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Abstract 

Background:  Cancer of the breast is known to be among the top spreading diseases on the globe. Triple-negative 
breast cancer is painstaking the most destructive type of mammary tumor because it spreads faster to other parts 
of the body, with high chances of early relapse and mortality. This research would aim at utilizing computational 
methods like quantitative structure–activity relationship (QSAR), performing molecular docking studies and again 
to further design new effective molecules using the QSAR model parameters and to analyze the pharmacokinetics 
“drug-likeliness” properties of the new compounds before they could proceed to pre-clinical trials.

Results:  The QSAR model of the derivatives was highly robust as it also conforms to the least minimum requirement 
for QSAR model from the statistical assessments of (R2) = 0.6715, (R2

adj) = 0.61920, (Q2) = 0.5460 and (R2pred) of 0.5304, 
and the model parameters (AATS6i and VR1_Dze) were used in designing new derivative compounds with higher 
potency. The molecular docking studies between the derivative compounds and Maternal Embryonic Leucine Zipper 
Kinase (MELK) protein target revealed that ligand 2, 9 and 17 had the highest binding affinities of − 9.3, − 9.3 and 
− 8.9 kcal/mol which was found to be higher than the standard drug adriamycin with − 7.8 kcal/mol. The pharma-
cokinetics analysis carried out on the newly designed compounds revealed that all the compounds passed the drug-
likeness test and also the Lipinski rule of five.

Conclusions:  The results obtained from the QSAR mathematical model of parthenolide derivatives were used in 
designing new derivatives compounds that were more effective and potent. The molecular docking result of parthe-
nolide derivatives showed that compounds 2, 9 and 17 had higher docking scores than the standard drug adriamycin. 
The compounds would serve as the most promising inhibitors (MELK). Furthermore, the pharmacokinetics analysis 
carried out on the newly designed compounds revealed that all the compounds passed the drug-likeness test (ADME 
and other physicochemical properties) and they also adhered to the Lipinski rule of five. This gives a great break-
through in medicine in finding the cure to triple-negative breast cancer (MBA-MD-231 cell line).
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Background
Cancer has long been a challenging malady to the human 
race with great occurrence and death rates. Nearly 8 
million humans pass away from tumors yearly, and 14.2 
million different cancer patients are treated worldwide 
yearly (Xu et al. 2019). Cancer of the breast is the most 
reoccurring type of disease and the second leading cause 
of death among women globally. Yearly, approximately 
1–1.3 million cases of breast cancer are detected globally 
(Ge et  al. 2019). The high occurrence and death rate of 
cancer occur from the fact that there are over 200 kinds 
of cancer and it is indeed hard to diagnose at a premature 
stage (Lolak et al. 2019).

Triple-negative breast cancer (TNBC) is painstaking 
the most destructive type of mammary tumor because 

it spreads faster to other parts of the body, with high 
chances of early relapse and mortality (Hu et  al. 2012). 
Yearly, an estimation of over a million female beings is 
detected with mammary tumor and TNBC is responsible 
for almost 15–20% of the overall breast cancer detected 
(Jo et al. 2019). TNBC does not express estrogen recep-
tor (ER), progesterone receptor and human epidermal 
growth factor 2 (HER2) (Hu et al. 2012).

Early detection, understanding of the cause and path-
way of this disease and advancing in treatment have 
played a key role in decreasing breast cancer death rates 
during the past few years. Chemotherapy remains the 
main key to complete therapy since it would extend and 
terminate tumor cells faster within the human system 
(Kaplan 2013). Computational methods of drug discovery 
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Fig. 1  a Parthenolide template molecule for Table 1. b Parthenolide template molecule 2 for Table 2. c Parthenolide template molecule 3 for 
Table 3. d Parthenolide template molecule 4 for Table 4
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have proven to be faster than traditional methods of drug 
discovery, and it saves more time, resources and also 
tends to have higher efficacy with less toxicity. Efficiency 
and safety of the drug to the system are the two major 
causes leading to drug failure. Therefore, it is compulsory 
to find potent molecules with better ADMET properties 
“drug-likeliness” (Guan et al. 2019).

Novel 61 series of parthenolide derivatives were 
obtained from the literature of (Ge et al. 2019) as inhibi-
tors against the MDA-MB-231 cell line. Edupuganti et al. 
2017 suggest that MELK with Protein Data Bank (PDB: 
4BKY) has therapeutic value for targeting various can-
cers, especially the critical survival functions like TNBCs.

The purpose of this research is to utilize computational 
methods like quantitative structure–activity relation-
ship (QSAR), in calculating the activities of parthenolide 
derivative compounds as inhibitors against breast can-
cer cell line MDA-MB-231 based on an established 
QSAR mathematical model, molecular docking studies 

in understanding how the ligands (parthenolide com-
pounds) interrelate with a protein receptor Maternal 
Embryonic Leucine Zipper Kinase (MELK), again, to 
further design new effective molecules using the QSAR 
model parameters and to analyze the pharmacokinetics 
“drug-likeliness” properties of the new compounds.

Methods
QSAR studies
Data set
In total, 61 derivative compounds of parthenolide were 
obtained from (Ge et al. 2019) article.

Anti‑proliferative activities
Their bioactivities were changed to (pIC50) using the for-
mula below. It was measured in inhibitory concentration 
(IC50) values in the micromolar concentration of (µM) 
(Abdulrahman et al. 2020a, b, c). The parent compounds 
as shown in Fig.  1a–d are the structural derivatives of 
parthenolide. Tables  1, 2, 3, 4 and 5 show the various 
substituents measured in (IC50) and (pIC50) that were 
attached to the parent compound.

Structural optimization
The data set was drawn on software (V12.0.2) of Chem-
Draw and was transferred to Spartan 14 software (V1.1.4) 
for structural optimization, setting up the parameters 
density functional theory (DFT) at B3LYP, 6-31G/ basis 
set (Abdulrahman et al. 2020a, b, c).

Molecular descriptor calculations
In total, 61 derivative compounds of parthenolide were 
converted to SDF format after optimization. Pharma-
ceutical Data Exploration Laboratory Software V (2.20) 
was used in calculating physicochemical descriptors 
(Yap et  al. 2011). The descriptors were pretreated using 
Data Pre-treatment software GUI 1.2. (Arthur et al. 2020; 
Abdulrahman et  al. 2020a, b, c) to remove irrelevant 
values.

Training set and test set division
For a valid QSAR model to be obtained, the pretreated 
set must be divided into train and test set. The division 
should satisfy the following conditions: (i) it is essential 
for all the train set descriptive points to be evenly shared 
within the entire area used by the data set (Noolvi and 
Patel 2013). (ii) All descriptor values should be near the 
train set descriptor values. (iii) All characteristic molec-
ular elements in the test set should spread within the 

pIC50 = − log 10
(

IC50 × 10−6
)

.

Table 1  The inhibitory concentration of parthenolide derivatives 
for template molecule 1

No. R1 R2 R3 Observed 
activities (µM)

Calculated 
activities 
pIC50

1 H H H 1.35 5.8697

2 CF3 H H 0.74 6.1308

3 F H H 1.80 5.7447

4 Cl H H 1.42 5.8477

5 Br H H 1.33 5.8761

6 Me H H 1.79 5.7471

7 OMe H H 0.46 6.3372

8 OEt H H 0.34 6.4685

9 H CF3 H 0.83 6.0809

10 H F H 1.73 5.7610

11 H Cl H 1.78 5.7496

12 H Br H 1.64 5.7852

13 H Me H 1.08 5.9666

14 H OMe H 1.84 5.7352

15 H H CF3 2.52 5.5986

16 H H F 1.32 5.8794

17 H H Cl 1.22 5.9136

18 H H Br 1.02 5.9914

19 H H Me 2.27 5.6430

20 H H i-Pr 1.33 5.8761

21 H H OMe 1.73 5.7610

22 H H OEt 1.58 5.8013

23 H H OAc 1.15 5.9393

24 H H NO2 1.93 5.7144

25 H H CN 1.80 5.7447

26 H H OH 1.89 5.7235

27 H OMe OH 2.01 5.6968
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descriptor space and should also be close to the train 
set (Noolvi and Patel 2013). The algorithm of Kennard–
Stone was employed in dividing the set into 30% test and 
70% train set (Kennard and Stone 1969).

Model building
Multiple linear regression technique was used in con-
structing a model in Version 8 of Material studio soft-
ware. It was used to show the correlation between the 
dependent variables (pIC50) and the independent vari-
ables as the 2D model descriptors (Abdulrahman et  al. 
2020a, b, c). The model is suited so that the total squared 
difference between the actual and predicted value of the 
set of anti-proliferative activity is diminished. In regres-
sion analysis, the reliant mean of the dependent variable, 

(pIC50), relies on the independent descriptors (Abdullahi 
et al. 2020).

Validating the model (internal)
The prediction of the model built must be verified on 
a data set that was never used in building the model at 
first (Tropsha et  al. 2003). The models obtained from 
the internal validation of the train test (sixty-one com-
pounds) were evaluated using Friedman formula (Fried-
man 1991).

LOF =
SEE

M
[

1− β

(

c+d×p
M

)]2

Table 2  The inhibitory activities of parthenolide derivatives for template molecule 2

No. R Observed Activities 
IC 50 (µM)

Calculated 
Activities pIC50

28 2.25 5.6478

29 1.80 5.7447

30 2.29 5.6402

31 3.27 5.4855

32 2.79 5.5544

33 1.48 5.8297

34 1.80 5.7447
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d equals user-defined smoothing parameter, C equals 
the sum of model definitions, M equals the sum of 
derivatives on the train set, while p is the summation of 
model definition (Abdulrahman et al. 2020a, b, c). SEE 
is the standard estimated error. The smaller SEE is, the 
more enhanced the model would be.

The model from the regression structure becomes.

Y is the response variable, ‘k’ is the coefficient of 
regression corresponding to ‘x’s that are the model 
parameters which are the predictor variables, and n is 
the regression constant.

(R2) is the regression coefficient, and it is the degree 
of fitness of the equation of regression. It signifies the 
variation section in the data that is described by regres-
sion. The nearer R2 value is 0. 1, the better the regres-
sion fitness. R2 is given as:

where Yexp and Ypred are the biological and calculated 
activities of the train set. Ymintraining indicates the aver-
age pIC50 of the train set molecules. Table  2 shows the 
accepted least required values in assessing a QSAR model 
(Ibrahim et  al. 2018). (R2

pred) is the predicted validation 
parameter, and it is assessed by calculating the prediction 
power of the model. An (R2

pred) above 0.5 shows a high 
prediction power and robustness of the model.

SEE =

√

(

Yexp − Ypred

)2

N− P− 1

Y = k1x1 + k2x2 + k3x3 + n.

R2pred = 1−

[

∑
(

Yexp − Ypred
)2

∑
(

Yexp − Ymeantraining

)2

]

Applicability domain of QSAR
Model validation should be within the training domain, 
and the performance of the compounds needs to be 
assessed within the domain to determine the fitness of 
the model. The applicability domain is evaluated using 
William’s plot. The warning leverage is used in sorting 
the compounds within a particular space on the graph 
known as the applicability domain, compounds that fall 
within the space on the plot are the approved predicted 
compounds (Veerasamy et al. 2011). It is formulated as;

where j equals the total model parameters and m is the 
total molecules of train sets.

Molecular docking studies
Some compounds with high pIC50 were chosen for 
molecular docking studies with Maternal Embryonic 
Leucine Zipper Kinase (MELK) as protein target. The 
crystal structure was obtained from RCSB PDB (https://​
www.​rcsb.​org) with the ID, 4BKY. The crystal structure 
was prepared with Discovery Studio Software and con-
verted to PBD format. The binding affinity of the ligand–
protein complex was calculated with AutoDock Vina of 
PyRX software employed in calculating (Abdulrahman 
et al. 2020a, b, c). Visualizer of Discovery Studio was used 
to understand the ligand–protein target interactions.

Computational pharmacokinetics (drug‑likeness)
The SwissADME, a free web tool used in evaluating the 
pharmacokinetics, drug-likeness (physicochemical and 
ADME properties) and medicinal chemistry friendliness of 
small molecules (Daina et al. 2017), would be used in test-
ing the drug-likeness of the newly designed compounds. 

h∗ =
3
(

j + 1
)

m

Table 3  The inhibitory activity of parthenolide derivatives for template molecule 3

No. R1 R2 R3 R4 R5 IC50(µM) pIC50

35 OMe OMe H H H 1.74 5.7595

36 OMe H OMe H H 0.55 6.2596

37 OMe H H OMe H 0.26 6.5850

38 OMe H H H OMe 0.25 6.6021

39 H OMe OMe H H 1.95 5.7090

40 H OMe H OMe H 2.02 5.6946

41 OMe OMe OMe H H 1.77 5.7520

42 OMe H OMe OMe H 1.02 5.9914

43 OMe H OMe H OMe 1.09 5.9626

44 H OMe OMe OMe H 0.95 6.0223

45 F H H H F 1.59 5.7986

46 Cl H H H Cl 1.59 5.7986

47 Br H H H Br 1.50 5.8239

https://www.rcsb.org
https://www.rcsb.org
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Table 4  The inhibitory activity of parthenolide derivatives for template molecule 4

No. R2 Actual 
Activities (IC50)

Calculated 
Activities(pIC50)

48 2.01 5.6968

49 1.98 5.7033

50 2.02 5.6946

51 2.01 5.6968

52 2.95 5.5302

53 2.51 5.6003

54 1.87 5.7282

55 1.87 5.7282

56 1.76 5.7545

57 2.25 5.6478

58 7.53 5.1232

59 2.35 5.6289
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Furthermore, some physicochemical properties and posi-
tive controls of the designed compounds were checked 
using the on-line tool for their adaptability with Lipinski’s 
rule of five (Hou et al. 2019). Lipinski and co-workers pro-
posed the "Rule of Five" in 1997, which was the original 
and most known rule-based filter for drug-likeness of a 
molecule, distinguishing whether a molecule can be orally 
absorbed well or not, following the criteria: molecular 
weight (MW) ≤ 500, octanol/water partition coefficient 
(AlogP) ≤ 5, number of hydrogen bond donors (HBD’s) ≤ 5 
and number of hydrogen bond acceptors (HBAs) ≤ 10.6. 
According to the Rule of Five, a molecule would not be 

orally active if it violates two or more of the four rules 
(Guan et al. 2019).

Results
QSAR of parthenolide derivatives
The goal of QSAR is to establish a model from the obtained 
descriptor that has a higher performance than the experi-
mental values. In this research, parthenolide derivatives 
went through a quantitative structure–activity relationship 
with its actual activities.

The Model

The model best predicts the biological activities of 
parthenolide derivatives against the MDA-MB-231 cell 
line. The model also conforms to the least proposed 
requirement in QSAR modeling as indicated in Table 2.

Tables  7 and 8 reveal how the model was validated 
externally by carrying out calculations using the val-
ues of the descriptors obtained from the test set. The 

pIC50 = 0.112976697 ∗ (AATS6i)

+ 0.010871443 ∗ (ATSC8i)

+ 1.482833475 ∗ (GATS5s)

+ 0.000807496 ∗ (VR1_Dze)

− 0.303714684 ∗ (C2SP3)− 12.639784038.

Table 5  The inhibitory activities of parthenolide derivatives

No. Structures Actual 
Activities 

(IC50)

Calculated 
Activities 
(pIC50)

60 3.55 5.4498

61 7.60 5.1192

Table 6  Suggested values used in the assessment of QSAR 
model

Characters Names Values

R2 Coefficient of determination  ≥ 0.6

P(95%) Confidence interval at 95% confidence level  < 0.05

Q2 Squared cross-validation coefficient  ≥ 0.5

R2-Q2 Difference between R2 and Q2  < 0.3

Ntest set Least number of the test set  ≥ 5

R2
ext Coefficient of determination of external validation  ≥ 0.5
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calculated external validation (R2
pred) was 0.5304, which 

agrees with the least requirements as shown in Table 6.
Table 9 shows the experimental, calculated and resid-

ual values of the derivative compounds. The low resid-
ual values were calculated from the predicted activities. 
The low residual values show the potency of the built 
model.

Table  10 defines the model parameters (descriptors) 
used in building the model, and the descriptors were used 
in verifying the model both internally and externally. The 
mean effect was calculated statistically, and it shows the 
collinearity of the model parameters and the activities of 
the derivative compounds in the built model.

Table  11 shows correlation between the descriptors 
generated from the model (VIF) and the P values of the 
descriptors. The VIF was calculated using the equation;

X2 is the coefficient of correlation (Myers 1990).
The P values estimate the statistical difference between 

the model parameters at 95% confidence level.
A straight line graph was obtained from plotting the 

activities (predicted activity against experimental activ-
ity) of both the test set and train set of the derivative 
compounds as shown in Fig.  2. The anti-proliferative 
activities showed a good connection as shown on the 
plot.

VIF =
1

(

1− X2
)

Table 7  Model parameters used in validating the model externally

Name pIC50 AATS6i ATSC8i GATS5s VR1_Dze C2SP3 YPred

1 5.8697 161.5169 48.7326 0.8808 292.3360 6 5.8575

20 5.8761 162.0662 40.5484 0.8599 336.7858 6 5.8355

25 5.7447 161.1486 43.7089 0.8297 443.9988 6 5.8080

26 5.7235 161.4648 47.3323 0.7449 293.8548 6 5.6361

4 5.8477 161.4031 48.9774 0.8945 288.8093 6 5.8647

41 5.7520 161.6404 55.2788 0.9363 360.7402 6 6.0801

42 5.9914 161.9008 47.3935 0.8602 358.8289 6 5.9095

43 5.9626 162.5176 82.5586 0.8348 356.6440 6 6.3221

48 5.6968 158.9117 24.3199 1.0608 405.1766 6 5.6558

5 5.8761 161.1950 49.3864 0.8916 288.7227 6 5.8413

52 5.5302 158.5990 38.7462 1.0551 405.2722 6 5.7680

53 5.6003 159.3748 13.5155 1.0230 410.7551 6 5.5391

57 5.6478 160.7295 22.3043 1.0283 421.4272 7 5.5005

58 5.1232 161.2564 29.4073 1.0188 398.3031 8 5.3008

6 5.7471 161.839 42.3780 0.8672 288.5304 6 5.8016

60 5.4498 163.1298 37.0344 0.8237 307.2417 7 5.5363

16 5.8794 162.1464 52.3900 0.6452 289.6975 6 5.6169

8 6.4685 161.2731 51.2615 0.8828 536.4764 6 6.0575

Table 8  Continuation of the external validation of the model

∑(Yob − Ypred)2 = 0.53041 ∑(Yobs − Y t̅rain)2 = 1.32576∴ R2test = 1 − (0.53041/ 
1.32576) = 0.5304

Ypred − Yobs (Ypred − Yobs)
2 Ymintrinin (Ymintrn − Yobs) (Ymintrn − Yobs)

2

− 0.0122 0.0001 5.8285 − 0.0412 0.0017

− 0.0406 0.0017 5.8285 − 0.0477 0.0023

0.0633 0.0040 5.8285 0.0838 0.0070

− 0.0875 0.0076 5.8285 0.1040 0.0110

0.0160 0.0003 5.8285 − 0.0192 0.0004

0.3281 0.1077 5.8285 0.0765 0.0058

− 0.0819 0.0067 5.8285 − 0.1629 0.0265

0.3595 0.1292 5.8285 − 0.1341 0.0170

− 0.0410 0.0017 5.8285 0.1317 0.0173

− 0.0348 0.0012 5.8285 − 0.0477 0.0023

0.2388 0.0570 5.8285 0.2983 0.0880

− 0.0612 0.0037 5.8285 0.2282 0.0521

− 0.1473 0.0217 5.8285 0.1807 0.0326

0.1776 0.0315 5.8285 0.7053 0.4974

0.0544 0.0020 5.8285 0.0814 0.0066

0.0865 0.0075 5.8285 0.3787 0.14344

− 0.2625 0.0689 5.8285 − 0.0509 0.0026

− 0.4110 0.1689 5.8285 − 0.6400 0.4096
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A graph of standardized residual versus biologi-
cal activity of the entire data set was plotted as shown 
in Fig.  3. The compounds of both the test and train set 
spread on both sides of the y-axis, defining the potency 
of the model.

The applicability domain was evaluated using the Wil-
liam’s plot. The William’s plot is a graph of standardized 
residual against leverages, as shown in Fig. 4. The warn-
ing leverage is used in sorting the compounds within a 
particular space, and the compounds that fell within the 
space on the plot were the actual predicted compounds. 
The warning leverage was found to be (h* = 0.47).

Molecular docking results
Molecular docking interaction on compounds of par-
thenolide derivatives with the protein target, Maternal 
Embryonic Leucine Zipper Kinase (MELK), was per-
formed. The molecular docking results are summa-
rized in Table  12. The binding affinity was calculated 
using PyRX software, while Discovery Studio Software 
was used in understanding and visualizing the various 
interaction formed between the ligand (derivative com-
pounds) and the binding pose of the receptor (MELK).

Figure  5 shows the prepared receptor and ligand that 
was used in the docking studies, Figs. 6 and 7 show the 
2D interaction of the complexes 9 and 2, while Fig.  8 
shows the 3D interaction of the prepared ligand 9 and 2 
to form complexes.

Ligand base drug design
Fifteen (15) new compounds new parthenolide deriva-
tive compounds were designed using the ligand-based 
approach. The ligand-based design used the derived 
mathematical model obtained from the QSAR studies, 

Table 9  The bioactivities (pIC50), predicted (pIC50) and residual of 
the model

Structure Bioactivities(pIC50) Predicted(pIC50) Residual

1* 5.8697 5.8575 0.0122

2 6.1308 6.0889 0.0419

3 5.7447 5.7767 − 0.0310

4* 5.8477 5.8647 − 0.0170

5* 5.8761 5.8413 0.0348

6 5.7471 5.8016 − 0.0544

7 6.3372 5.9952 0.3421

8* 6.4685 6.0575 0.4110

9 6.0809 6.1495 − 0.0686

10 5.7610 5.6714 0.0906

11 5.7496 5.8640 − 0.1144

12 5.7852 5.8690 − 0.0848

13 5.9666 5.9944 − 0.0278

14 5.7352 5.7595 − 0.0243

15 5.5986 5.4421 0.1565

16* 5.8794 5.6169 0.2625

17 5.9136 5.8413 0.0723

18 5.9914 5.8049 0.1865

19 5.6430 5.7113 − 0.0674

20* 5.8761 5.8355 0.0406

21 5.7610 5.8648 − 0.1020

22 5.8013 5.8464 − 0.0450

23 5.9393 5.7953 0.1430

24 5.7144 5.7631 − 0.0487

25* 5.7447 5.8080 − 0.0633

26* 5.7235 5.6361 0.0875

27 5.6968 5.8680 − 0.1722

28 5.6478 5.6913 − 0.0435

29 5.7447 5.9183 − 0.1736

30 5.6402 5.4665 0.1737

31 5.4855 5.5797 − 0.0943

32 5.5544 5.5653 − 0.0109

33 5.8297 5.8392 − 0.0095

34 5.7447 5.9110 − 0.1672

35* 5.7595 6.1619 − 0.4025

36 6.2596 6.1104 0.1492

37 6.5850 6.4285 0.1566

38 6.6021 6.2714 0.3307

39 5.7090 5.8368 − 0.1268

40 5.6946 5.7957 − 0.1011

41* 5.7520 6.0801 − 0.3281

42* 5.9914 5.9095 0.0819

43* 5.9626 6.3221 − 0.3595

44 6.0223 5.8656 0.1568

45 5.7986 5.7778 0.0208

46 5.7986 5.8829 − 0.0843

47 5.8239 5.8352 − 0.0113

48* 5.6968 5.6558 0.0410

49 5.7033 5.6116 0.0917

Table 9  (continued)

Structure Bioactivities(pIC50) Predicted(pIC50) Residual

50 5.6946 5.6849 0.0098

51 5.6968 5.7200 − 0.0242

52* 5.5302 5.7680 − 0.2388

53* 5.6003 5.5391 0.0612

54 5.7282 5.6032 0.1249

55 5.7282 5.6806 0.0476

56 5.7545 5.8740 − 0.1196

57* 5.6478 5.5005 0.1473

58* 5.1232 5.3008 − 0.1776

59 5.6289 5.7336 − 0.1046

60* 5.4498 5.5363 − 0.0865

61 5.6383 5.6725 − 0.0342

The compounds with (*) are the test set, while the compounds without (*) are 
the train set
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and adjustment was made on the lead compounds (1 
and 13) based on the definition of the molecular descrip-
tors obtained from the model. Table 13 shows the newly 
designed compounds with their new calculated activities.

Physicochemical and ADME properties (pharmacokinetics) 
of designed parthenolide compounds
A compound with poor drug-likeness and poor ADMET 
properties will not be allowed to progress into pre-clin-
ical research, regardless of the high anti-proliferative 
activities. ADME properties are one of the main pipe-
lines in drug discovery, for drug-likeliness of a molecules 
to be assessed, and it must pass through the pipeline of 
drug discovery. All the newly designed compounds were 
assessed for their drug-likeliness (pharmacokinetics anal-
ysis) as shown in Table 14.

Discussion
QSAR of parthenolide derivatives
From the statistical parameters, the squared coef-
ficient of correlation (R2) was 0.6715, correlation 
coefficient adjusted squared (R2

adj) was 0.61920, cross-
validation coefficient (Q2) was 0.5460, and external vali-
dation (R2

pred) was 0.5304. How the external validation 
of the model was verified is shown in Tables  7 and 8, 
which also conforms to the least requirement in QSAR 
modeling as shown in Table 6. The actual, calculated and 
residual values of parthenolide derivative compounds are 
shown in Table 9. The low residual value is the outcome 
between the difference between actual and predicted 

activities showing the high performance of the model. 
The model certified both internal and external parame-
ters, thereby confirming the model to have high perfor-
mance, very stable and robust.

The model’s parameters are defined in Table 10 (names, 
definition and class). The mean effect (Table  10) shows 
the contribution of each descriptor in the constructed 
model, and the positive coefficient and values of the 
descriptor from the mean effect showed AAts6i has more 
impact followed by GATS5s, ATSC8i and VR1_Dze, 
therefore increasing the positive effect of the descrip-
tors would increase the biological activities of parthe-
nolide derivatives, while C2SP3 carries a negative effect 
and gives the least contribution in the model, reducing 
its negative effect would also contribute in increasing 
biological activities of parthenolide derivatives as proven 
in Tables  7 and 8. There was no much inter-correlation 
between the model parameters from the statistical analy-
sis of Variance Inflation Factor (VIF), making the model 
highly stable. The null hypothesis shows no significant 
connection amid the bioactivity and model parameters 
of the constructed model at p > 0.05. At a 95% confi-
dence level, the P values of the model parameters were 
below 0.05. Therefore, the null hypothesis is rejected 
and the alternative hypothesis is accepted. This indicates 
that there is a co-linearity between the bioactivity and 
model parameters of the constructed model, as shown in 
Table 11.

Figure  2 shows a plot of actual activities against the 
predicted activities of both the test set and the train 
set of compounds. The plot showed that the predicted 

Table 10  Definition of descriptors and their classes for the model

Name Definition Class Mean effect

ATSC6i Centered Broto-Moreau autocorrelation—lag 6/weighted by first ionization potential 2D 0.9884

ATSC8i Centered Broto-Moreau autocorrelation-lag 8/weighted by first ionization potential 2D 0.0262

GATS5s Geary autocorrelation-lag 5/weighted by L I-state 2D 0.0695

VR1_Dze Randic-like eigenvector-based index from Barysz matrix/weighted by Sanderson electronega-
tivities

2D 0.0166

C2SP3 Singly bound carbon bound to two other carbons 2D −0.1006

Table 11  Statistical analysis of the descriptor used in the QSAR model

AATS6i ATSC8i GATS5s VR1_Dze C2SP3 VIF P value

AATS6i 1 2.077006 0.006999

ATSC8i 0.374295 1 1.272532 0.000162

GATS5s −0.65093 −0.3855 1 1.984035 3.01E−05

VR1_Dze 0.000492 −0.16932 0.0273 1 1.059332 0.000661

C2SP3 0.280075 0.185489 0.013492 −0.15324 1 1.226411 −4.6729
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activity was in good agreement with its experimental val-
ues as shown in Table 6, conforming to the effectiveness 
and strength of the built model. Figure 3 shows how the 
entire molecules spread on both negative and positive 
sides of zero point on the y-axis of the plot, indicating 
no systematic errors between the standardized residual 
versus inhibition concentration (experimental activ-
ity). Figure  4 shows the standardized residuals against 
the leverage values also called William’s plot. The better 
part of the derivatives fell within the calculated leverage 
of (h = 0.47); except 8 compounds we found to be out-
side the warning leverage which might be due to a slight 

difference in structure compared to other compounds in 
the data set.

Molecular docking studies
Molecular docking interaction on compounds of par-
thenolide derivatives with the protein target, Maternal 
Embryonic Leucine Zipper Kinase (MELK), was per-
formed. Compounds 2, 9 and 17 were chosen because of 
their high binging score. Compounds 2, 9 and 17 had the 
highest docking score of − 9.3, − 9.3 and − 8.9 kcal/mol 
as shown in Table 12. The visual examination of docked 
complexes was done by assessing the hydrogen bond 

Table 12  Binding affinity, interaction type, bond type and distances in some complexes

Complex Binding 
affinity (kcal/
mol)

Amino acid Bond type Interaction Bond Distance(A0)

9 −9.3 THR19 Hydrogen Bond Conventional Hydrogen Bond 2.74925

GLY21 Hydrogen Bond; Halogen Conventional Hydrogen Bond; Halogen (Fluorine) 2.4619

ARG53 Hydrogen Bond; Halogen Conventional Hydrogen Bond; Halogen (Fluorine) 2.98056

CYS89 Hydrogen Bond Conventional Hydrogen Bond 3.34925

GLY18 Hydrogen Bond Carbon Hydrogen Bond 3.35524

ILE17 Hydrogen Bond Carbon Hydrogen Bond 3.59598

ASP150 Halogen Halogen (Fluorine) 3.33001

ASP150 Electrostatic Pi-Anion 4.20988

PHE22 Hydrophobic Pi-Pi T-shaped 5.96743

ILE17 Hydrophobic Alkyl 5.00307

VAL25 Hydrophobic Alkyl 5.43404

LEU139 Hydrophobic Alkyl 4.42983

ILE17 Hydrophobic Alkyl 3.89836

PHE22 Hydrophobic Pi-Alkyl 5.15308

TYR88 Hydrophobic Pi-Alkyl 4.67658

ALA23 Hydrophobic Pi-Alkyl 4.44028

2 −9.3 LYS134 Hydrogen Bond Conventional Hydrogen Bond 1.91438

GLY18 Hydrogen Bond Carbon Hydrogen Bond 3.50504

ASP150 Hydrogen Bond Carbon Hydrogen Bond 3.40604

THR19 Hydrogen Bond Carbon Hydrogen Bond 3.35007

PHE22 Hydrophobic Pi-Sigma 3.72576

ALA23 Hydrophobic Alkyl 3.10836

ALA38 Hydrophobic Alkyl 4.3497

ILE17 Hydrophobic Alkyl 5.0501

VAL25 Hydrophobic Alkyl 4.61294

LEU139 Hydrophobic Alkyl 4.86094

VAL25 Hydrophobic Pi-Alkyl 4.17368

ALA38 Hydrophobic Pi-Alkyl 4.84776

LEU86 Hydrophobic Pi-Alkyl 5.45664

ILE149 Hydrophobic Pi-Alkyl 4.54951

17 −8.9 GLY21 Hydrogen Bond Conventional Hydrogen Bond 2.62202

ILE17 Hydrophobic Pi-Sigma 3.47363

ILE17 Hydrophobic Alkyl 4.41825

LEU139 Hydrophobic Pi-Alkyl 5.25912
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Table 13  Newly designed parthenolide derivative compounds with their new predicted activities (pIC50)

S/No. Structures New predicted 
activit y (pIC50)

1 6.1312

2 6.0335

3 6.3248

4 6.2884

5 6.2044

6 6.2357
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Table 13  (continued)

7 6.3281

8 6.0766

9 6.3470

10 6.1056

11 5.9117

12 5.9920
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Table 13  (continued)

13 5.9804

14 6.1148

15 6.3606

Table 14  Physicochemical and ADME properties (pharmacokinetics) of designed parthenolide compounds against the MDA-MB-231 
cell line

MW, molecular weight (< 500 mg/mol); nAH, number of aromatic heavy atoms; nRB, rotatable bonds; HBA, hydrogen bond acceptors; HBD, hydrogen bond donors; 
MR, molecular refractivity; TPSA, topological polar surface area; BBB, blood–brain barrier

S/No MW (g/mol) nAH nRB HBA HBD MR TPSA (Å2) iLOGP BBB PAINS Brenk

1 496.9 6 6 8 0 119.86 65.13 4.02 NO 0 4

2 492.49 6 6 8 2 123.66 117.17 3.41 NO 0 5

3 492.39 6 5 5 1 129.24 91.15 4.33 NO 0 5

4 493.38 6 5 6 1 126.86 85.36 3.9 NO 0 4

5 488.48 6 6 9 1 121.69 102.43 3.23 NO 0 4

6 581.29 6 5 5 1 134.62 91.15 4.15 NO 0 5

7 492.39 6 5 5 1 129.24 91.15 3.91 NO 0 5

8 476.53 6 5 7 0 121.98 103.93 4.08 NO 0 5

9 489.2 6 5 5 0 133.01 65.13 0 NO 0 5

10 460.47 6 6 8 0 116.26 74.36 3.45 NO 0 4

11 442.26 6 5 7 0 117.94 65.13 0.00 NO 0 5

12 458.93 6 6 6 0 121.35 74.36 4.02 NO 0 4

13 582.28 6 6 6 0 131.74 74.36 4.24 NO 0 4

14 596.30 6 6 6 0 136.71 74.36 4.65 NO 0 4

15 521.39 6 6 7 1 131.79 102.43 3.67 NO 0 4



Page 15 of 20Lawal et al. Bull Natl Res Cent           (2021) 45:90 	

interaction, hydrogen bond length and the hydrophobic 
interaction as shown in Table 12.

Compound 9 showed backbone conventional hydro-
gen bonds (2.74925, 2.4619, 2.98056, 3.34925, 3.35524 
and 3.59598 A0) with THR19, GLY21, ARG53, CYS89, 
GLY18 and ILE17 of the protein target site. Furthermore, 
it formed hydrophobic bonds (5.96743, 5.00307, 5.43404, 
4.42983, 3.89836, 5.15308, 4.67658 and 4.44028 A0) with 
PHE22, ILE17, VAL25, LEU139, ILE17, PHE22, TYR88 
and ALA23 of the target site. It formed a halogen and 

electrostatic bond (3.33001 and 4.20988 A0) with amino 
acids of ASP150. The carbonyl group of the compound 
acts as a hydrogen acceptor and formed one hydrogen 
bond with THR19, while two of the fluorine (Halogens) 
attached to the phenyl group of the compound, act as a 
hydrogen donor and formed two hydrogen bonds with 
GLY21 and ARG53 of the protein crystal.

Compound 2 also showed four hydrogen bonding 
(1.91438, 3.50504, 3.40604 and 3.35007 A0) with LYS134, 
GLY18, ASP150 and THR19 of the active site of the 
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Compound 17 also formed hydrogen and hydropho-
bic bonds with the protein receptor at different bond 
distances as shown in Table  12. The hydrogen and 
hydrophobic interactions show that the ligands have 
high potency against the MELK receptor. The prepared 
receptor and ligand are shown in Fig. 5. The 3D and 2D 
representations of the binding pose are shown in Figs. 6 
and 7, and how the ligands bind firmly to the active sites 

-3

-2

-1

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

St
an

da
rd

iz
ed

 R
es

id
ua

l

Leverages

Train
Test

Fig. 4  Graph of standardized residual against leverages (William’s plot)

Fig. 5  Prepared receptor and ligand

receptor. The derivative also formed hydrophobic bonds 
(3.72576, 3.10836, 4.3497, 5.0501, 4.61294, 4.86094, 
4.17368, 4.84776, 5.45664 and 4.54951 A0) with amino 
acids of PHE22, ALA23, ALA38, ILE17, VAL25, LEU139, 
VAL25, ALA38, LEU86 and ILE149 of the protein target. 
The carbonyl of the compound attached to 3-methylen-
edihydrofuran-2(3H)-one acts as a hydrogen acceptor to 
form one hydrogen bond with LSY134.
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of the receptor and also a detailed interaction to form 
complexes.

Ligand‑based drug design
Compounds 13 and 1 were chosen as lead compounds 
in the design of fifteen (15) new parthenolide deriva-
tive compounds due to their high predicted activity 
and low residual values as shown in Table 7. From the 
mean effect of the descriptors, AATS6i had a greater 
positive impact, while VR1_Dze had the least positive 
impact on the model. According to AATS6i (Centered 
Broto-Moreau autocorrelation—lag 6/weighted by 
first ionization potential) and VR1_Dze (Randic-like 
eigenvector-based index from Barysz matrix/weighted 
by Sanderson electronegativities) descriptors, adding 
more ionization potential and electronegative elements 

would increase the potency of the chosen templates. 
The structural modification occurred by adding more 
ionization potential and electronegative elements to 
template molecules (compounds 1 and 13). The pre-
dicted activities of the newly designed compounds were 
higher than that of the template molecules as shown in 
Table 13.

Physicochemical and ADME properties (pharmacokinetics) 
of designed parthenolide compounds
All the newly designed compounds were assessed for 
their drug-likeliness (ADME and physicochemical 
properties). None of the designed compounds violated 
two rules out of the Lipinski rule of five, a promi-
nent principle used in certifying the drug-likeness 

Fig. 6.  2D representation of complex 9



Page 18 of 20Lawal et al. Bull Natl Res Cent           (2021) 45:90 

of a compound, and this shows that all the designed 
compounds passed the drug-likeness test as shown in 
Table  14, making the compounds a breakthrough in 
finding the cure to triple-negative breast cancer. Fig-
ure  9 shows the bioavailability RADAR of molecules 
2, 5 and 8. The bioavailability RADAR enables a first 
glance at the drug-likeness of a molecule. The pink 
area signifies the ideal range for each properties (lipo-
philicity: XLOGP3 between − 0.7 and + 5.0, size: MW 
between 150 and 500  g/mol, polarity: TPSA between 
20 and 130 Å2, solubility: log S not higher than 6, 
saturation: fraction of carbons in the sp3 hybridiza-
tion not less than 0.25 and flexibility: no more than 9 
rotatable bonds) (Daina et  al. 2017). The GI—gastro-
intestinal absorption was also high for all the designed 
molecules.

Conclusion
The results obtained from the QSAR mathematical 
model of parthenolide derivatives were used in design-
ing new derivatives compounds that were more effective 
and potent. The molecular docking result of parthe-
nolide derivatives showed that compounds 2, 9 and 
17 had higher docking scores than the standard drug 
adriamycin. The compounds would serve as the most 
promising inhibitors (MELK). Furthermore, the phar-
macokinetics analysis carried out on the newly designed 
compounds revealed that all the compounds can move 
on to the next step of pre-clinical trial because they 
passed drug-likeness test (ADME and other physico-
chemical properties) and they also adhered to the Lipin-
ski rule of five: a major principle used in analyzing the 
drug-likeness of small compounds. This gives a great 
breakthrough in medicine in finding the cure to triple-
negative breast cancer (MBA-MD-231 cell line).

Fig. 7  2D representation of complex 2
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Fig. 8  The bioavailability RADAR of molecules 12, 5 & 8

Fig. 9  3D representation of complex 9 and 2
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