC50 and pIC50)

Comp 
ID

Molecular structure IC50
(µg/mL)

Mm 
(g/mol)

IC50
(µM)

pIC50

1 0.08 153.181 0.522 6.2821

2 0.36 167.208 2.150 5.6670

3 0.11 181.235 0.607 6.2168

4 0.27 209.289 1.290 5.8894

5 2.21 265.397 8.330 5.0795

6 0.08 187.198 0.427 6.3692

7 0.11 215.252 0.511 6.2916

8 0.32 191.161 1.670 5.7762
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Table 1  (continued)

9 0.10 201.225 0.497 6.3037

10 0.08 229.279 0.349 6.4573

11 0.26 179.219 1.450 5.8384

12 0.96 223.316 4.300 5.3666

13 0.58 201.225 2.880 5.5403

14 1.22 215.252 5.670 5.2466

15 0.55 243.306 2.260 5.6458

16 0.89 193.246 4.610 5.3367

17 0.47 222.071 2.120 5.6744

18 0.65 236.098 2.750 5.5602
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Table 1  (continued)

19 0.48 278.179 1.730 5.7631

20 1.64 270.115 6.070 5.2167

21 0.40 284.142 1.410 5.8515

22 0.36 260.051 1.380 5.8588

23 0.59 276.506 2.130 5.6709

24 0.45 270.115 1.670 5.7783

25 0.13 298.169 0.436 6.3605

26 0.13 248.109 0.524 6.2807

27 0.43 222.071 1.940 5.7130

28 0.26 248.109 1.050 5.9797

IC50 half-maximal inhibitory concentration, Mm molar mass; pIC50-negative log of IC50
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where βj is the coefficient of the descriptor j in the model, 
Dj is the value of each descriptor in the data matrix for 
each molecule in the training set, m is the number of the 
descriptor that appears in the model, n is the number of 
molecules in the training set (Abdullahi et al. 2019).

Variance inflation factor
The degree of multi-co-linearity or correspondence 
between the descriptors is measured by the variance 
inflation factor (VIF), usually defined as (Eq. 11):

where R2 is the correlation coefficient of the multiple 
regressions between the variables within the model. VIF 
values of 1 indicate no inter-correlation exists for each 
variable; for VIF in the range of 1–5, the related model 
is acceptable; and if VIF is greater than 10, the related 
model is unstable and unacceptable (Abdullahi et  al. 
2019).

(11)VIF =
1

(

1− R2
)

Evaluation of the model’s applicability domain
Evaluating the applicability domain (AD) of a QSAR 
model is important to ascertain the reliability and 
robustness of the built QSAR model. AD provides one 
the chance to estimate the uncertainty in the prediction 
of compounds based on their similarity with the train-
ing set compounds, used in the model building (Trop-
sha et  al. 2003). The leverage approach was used to 
describe the AD of the developed model. The leverage 
(h) of a particular chemical compound is defined thus 
(Eq. 12):

where X = m × k descriptor matrix of the training set 
compound, XT = transpose matrix of X.

The warning leverage (h*) which is the range of val-
ues used to check for influential molecule or outlier is 
defined below (Eq. 13):

(12)h = X(XTX)−1XT

(13)h∗ = 3

(

j + 1
)

m

Table 2  Some equations and parameters used for the model validation

SEE Standard error of estimation; c number of terms in the model; d user-defined smoothing parameter, p total number of descriptors in the model, M number of data 
in the training set, Y  training = mean experimental activity of the training set, Yexp experimental activity in the training set, Ypred predicted activity in the training set, n 
number of compounds in the training set, cR2p Y-randomization coefficient, R correlation coefficient for Y-Randomization, Rr average ‘R’ of random models, Ypredtest 
predicted activity of test set, Yexptest experimental activity of test set, r2 square correlation coefficients of the plot of experimental activity versus predictedactivity 
values, ro

2 square correlation coefficients of the plot of experimental activity versus predicted activity values at zero intercept, rʹo2 square correlation coefficients of the 
plot of predicted activity versus experimental activity at zero intercept, kʹ slope of the plot of predicted activity against experimental activity at zero intercept

Parameter Equation Eq Significance Threshold value

Internal validation

Friedman Lack-Of-Fit (LOF) LOF = SEE
(

1−
c+d×p

M

)2

SEE =

√

(Yexp−Ypred)
2

N−P−1

4 Allows for the best fitness score to be 
obtained

–

Correlation coefficient (R2)
R2 = 1−

[

∑

(Yexp−Ypred)
2

∑

(Yexp−Y training)
2

]

5 Measures the degree of fitness of the regres-
sion equation

 ≥ 0.6

Adjusted R2
R2adj =

R2−p(n−1)
n−p+1

6 Ensures model’s stability and reliability  ≥ 0.5

Cross-validation regression coefficient (Q2cv)
Q2
cv = 1−

[

∑

(Ypred−Yexp)
2

∑

(Yexp−Y training)2

]

7 Indicates a high internal predictive power  ≥ 0.5

The coefficient of determination ( cR2p ) of 
Y-Randomization

cR2p = RX [R2 − (Rr)
2
]
2 8 This is for a confirmation that the QSAR 

model built is strong and not created by 
chance

cR2p > 0.50

External validation

Predicted R2 (R2 test)
R2test = 1−

∑

(Ypredtest−Y exptest)
2

∑

(Ypredtest−Y training)
2

9 Measures the ability of the model to predict 
activity values of external set of compounds

 ≥ 0.6

Golbraikh and Tropsha acceptable model 
criteria

∣

∣

∣
r2o − r

′2
o

∣

∣

∣

∣

∣

∣

∣

r2 −
r
′2
o

r2

∣

∣

∣

∣

kʹ (threshold value)

– Assess the robustness and stability of the 
model

 < 0.3
 < 0.1
0.85 ≤ k′ ≤ 1.15
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where m number of training set compounds, j number of 
descriptors in the model.

A plot of the standardized residuals against leverages 
otherwise called the William’s plot was used to evaluate 
the significant area in the model’s chemical space. As a 
rule, compounds which fall within this area on the plot 
are the approved predicted compounds (Adeniji et  al. 
2020; Veerasamy et al. 2011).

Virtual docking screening
Molecular docking investigation was conducted sepa-
rately between five (5) different protein receptors of L. 
donovani and all 28 maleimides using the Auto Dock Vina 
of PyRx v software tool. To revalidate the docking results, 
the reference drug (pentamidine) was equally docked 
onto the same binding pockets of the 5 receptors. This 
screening was carried out in order to identify the best 
therapeutic protein target for the maleimide molecules. 
The various receptors in 3-D form were retrieved from 
the protein data bank in the PDB file format and fully pre-
pared on the Biovia Discovery Studio Visualizer by exclud-
ing water molecules and co-crystallized ligand enclosed 
within the protein structure. The 3D structures of all the 
ligands (maleimides) were saved in PDB file format after 
the optimization process using Spartan 14 (Adeniji et al. 
2019; Adawara et al. 2020). The various receptors used in 
the virtual docking screening are described in Table 3.

Structured‑based drug design
In this study, twelve (12) compounds (N1–N12) were 
designed via SBDD using the template compounds (14, 
21 and 24) basically by addition of varying substituent 
groups at the meta, para and ortho positions of the phenyl 
ring system in the various template structures. N1–N3 
were designed out of compound 14, N4–N6 out of 21 
and N7–N12 via compound 24. The molecular structures 
of the newly designed compounds were drawn using the 
ChemDraw Ultra and subjected to molecular geometry 
optimization according to the procedures earlier reported 
herein for molecular geometry optimization. The 

optimized structures were then saved in SD and PDB files 
format for further analyses involving molecular descrip-
tor calculations and molecular docking study (Abdullahi 
et  al. 2022). Standard docking was performed between 
the newly designed maleimides and the preferred target 
receptor (PdxK), using the Auto Dock Vina of PyRx v soft-
ware tool, while the Biovia Discovery Studio tool was used 
to visualize the resulting pharmacological interactions as 
earlier reported herein for virtual docking screening.

Prediction of pharmacokinetic properties
Pharmacokinetics properties prediction constitute an 
absolutely necessary stage in drug discovery’s early phase 
because only molecules with good drug-likeness prop-
erties and excellent ADMET profiles advance into the 
preclinical research phase (Lawal et al. 2021). Therefore, 
all the newly designed compounds were investigated for 
their drug-likeness and ADMET properties using the 
online web servers; http://​www.​swiss​adme.​ch/​index.​
php and http://​biosig.​unime​lb.​edu.​au/​pkcsm, respec-
tively. The Lipinski’s RO5 is a widely used criterion for 
oral bioavailability. Hence, the tested compounds would 
be assessed for oral bioavailability using the RO5 criteria 
(Lipinski et al. 2001).

Table 3  Description of the various enzymes used for the target 
fishing

S. no Enzyme Organism PDB ID Resolution (Å)

1 Ribokinase L. donovani 5ZWY 1.95

2 Pteridine reductase 
(PTR 1)

L. donovani 2XOX 2.50

3 O-acetyl serine sulfhy-
drylase

L. donovani 3SPX 1.79

4 Pyridoxal kinase/ADP 
and pyridoxine complex

L. donovani 6K91 2.00

5 UMP synthase L. donovani 3QW4 3.00

0

1

2

3

4

5

6

7

8

0 2 4 6 8

Pr
ed

ic
te

d 
Ac

tiv
ity

Observed Activity Training Test

R2
train = 0.801

R2
test = 0.892
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Results
QSAR study
The results of theoretical study (QSAR) conducted on the 
twenty-eight (28) maleimides are presented in Figs.  1, 2, 
3 and Tables 4, 5, 6, 7, 8. The built QSAR model (Eq. 14) 
is composed of four (4) descriptors described clearly in 
Table 4. In order to ascertain the stability, robustness, relia-
bility and predictive power of the built QSAR model, it was 
subjected to both internal and external validation tests, 
and the results are presented in Table  5. The calculated 
descriptors, experimental activities (pIC50) of the various 
compounds, together with those predicted by the model as 
well as their residuals, are presented in Table 6. Also, Fig. 1 
shows the plot of predicted activity values against those 
of experimental activity for both training and test sets. A 
further plot of standardized residuals against experimental 
activities was obtained and is presented in Fig. 2.
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Fig. 3  The plot of standardized residuals against the leverage values 
(William’s plot)

Table 4  Selected descriptors used in the QSAR model

S/no Descriptor symbol Description Class

1 ATSC6v Centred Broto–Moreau autocorrelation of lag 6 weighted by van der Waals 
volume

2D

2 GATS5c Geary autocorrelation of lag 5 weighted by gasteiger charge 2D

3 SpMin8_Bhs The smallest absolute eigenvalue of Burden modified matrix − n 8/weighted by 
relative I-state

2D

4 LOBMIN The L/B ratio for the rotation that results in the minimum area 3D

Table 5  Validated parameters of the QSAR model

Validation parameters Model Threshold Remarks

Training set

Friedman LOF 0.151244 – –

R-squared (R2) 0.801298  ≥ 0.6 Passed

Adjusted R-squared ( R2adj) 0.748311  ≥ 0.5 Passed

Cross-validated R-squared ( Q2
cv) 0.710284  ≥ 0.5 Passed

R2 − Q2
cv

0.091014  ≤ 0.3 Passed

Significant regression Yes – –

Significance-of-regression F-value 15.122516 – –

Critical SOR F-value (95%) 3.103976 – –

Replicate points 1 – –

Computed experimental error 0.21286 – –

Lack-of-fit points 14 – –

Min expt. error for nonsignificant LOF (95%) 0.000000 – –

Test set

R-squared ( R2test ) i.e.r2 0.892  ≥ 0.6 Passed

Number of test set compounds (Ntest set) 8  ≥ 5 Passed
∣

∣

∣
r2o − r

′2
o

∣

∣

∣

0.00599 ˂ 0.3 Passed
∣

∣

∣

∣

r2 −
r
′2
o

r2

∣

∣

∣

∣

0.00093 ˂ 0.1 Passed

kʹ 1.03956 0.85 ≤ kʹ ≤ 1.15 Passed
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Additionally, Pearson’s correlation statistical analyses 
were performed on the values of all four descriptors in 

(14)

pIC50 = −0.000437131*ATSC6v − 2.149874608*GATS5c

− 0.840892310*SpMin8_Bhs

− 0.292116894*LOBMIN+ 8.730133535

the built QSAR model, and the results are reported in 
Table 7. Another significant validation test is the Y-ran-
domization test, which was also performed in order to 
confirm that the QSAR model is strong and not created 
by chance. The resulting parameters are presented in 
Table 8. Also, the scatter plot of the standardized resid-
uals versus the leverages (William’s Plot) obtained to 

Table 6  Calculated descriptors, experimental pIC50, predicted pIC50 and residuals of the maleimides

* Test set compound

Comp ID ATSC6v GATS5c SpMin8_Bhs LOBMIN Exp. pIC50 Pred. pIC50 Residuals

*1  − 0.87061 0.807177 0.487764 2.99E − 302 6.2821 6.5850  − 0.3029

*2 68.11814 0.850080 0.247823 2.956504 5.6670 5.8008  − 0.1338

3 3.519155 0.802467 0.125168 3.229268 6.2168 5.9548 0.26203

4 14.31615 0.743074 0.317457 3.923050 5.8894 5.7134 0.17596

5 20.85557 0.695707 0.702430 5.417251 5.0795 5.0522 0.02731

6  − 281.902 0.789288 0.174618 2.131400 6.3692 6.3870  − 0.0178

7 335.0083 0.749431 0.246926 2.679580 6.2916 5.9821 0.30943

8  − 1.64535 1.087869 0.744944 0.000000 5.7762 5.7657 0.01060

9  − 523.742 0.935578 0.138658 1.345829 6.3037 6.4380  − 0.1343

*10  − 1824.44 1.039158 0.371490 1.032339 6.4573 6.6796  − 0.2224

11  − 472.640 1.186918 0.022460 1.637375 5.8384 5.8878  − 0.0494

12 17.12542 0.945125 0.485891 2.646233 5.3666 5.5092  − 0.1425

*13 155.7281 1.022659 0.090320 1.631637 5.5403 5.9109  − 0.3706

*14 602.2820 1.051403 0.315048 2.086024 5.2466 5.3322  − 0.0856

*15  − 1714.91 1.217162 0.612817 1.142319 5.6458 6.0140  − 0.3682

16  − 835.324 1.390670 0.180784 1.827930 5.3367 5.4195  − 0.0828

*17  − 652.101 0.995548 0.564835 2.629568 5.6744 5.6318 0.04262

18  − 101.100 0.875543 0.360434 2.967507 5.5602 5.7221  − 0.1619

19  − 61.4039 0.756412 0.294463 3.442068 5.7631 5.8777  − 0.1146

*20 199.6291 0.852694 0.115018 3.836036 5.2167 5.5924  − 0.3757

21 144.0129 0.767797 0.229505 2.425906 5.8515 6.1149  − 0.2634

22  − 267.907 0.769120 0.455067 3.071717 5.8588 5.9138  − 0.0550

23  − 180.781 0.849008 0.25338 3.07202 5.6709 5.8734  − 0.2026

24 779.8424 0.988572 0.172124 1.225518 5.7783 5.7612 0.01713

25  − 728.677 1.038058 0.352118 1.159004 6.3605 6.1823 0.17821

26  − 956.98 1.178622 0.052329 1.69209 6.2807 6.0763 0.20442

27  − 664.409 1.183124 0.53361 1.5443 5.713 5.5772 0.13585

28  − 956.98 1.178622 0.052329 1.69209 5.9797 6.0763  − 0.0966

Table 7  Pearson’s correlation and statistical analyses of descriptors used in the QSAR model

VIF variance inflation factor, ME mean effect

Descriptors Inter-correlation Statistical parameters

ATSC6v GATS5c SpMin8_Bhs LOBMIN VIF ME t Stat p-value

ATSC6v 1 1.8938  − 0.036  − 3.4079 0.00389

GATS5c  − 0.6434 1 3.178 0.7093  − 5.735 3.95E − 05

SpMin8_Bhs 0.2589  − 0.2312 1 1.0884 0.0865  − 3.9339 0.00133

LOBMIN 0.2894  − 0.6848 0.1889 1 2.0482 0.2402  − 5.8204 3.37E − 05
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ascertain the model’s applicability domain is shown in 
Fig. 3.

Virtual docking screening
The results (binding affinities) of the docking simulation 
conducted between five (5) protein receptors of L. dono-
vani and the studied maleimides, as well as the reference 
drug (pentamidine) are reported in Table  9. Also, the 
prepared 3-D structure of PdxK is shown in Fig. 4, while 
the pharmacological interactions between the receptor 
(PdxK)’s amino acid residues and the selected templates 
(14, 21 and 24), as well as the reference drug (pentami-
dine) as compiled through Discovery Studio Visualizer, 
are presented in Table  10. Additionally, the 2D and 3D 
views of the binding interactions of compounds 14, 21, 
24, and pentamidine with the binding site of PdxK recep-
tor as adapted from the Discovery Studio Visualizer, are 
shown in Figs. 5, 6, 7 and 8, respectively.

Structured‑based drug design
The 2D molecular structures, predicted pIC50 and bind-
ing energies of the newly designed compounds as well 
as the reference drug (pentamidine) are reported in 
Table 11. Also, the binding interaction profiles of the tar-
get receptor (PdxK) with the newly designed compounds 
are presented in Table 12, while the 2D and 3D views of 
the binding interactions of N7 and N12 with the recep-
tor’s amino acid residues are shown in Figs.  9 and 10, 
respectively.

Table 8  Y-randomization test parameters

cR2p Y-randomization coefficient, R correlation coefficient for Y-randomization

R2-correlation coefficient, Q2-cross-validated R2

Model R R2 Q2

Original 0.895153 0.801298 0.710284

Random 1 0.351112 0.12328  − 0.69927

Random 2 0.484525 0.234764  − 0.13213

Random 3 0.266796 0.07118  − 0.88374

Random 4 0.440654 0.194176  − 0.28691

Random 5 0.647923 0.419804 0.035498

Random 6 0.52495 0.275572  − 0.19051

Random 7 0.6118 0.374299  − 0.02487

Random 8 0.440392 0.193945  − 0.67219

Random 9 0.758172 0.574825 0.01589

Random 10 0.478221 0.228695  − 0.61115

Random models 
parameters

Average r: 0.500454

Average r2: 0.269054

Average Q2:  − 0.34494

cR2p 0.664372

Table 9  Summary of binding affinities of interactions between 
maleimides and different L. donovani receptors used for the 
target fishing

PDB ID—5ZWY, 2XOX, 3SPX, 6K91, 3QW4

COMP ID Protein–ligand binding affinities (kcal/mol)

5ZWY 2XOX 3SPX 6K91 3QW4

1  − 5.4  − 5.1  − 5.2  − 5.5  − 4.8

2  − 5.3  − 5.1  − 5.6  − 6.0  − 4.9

3  − 5.4  − 5.2  − 5.3  − 6.0  − 4.8

4  − 5.4  − 5.4  − 5.7  − 6.4  − 5.3

5  − 4.9  − 5.2  − 5.9  − 6.9  − 5.0

6  − 6.2  − 6.0  − 6.7  − 7.1  − 5.6

7  − 6.4  − 6.5  − 6.7  − 7.6  − 6.3

8  − 6.4  − 6.7  − 6.6  − 7.0  − 6.5

9  − 6.2  − 6.4  − 6.6  − 6.7  − 5.9

10  − 6.2  − 6.7  − 7.0  − 5.4  − 5.8

11  − 6.1  − 6.1  − 6.1  − 6.3  − 5.9

12  − 5.8  − 6.0  − 6.8  − 6.8  − 5.3

13  − 6.8  − 6.3  − 7.1  − 7.3  − 6.0

14  − 7.0  − 6.8  − 7.1  − 7.7  − 6.3

15  − 6.5  − 6.9  − 7.3  − 6.7  − 6.3

16  − 6.7  − 6.4  − 6.5  − 6.8  − 6.2

17  − 5.6  − 5.8  − 5.9  − 5.9  − 5.1

18  − 5.7  − 5.9  − 5.7  − 6.1  − 5.5

19  − 5.5  − 5.5  − 6.1  − 6.3  − 5.8

20  − 6.3  − 6.4  − 7.2  − 7.5  − 6.5

21  − 6.4  − 6.6  − 7.1  − 7.7  − 6.2

22  − 6.7  − 7.1  − 7.1  − 7.2  − 6.8

23  − 6.4  − 7.0  − 6.8  − 6.2  − 6.5

24  − 6.6  − 6.5  − 7.0  − 7.8  − 6.2

25  − 6.7  − 6.8  − 7.4  − 7.4  − 5.9

26  − 6.1  − 6.0  − 6.3  − 7.0  − 6.3

27  − 5.7  − 6.0  − 5.9  − 6.0  − 5.2

28  − 6.1  − 6.2  − 6.3  − 7.0  − 6.3

Pentamidine  − 6.4  − 6.8  − 7.4  − 8.1  − 7.0

Fig. 4  3D structure of prepared receptor (PdxK)
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Pharmacokinetics properties prediction
Results of the pharmacokinetics investigation con-
ducted on the newly designed compounds are pre-
sented in Tables  13, 14, while Fig.  11 shows their 
Boiled Egg’s representation.

Discussion
QSAR study
A combined GFA and MLR approach led to the selec-
tion of four (4) descriptors in the generation of the QSAR 

model. The built model (Eq. 14) was found to excellently 
satisfy the requirement for a reliable QSAR model. The 
low residual values between the experimental and pre-
dicted activities as shown in Table  6 indicate a high 
predictive strength for the QSAR model. The R2 values 
of 0.801 and 0.892 for training set and test set, respec-
tively, as obtained from the plot of exp. pIC50 against 
pred. pIC50 in Fig.  1 compare perfectly well with those 
obtained from GFA (0.8013 and 0.892) and MLRplusVali-
dation analysis (0.8013 and 0.892) as reported in Table 5. 

Table 10  Predicted binding interaction profile of selected template molecules with PdxK receptor

ASN asparagine, ASP aspartic acid, GLY glycine, ILE isoleucine, LEU leucine, LYS lysine, PHE phenylalanine, SER serine, THR threonine, TYR​ tyrosine, VAL valine

ID Hydrogen bond interactions Electrostatic and hydrophobic interactions

Amino acid Type Distance (Å)

14 THR-229 Conventional 2.41, 2.48 ASP-124 (π-anion), TYR-85 (π–π), VAL-19 (π-alkyl)

GLY-228 Conventional 2.37

ASP-231 Carbon-hydrogen 3.44

21 ASN-151 Conventional 2.31 VAL-121 (alkyl), ASP-124 (π-anion), LYS-187 (π-alkyl), LEU-257 (π-alky)

GLY-228 Conventional 2.60

THR-229 Conventional 2.15, 2.47

LYS-187 Conventional 2.28

THR-227 Carbon-hydrogen 2.67

24 – – – VAL-219 (alkyl), LEU-198 (alkyl), ILE-261 (π-alkyl), TYR-226 (alkyl), PHE-
233 (alkyl), LYS-187 (alkyl), LEU-257 (alkyl)

Pentamidine ASN-151 Conventional 1.95 VAL-19 (π-alkyl), TYR-85(π-cation), LYS-187(π-alkyl), TYR-85(π-π)

SER-12 Conventional 2.28

ASP-231 Carbon-hydrogen 3.40

Fig. 5  2D and 3D view of the interaction between compound 14 and PdxK receptor
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The close grouping of points along the line of best fit in 
Fig. 1 shows a very good correlation between the experi-
mental and predicted activity values, indicating that the 
built model is reliable and robust. The random spread of 
standardized residuals on both sides of the zero mark in 
Fig. 2 is an indication that the built model is free of any 
systematic error.

Furthermore, the low correlation coefficients (less 
than 0.50) which exist between each pair of the descrip-
tor in the built model (Table  7) indicate no inter-corre-
lation between each descriptor. Similar result was also 
obtained elsewhere by Adeniji et  al. (2018) and Abdul-
lahi et  al. (2022). The VIF values ranging from 1 to 5 
for all 4 descriptors as reported in Table  7 showed that 

Fig. 6  2D and 3D view of the interaction between compound 21 and PdxK receptor

Fig. 7  2D and 3D view of the interaction between compound 24 and PdxK receptor
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the descriptors were statistical orthogonal and the built 
model was statistically substantial, an indication of the 
stability and acceptability of the built QSAR model. Simi-
lar observation was reported by Adeniji et al. (2019). The 
values of the absolute t-statistics greater than 2 for each 
descriptor show that the selected descriptors were good 
(Adeniji et al. 2018). Also, the evaluated p-values for the 
various descriptors in the model at 95% confidence level 
were less than 0.05 as shown in Table  7. Therefore, the 
alternative hypothesis which asserts that a relationship 
exists between the descriptors used in generating the 
model and the compounds’ inhibitory activities at p ˂ 0.05 
holds. Additionally, the values of the mean effect (ME) 
reported in Table 7 provide vital information on the effect 
and degree of each descriptor’s contributions in the built 
model. The magnitudes and signs of ME values signify 
their individual strength and direction on the molecules’ 
inhibitory activities. All the descriptors except ATSC6v 
have positive ME, meaning that increase or decrease in 
their values will lead to an increase or decrease in the 
anti-proliferative activities, respectively. Increasing the 
values of ATSC6v will lead to a decrease in the inhibitory 
activities because of its negative ME value. GATS5c with 
the highest ME value has the greatest influence on the 
molecules’ inhibitory activities. GATS5c is Geary auto-
correlation of lag 5 weighted by gasteiger charge, which 
has a positive ME suggested to contribute positively to 
anti-leishmanial activity. The gasteiger charge is a physic-
ochemical property calculated for every atom in the mol-
ecule and is the Geary coefficient (Mahmud et al. 2020).

The low values of R2 and Q2 obtained from the ran-
dom reshuffling (Table  8) inferred that the built model 
is stable, robust and reliable. The value of coefficient for 
Y-randomization, cR2

p (0.664372) greater than 0.50, sup-
ports the claim that the built model is powerful and not 
inferred by chance. The William’s plot (Fig.  3) clearly 
shows that all the compounds fall within the square 
area ± 2.5 of standardized cross-validated residual. It 
can therefore be inferred that no outlier is present in 
the dataset. However, compound 1 was found with lev-
erage value greater than the calculated warning leverage 
(h* = 0.75) and was said to be an influential molecule.

Virtual docking screening
Binding energies of the protein–ligand (drug) interac-
tions are important to describe how well the drug binds 
to the target macromolecule. The negative value of the 
binding energy change shows the spontaneity of the 
binding process and how well ligands can fit into the 
target protein pocket to form the most energetically sta-
ble drug receptor (Ugbe et  al. 2021). Among the stud-
ied receptors, pyridoxal kinase (PdxK) receptor (pdb id: 
6K91) had relatively shown the strongest interaction with 
the various compounds as shown by the higher binding 
energy values associated with this receptor (Table  9). 
Consequently, PdxK was selected as the target receptor 
of interest in this study and subsequent discussions per-
taining protein–ligand interactions shall be based on it. 
Also, among the 28 maleimides studied, compounds 14, 
21 and 24 bind more strongly to PdxK with the highest 

Fig. 8  2D and 3D view of the interaction between pentamidine and PdxK receptor
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Table 11  Molecular structures, predicted pIC50 and binding energies of the designed compounds

Comp ID Molecular structures Pred. pIC50 Binding energy

N1 5.1374 – 8.0

N2 5.2139 – 7.8

N3 6.4988 – 7.9

N4 5.8218 – 7.9

N5 5.6513 – 8.0

N6 5.7616 – 7.9

N7 6.6091 – 8.9
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reported binding energies of − 7.7, − 7.7 and − 7.8  kcal/
mol, respectively. These compounds were equally well 
predicted by the built QSAR model with low residual 
values and contained within the model’s applicability 
domain (Table  6 and Fig.  3). Therefore, 14, 21 and 24 
were selected as template molecules for designing new 
compounds with improved binding scores and pharma-
cological properties.

As seen from Table 10 and Figs. 5, 6, 7, 8, compound 
14 was observed to have interacted well with the binding 

site of the PdxK receptor through three (3) conventional 
hydrogen bonds, one (1) carbon-hydrogen bond, one (1) 
π-anion, one (1) π–π stacked and one (1) pi-alkyl inter-
actions. One of the carbonyl oxygen atoms on the pyr-
role ring system formed 3 conventional hydrogen bonds 
with 2 THR-229 at distances of 2.41  Å and 2.48  Å, and 
GLY-228 at a distance of 2.37 Å. It also formed a carbon-
hydrogen bond with ASP-231 at a distance of 3.44  Å. 
Others include π-anion between the pyrrole ring sys-
tem and ASP-124, pi-pi stacking between the phenyl 

Table 11  (continued)

N8 5.8313 – 7.9

N9 6.793 – 7.9

N10 5.8653 – 8.0

N11 6.6075 – 7.8

N12 6.2275 – 8.5

Pentamidine - – 8.1
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Table 12  Predicted binding interaction profile of newly designed molecules with PdxK receptor

ID Hydrogen bond Interactions Electrostatic and hydrophobic interactions

Amino acid Type Distance (Å)

N1 TYR-129 Conventional 2.93 TYR-85, VAL-19, VAL-121

THR-229 Conventional 2.55

GLU-154 Conventional 2.38, 2.73

GLY-228 Conventional 2.39

GLY-230 Conventional 2.07

ASP-231 Carbon-hydrogen 3.47

N2 ASN-151 Conventional 2.28 VAL-121, ASP-124, LYS-187

GLY-228 Conventional 2.40

THR-229 Conventional 2.17

LYS-187 Conventional 2.31

THR-227 Carbon-hydrogen 2.59

THR-229 Carbon-hydrogen 3.28

LYS-187 Carbon-hydrogen 3.79

N3 GLY-228 Conventional 2.28 VAL-121, ASP-124, VAL-19, TYR-85

SER-12 Conventional 2.09

THR-229 Conventional 2.49

ASP-231 Carbon-hydrogen 3.72

THR-227 Carbon-hydrogen 2.88

N4 ASP-124 Conventional 2.75 TYR-129, LEU-257, VAL-121, ASP-124, LYS-187

GLY-228 Conventional 2.55

LYS-187 Conventional 2.06

THR-229 Conventional 2.27, 2.30, 2.41

THR-229 Carbon-hydrogen 3.39

N5 ASN-151 Conventional 2.40 VAL-121, ASP-124, LYS-187, MET-254, LEU-257, ILE-261, PHE-233

GLY-228 Conventional 2.53

LYS-187 Conventional 2.12

THR-229 Conventional 2.28, 2.41

THR-229 Carbon-hydrogen 3.39

N6 ASN-151 Conventional 2.39 VAL-121, LYS-187, ASP-124

ASP-124 Conventional 2.83

GLN-258 Conventional 2.69

GLY-228 Conventional 2.57

LYS-187 Conventional 2.06

THR-229 Conventional 2.22, 2.38

THR-229 Carbon-hydrogen 3.32

N7 ASN-151 Conventional 2.32 LEU-198 (π-alkyl), ASP-124 (π-anion)

GLN-258 Conventional 1.98

GLY-228 Conventional 2.40

LYS-187 Conventional 2.11

THR-229 Conventional 2.38, 2.40

N8 – VAL-121, THR-85, TYR-129, ASP-231, VAL-19, LEU-43

N9 GLY-228 Conventional 2.22 VAL-121, ASP-231, VAL-19, TYR-85

SER-47 Conventional 2.09, 2.32

HIS-46 Carbon-hydrogen 2.86

THR-227 Carbon-hydrogen 2.83

SER-47 Carbon-hydrogen 2.84



Page 18 of 23Ugbe et al. Bulletin of the National Research Centre           (2022) 46:92 

ring and aromatic ring of TYR-85, and π-alky interac-
tion between the phenyl ring and VAL-19. Similarly, 
Compound 21 binds well into the binding pockets of the 

PdxK receptor via five (5) conventional hydrogen bonds, 
a carbon-hydrogen bond, one π-anion, two π-alkyl, and 
one alky interactions. One of the carbonyl groups oxygen 

ASN asparagine, ASP aspartic acid, GLN glutamine, GLU glutamic acid, GLY glycine, HIS histidine, ILE isoleucine, LEU leucine, LYS lysine, MET methionine, PHE 
phenylalanine, SER serine, THR threonine, TYR​ tyrosine, VAL valine

Table 12  (continued)

ID Hydrogen bond Interactions Electrostatic and hydrophobic interactions

Amino acid Type Distance (Å)

N10 LYS-187 Conventional 2.06 ASP-124, VAL-121

SER-188 Conventional 2.68

THR-229 Conventional 2.39

ASN-151 Carbon-hydrogen 3.23

GLY-230 Carbon-hydrogen 2.75

N11 LYS-187 Conventional 2.05 ASP-124, VAL-121, LYS-187

THR-229 Conventional 2.40

ASN-151 Carbon-hydrogen 3.17

GLY-230 Carbon-hydrogen 2.68

THR-229 Carbon-hydrogen 2.35

N12 LYS-187 Conventional 2.06 VAL-121 (alkyl), ASP-124 (π-anion), LYS-187 (fluorine), LYS-187 
(alkyl), LYS-187 (π-cation)SER-188 Conventional 2.64

THR-229 Conventional 2.46

ASN-151 Pi-donor H-bond 3.19

GLY-230 Carbon-hydrogen 2.71

LYS-187 Carbon-hydrogen 3.04

THR-229 Carbon-hydrogen 2.38

Fig. 9  2D and 3D view of the interaction between N7 and PdxKreceptor
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formed conventional hydrogen bonds with GLY-228 and 
2 THR-229 at a distance of 2.6  Å, 2.15  Å and 2.47  Å, 
respectively. The other carbonyl oxygen interacted with 
ASN-151 and LYS-187 to form conventional hydrogen 
bond at a distance of 2.31  Å and 2.28  Å, respectively. 
The ligand also formed a carbon-hydrogen bond with 
THR-227 at a distance of 2.67  Å. Others include alkyl 
interaction with VAL-121, π-anion with ASP-124, and 
π-alkyl with LYS-187 and LEU-257. Distinguishably, the 
binding interactions of Compound 24 with the receptor 
were characterized only by electrostatic and hydrophobic 

interactions, and without hydrogen bond interactions. 
This may be attributed to the steric hindrances posed by 
the side chain methyl groups on the phenyl ring and the 
chloro groups on the pyrrole ring which shields the car-
bonyl groups from interacting with amino acid residues 
to form hydrogen bonds. The observed interactions were 
dominated by the hydrophobic interactions (alkyl type) 
with the exception of ILE-261 which binds by electro-
static interaction to the π electron system of the benzene 
ring of compound 24 via its alkyl group. Lastly, the ref-
erence drug (pentamidine) was equally docked onto the 

Fig. 10  2D and 3D view of the interaction between N12 and PdxK receptor

Table 13  Predicted drug-likeness properties of the newly designed compounds

MW molecular weight, TPSA topological polar surface area, ESOL estimated solubility, HBD hydrogen bond donors, HBA hydrogen bond acceptors, RO5 Lipinski rule of 
five, SA synthetic accessibility score

Comp ID MW (g/mol) TPSA (Å2) WLOGP MLOGP Log S (ESOL) HBD HBA SA RO5 
violation

Drug-likeness

N1 273.33 66.64 0.52 0.80  − 2.41 1 2 2.52 0 YES

N2 313.18 40.62 1.97 1.88  − 3.78 0 2 2.32 0 YES

N3 286.11 57.61 1.61 1.37  − 3.4 1 3 2.11 0 YES

N4 299.15 63.40 1.23 1.36  − 3.08 1 3 2.73 0 YES

N5 312.19 37.38 2.91 2.70  − 4.38 0 2 2.32 0 YES

N6 344.15 109.22 1.14 0.39  − 3.15 1 5 2.88 0 YES

N7 330.72 89.87 2.64 1.45  − 3.59 3 4 2.75 0 YES

N8 298.16 37.38 3.17 2.73  − 4.23 0 2 2.29 0 YES

N9 287.06 83.20 1.78 1.48  − 3.01 0 4 2.25 0 YES

N10 332.05 129.02 1.68 0.59  − 3.08 0 6 2.63 0 YES

N11 310.06 37.38 4.04 2.62  − 3.8 0 5 2.19 0 YES

N12 355.05 83.20 3.95 2.41  − 4.21 0 7 2.62 0 YES
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binding pocket of the pyridoxal kinase receptor in order 
to provide insight into their binding interaction mode 
and for validation purpose. Pentamidine interacted with 
PdxK via two (2) conventional hydrogen bonds with 
ASN-151 and SER-12 at a distance of 1.95 Å and 2.28 Å, 
respectively. It equally formed a carbon-hydrogen bond 

with ASP-231 at a distance of 3.40  Å. Others are elec-
trostatic and hydrophobic interactions including π-alkyl 
interactions with VAL-19 and LYS-187, π-cation with 
TYR-85 and π-π stacked with TYR-85.

Table 14  Predicted ADMET properties of the newly designed compounds

MRTD Maximum recommended tolerated dose, HIA Human intestinal absorption, LogBB logarithmic ratio of brain to plasma drug concentration, LogPS blood–brain 
permeability-surface area product, CYP-34A cytochrome p450 isoform

Comp ID Absorption Distribution Metabolism Excretion Toxicity

HIA (%) Log BB Log PS CYP-34A Total clearance MRTD

Substrate Inhibitor

N1 75.73  − 0.131  − 2.912 Yes No 0.477 0.308

N2 94.20 0.228  − 2.09 Yes No 0.092 0.314

N3 90.67 0.088  − 2.415 Yes No 0.436 0.363

N4 92.07 0.051  − 2.55 Yes No 0.811  − 0.13

N5 93.47 0.265  − 1.85 Yes No  − 0.028 0.249

N6 75.83  − 0.784  − 2.757 Yes No 0.568  − 0.644

N7 89.35  − 1.016  − 2.349 No No  − 0.336 0.072

N8 95.14 0.274  − 1.541 Yes No  − 0.062 0.225

N9 94.76  − 0.788  − 2.249 Yes No 0.071 0.21

N10 87.67  − 1.31  − 2.46 Yes No 0.292  − 0.202

N11 92.75 0.302  − 2.205 No No 0.041 0.298

N12 91.33  − 1.221  − 2.092 Yes No 0.182  − 0.031

Fig. 11  The Boiled Egg representation of the newly designed compounds
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Structured‑based drug design
As reported in Table  11, the predicted pIC50 values of 
most of the designed compounds (N3, N7-N12) were 
greater than those of their corresponding template mol-
ecules, an evidence of being more biologically active mol-
ecules than their templates. Also, all the newly designed 
compounds showed higher docking scores compared 
to the template molecules, while only N7 and N12 with 
binding energy values of − 8.9 and − 8.5 kcal/mol showed 
better docking scores than that of the reference drug 
(pentamidine). This is a clear indication of how well these 
new maleimides would interact with the target enzyme. 
Because N7 and N12 bind more strongly to PdxK than 
pentamidine, their interactions with the binding pocket 
of the protein target shall be discussed further.
N7 was observed from Fig.  9 to bind excellently with 

the active site of PdxK via six (6) conventional hydrogen 
bonds, one (1) π-alkyl hydrophobic interaction and one 
(1) π-anion electrostatic interaction. The carbonyl groups 
oxygen atoms play a vital role in hydrogen bond forma-
tion just as observed with the template molecules. One 
of the carbonyl groups formed hydrogen bond with ASN-
151 and LYS-187 via its oxygen at distance of 2.32 Å and 
2.11  Å, respectively. The other carbonyl group formed 
a hydrogen bond with GLY-228 at a distance of 2.40  Å 
and 2 hydrogen bonds with THR-229 at a distance of 
2.38  Å and 2.40  Å. It also formed an additional hydro-
gen bond with GLN-258 at a distance of 1.98  Å via a 
hydroxyl group at the para-position of the outer phenyl 
ring system. Others include π-alkyl hydrophobic inter-
action with LEU-198 via the compound’s π electrons of 
the outer benzene ring, and π-anion electrostatic inter-
action with ASP-124 via the compound’s π electrons of 
the pyrrole ring system. The interaction of N12 with the 
protein target as observed from Fig. 10 was via three (3) 
conventional hydrogen bonds, three (3) carbon-hydro-
gen bonds and one (1) π-donor hydrogen bond. The 
observed hydrophobic interactions include one each 
of alkyl and π-alkyl interactions, while the electrostatic 
interactions include one each of π-anion and π-cation 
interactions. Also, observed was a halogen interaction 
with the receptor. The observed conventional hydrogen 
bonds were formed by the interaction of its carbonyl 
groups oxygen with LYS-187 and THR-229 at distance 
of 2.06 Å and 2.46 Å, respectively, and between its nitro 
group oxygen and SER-188 at a distance of 2.64  Å. The 
carbon-hydrogen bonds were formed by its trifluoro-
methyl group’s interaction with GLY-230, LYS-187 and 
THR-229 at interaction distance of 2.71  Å, 3.04  Å and 
2.38 Å, respectively. Also observed was a π-donor hydro-
gen bond between the π-electron of the pyrrole ring sys-
tem and ASN-151 at a distance of 3.19 Å. The observed 
hydrophobic interactions include alkyl interaction with 

LYS-187 and VAL-121, and π-alkyl interaction with LYS-
187. Furthermore, the observed electrostatic interactions 
comprises of π-cation between LYS-187 and its benzene 
ring π-system, and π-anion between ASP-124 and its pyr-
role ring π-system. Therefore, these compounds have 
demonstrated the potentials to arrest the target receptor 
(PdxK) an absolutely necessary factor whose inactiveness 
is dangerous to the viability of the parasite (L. donovani).

Pharmacokinetics properties prediction
According to the Lipinski’s rule for oral bioavailabil-
ity, a drug molecule is more likely to have poor absorp-
tion or permeation when it has hydrogen bond donors 
(HBD) of greater than 5, hydrogen bond acceptors 
(HBA) > 10, molecular weight (MW) > 500 and lipophi-
licity (MLOGP > 4.15 or WLOGP > 5) (Lipinski et  al. 
2001). Molecules that satisfy at least three out of the four 
requirements are said to obey the Lipinski’s rule for oral-
bioavailability (Lawal et al. 2021).

As seen from Table 13, all the designed molecules per-
fectly obeyed the Lipinski’s rule by showing no violation. 
Also, the reported values of topological polar surface 
area (TPSA) for all molecules were less than 140 Å2, 
beyond which a molecule may exhibit poor gastrointes-
tinal absorption. Additionally, the synthetic accessibil-
ity scores of all tested molecules are in the easy portion 
(˂ 5.00), indicating their easy laboratory synthesis. The 
estimated water solubility (Log S) ranges from moder-
ately soluble (N5, N8 and N12) to soluble (the remain-
ing 9 compounds). The Boiled Egg representation in 
Fig.  11 provides for an intuitive evaluation of passive 
gastrointestinal absorption and brain barrier permeabil-
ity as a function of the position of the molecules in the 
WLOGP against TPSA plot (Daina et al. 2017). As seen 
from Fig. 11, all the designed molecules were represented 
in red dots, indicating that they were predicted not to be 
effluated from the central nervous system by P-glycopro-
tein. P-glycoprotein is an enzyme which acts as a biologi-
cal barrier by extruding toxins and xenobiotics, including 
drugs out of cells. Also, six (6) molecules (N1, N6, N7, 
N9, N10 and N12) were located in the Boiled Egg’s yolk, 
meaning that these molecules were predicted to pas-
sively permeate through the blood–brain barrier (BBB), 
while the remaining six (6) molecules were located in the 
Boiled Egg’s white which is an indication that they were 
predicted to be passively absorbed by the gastrointestinal 
tract.

The predicted ADMET properties in Table 14 showed 
that the human intestinal absorption (HIA) was high 
(> 70%) for all newly designed compounds. Drug mol-
ecules are said to be poorly distributed to the brain 
through the blood–brain barrier (BBB) and consid-
ered as unable to penetrate the central nervous system 
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(CNS), when the values of the logarithmic ratio of brain 
to plasma drug concentration (logBB) are less than − 1, 
and the blood–brain permeability-surface area product 
(logPS) are less than − 3, respectively. Consequently, all 
the newly designed compounds were predicted to cross 
the BBB except N7, N10 and N12 with predicted logBB 
values of less than − 1 (Table  14). Also as predicted in 
Table  14, all the molecules showed CNS permeability, 
i.e., logPS >  − 3. Furthermore, all the studied molecules 
except N7 and N11 are substrates of the Cytochrome 
P450 enzyme (CYP-3A4), an important enzyme for drug 
metabolism in the body, with none of the compounds 
inhibiting the enzyme. The degree of drug elimination 
from the body is measured by the drug’s total clear-
ance, which is within the accepted range for these newly 
designed compounds. Additionally, the predicted val-
ues of maximum recommended tolerated dose (MRTD) 
for all molecules are included in Table 14. MRTD value 
of less than or equal to 0.477 log (mg/kg/day) is consid-
ered low, and high if greater than 0.477 log (mg/kg/day). 
The overall predicted drug-likeness and ADMET proper-
ties put these molecules on an excellent pharmacokinet-
ics profile, and more so that they are orally bio-available. 
Therefore, the newly designed molecules are suggested 
for practical evaluation and/or validation in the labora-
tory as potential drug candidates for the treatment of 
leishmaniasis.

Conclusions
In this study, a four-descriptor QSAR model was 
developed with a series of twenty-eight (28) maleim-
ides, which was used to excellently predict their anti-
leishmanial activities, and those of the newly designed 
compounds. The virtual docking screening conducted 
between the 28 maleimides and five (5) target enzymes, 
identified pyridoxal kinase (PdxK) receptor as a bio-
logical target of interest. Compounds 14, 21 and 24 
were used as templates for designing twelve (12) new 
maleimides, because of their relatively higher binding 
energies of interaction with PdxK. The newly designed 
compounds interacted more strongly with the target 
site than the chosen template molecules, but only N7 
and N12 were better than the reference drug (penta-
midine) in this regard. The predicted pharmacological 
interaction profiles of the designed compounds gen-
erally showed a good fitting into the target site cavity. 
Also, all the newly designed compounds were said to 
be orally bio-available, and showed good drug-like-
ness and ADMET properties. Hence, these new mol-
ecules have demonstrated the potential to arrest PdxK 
enzyme, which could inhibit the growth and viability of 
the parasite (L. donovani). It is therefore recommended 
that, these new compounds be developed and further 

evaluated as potential drug candidates for the treat-
ment of leishmaniasis.
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