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Abstract 

Background:  Hepatitis C virus (HCV) is a global medical condition that causes several life-threatening chronic dis-
eases in the liver. The conventional interferon-free treatment regimens are currently in use by a blend of direct-acting 
antiviral agents (DAAs) aiming at the viral NS3 protease. However, major concerns may be the issue of DAA-resistant 
HCV strains and the limited availability to the DAAs due to their high price. Due to this crisis, the developments of a 
new molecule with high potency as an NS3/4A protease inhibitor of the hepatitis-C virus remain a high priority for 
medical research. This study aimed to use in-silico methods to identify high potent molecule as an NS3/4A protease 
inhibitor and investigating the binding energy of the identified molecule in comparison with approved direct-acting 
antiviral agents (Telaprevir, Simeprevir, and Voxilaprevir) through molecular docking.

Results:  The model obtained by in-silico method have the following statistical records, coefficient of determination 
(r2) of 0.7704, cross-validation (q2

LOO = 0.6914); external test set (r2(pred) = 0.7049) and Y-randomization assessment 
(cR2

p = 0.7025). The results from the model were used to identify 12 new potential human HCV NS3/4A protease inhib-
itors, and it was observed that the identified molecule is well-fixed when docked with the receptor and was found to 
have the lowest binding energy of − 10.7, compared to approved direct-acting antiviral agents (Telaprevir, Simeprevir, 
and Voxilaprevir) with − 9.5, − 10.0, − 10.5 binding energy, respectively.

Conclusion:  The binding affinity (− 10.7) of the newly identified molecule docked with 3D structures of HCV NS3/4a 
protease/helicase (PDB ID: 4A92) was found to be better than that of Telaprevir, Simeprevir, and Voxilaprevir (approved 
direct-acting antiviral agents) which are − 9.5, − 10.0, and − 10.5, respectively. Hence, a novel molecule was identified 
showing high potency as HCV NS3/4a protease inhibitors.

Keywords:  Computer-aided drug design, QSAR, HCV NS3/4A protease inhibitors, Molecular docking, Molecular 
descriptors
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Background
Hepatitis C virus (HCV) is a global medical condition 
that causes several life-threatening chronic diseases 
in the liver and the hepatitis C virus (HCV) is primar-
ily liable for chronic liver diseases worldwide (Jia et  al. 
2020). In many countries, HCV is indeed a primary risk 
factor for liver failure and liver transplantation which is 

a growing public health problem (El-Kassem et al. 2019; 
González-Grande et al. 2016). The World Health Organi-
zation (WHO) estimated seventy-one million people 
were infected with HCV in 2015, representing one per-
cent of the world’s population. The infection is widely 
dispersed in diverse parts of the world, with an inci-
dence of 0.5 to 6.5 percent in the wide-ranging popula-
tion (Kucherenko et al. 2016; World Health Organization 
2018).

HCV is an associate of the viral envelop (Flaviviridae) 
consisting of a positive single-strand ribonucleic acid 
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(RNA) encoding a polyenzyme. Both host and viral pro-
teolytic enzymes cleave this polyenzyme to the structural 
and non-structural (NS) enzymes. The NS3/4A area is 
trypsin similar to the protein complex which performs a 
very important function in viruses’ replication and facili-
tates procedures for attenuating and evading the natural 
immune defense of the host cell. Extensive studies indi-
cate that blocking the NS3/4A enzyme function would 
successfully prevent HCV replication (Shi et  al. 2015). 
HCV serine protease NS3/4A is an enzyme that arises 
from the mixture of two distinct enzymes, the macro-
molecule NS3, and the macromolecule NS4A. NS3 mac-
romolecule is a bi-functional macromolecule containing 
the N-terminal serine protease and a C-terminal endo-
nuclease region. The HCV poly-macromolecules at the 
NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B intersec-
tions are catalyzed by the N-terminal serine protease. 
However, NS3 only is not sufficient for cleavage at these 
intersections. NS4A macromolecule is essential for effi-
cient cleavages. Mainly, as a cofactor, the central portion 
of NS4A is essential to offer NS3 with a fitted complex 
and stimulate the catalytic process. At these intersec-
tions, abnormalities in NS4A disrupt the NS3 protease 
to cleave. The exact function of NS4A is to balance the 
NS3 from cellular protease by protecting it from break-
down and stimulating the proteolytic response (Subedi 
2019). There are seven recognized HCV genotypes (GTs), 
and sixty-seven verified subgroups (Chahine et al. 2017; 
Petruzziello et  al. 2016). The global dispersion of the 
HCV genotypes differs across various geographic loca-
tions. HCV GT1 is the most common in the world and 
has a broad geographic range, accounting for a larger per-
centage (46%) of HCV infections worldwide. HCV GT3 
is the next most common GT in South Asia, Australia, 
as well as some European nations with thirty percent of 
infections worldwide. HCV GT2 and GT4 account for 
nine to thirteen percent of the infections with a narrow 
geographic dispersion. HCV GT2 is greater in Asia and 
West Africa, whereas HCV GT4 infections are high in 
Central and Eastern Sub-Saharan Africa, North Africa, 
and the Middle East. HCV GTs 5, 6, and 7 are perhaps 
the most geographically limited, with GT5 accessible in 
South Africa and GT6 common in eastern and south-
eastern Asia, whereas GT7 also was stated in a small 
percentage of people in DR Congo (Coppola et al. 2019; 
Rabaan et al. 2019; Smith et al. 2014).

Though some hepatitis viruses have vaccines, there are 
none available for HCV (El-Kassem et  al. 2019). In the 
last few years, conventional interferon (IFN)-free thera-
peutic regimens in blend with ribavirin have been widely 
recognized as a model of excellence in antiviral therapy 
(Liu et  al. 2018). However, this may have several side 
effects such as thyroid deficiency, neurological problems, 

digestive problems, as well as other negative reactions. 
Lately, the therapy is primarily dependent on direct-act-
ing antiviral agents in which HCV NS protease is seen 
as the main target of antiviral inhibitor’s development 
(El-Kassem et al. 2019). According to Liu et al., “in 2011, 
telaprevir and boceprevir were successively approved as 
the first direct-acting antiviral agents (DAAs) used as 
the HCV NS3/4A protease inhibitors, which initiated a 
breakthrough in the treatment of HCV” (Liu et al. 2018; 
Poordad et al. 2011). DAAs have culminated in a signifi-
cantly improved tolerability and effectiveness compared 
with the traditional regimen of severe HCV infection 
(Bidell et al. 2016). The development of resistance-mech-
anism, like antibiotics, also encourages the viable discov-
ery of new compounds or the modification of existing 
ones (El-Kassem et al. 2019).

The strategy to a correlation existed between struc-
ture and activity (QSAR) is indeed very helpful for the 
estimation of biological responses, particularly in drug 
development. This strategy is built on the hypothesis that 
differences in the properties of the molecules (biological 
activities) may be strongly linked with variations in their 
physicochemical features (molecular descriptors) (Arthur 
et al. 2020; Bhadoriya et al. 2015; Veerasamy et al. 2011). 
Virtual screening (VS) utilizes computer-driven tools and 
techniques to explore hidden organic molecules that are 
similar in structure. VS has surfaced in drug develop-
ment as a computationally intensive strategy to evaluate 
different databases of chemical compounds for unique 
hits with improved characteristics, which could then be 
tested empirically. Just like other computational tech-
niques, VS would not aim to substitute in vitro and also 
in  vivo assays, but instead to facilitate the development 
process, lessen the number of candidates to be tried 
empirically, then justify their selection. Such techniques 
are typically applied to get hits that seem to be much 
more likely to offer good clinical candidates (Arthur et al. 
2020; Neves et al. 2018; Vyas et al. 2008).

The earlier process of the drug development process is 
preceded by guesswork, and it is costly in terms of capi-
tal, time, and resources. Nevertheless, with the intro-
duction of computational strategies of drug design, the 
drug development and design process can be successfully 
carried out saving huge capital resources (Arthur et  al. 
2016). Over the random screening of existing chemical 
libraries, the ligand-based strategy has proven success-
fully (Roy et al. 2012). It provides a theoretical tool that 
can be used to suggest the actions of recognized and 
proposed drug molecules. Ligand-based and 3D-QSAR 
approaches for the discovery of unique and effective 
NS5B inhibitors were also explored by Therese et  al. 
(2014). In the present research, computational methods 
were applied to derive a reliable QSAR model and to use 
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the data provided by the model to proposal novel mol-
ecules with high potency as an NS3/4A protease inhibi-
tor and to investigate the binding energy of designed 
molecules in comparison with an approved direct-acting 
antiviral agent (Telaprevir, Simeprevir, and Voxilaprevir) 
through molecular docking.

Methods
Dataset
The molecules utilized in this study were 63 N-methyl-
6-(N-methylmethylsulfonamido)-5-(4-oxo-3,4-di-
hydroquinazolin-6-yl)benzofuran-3-carboxamide 
derivatives retrieved from datasets database (https​://
pubch​em.ncbi.nlm.nih.gov/) as HCV inhibitors with 
pubchem AID: 1344392 deposited on 8th September 
2018 by CHEMBL (External ID: CHEMBL3888610) 
obtained as IC50 (µM) and was transformed to pIC50 
(pEC50 = − logIC50) (Tropsha 2010).

Computed descriptors
The descriptors were computed by first optimized the 
dataset molecules with density functional theory (DFT) 
using B3LYP functional and 631G** basis set in Spartan 
14 software (Shao et al. 2006). The optimized structures 
are first transferred to another software (PaDEL-Descrip-
tors), which computed the structural properties (molecu-
lar descriptors) for each molecule (Yap 2011).

Dataset division
In the current analysis, the dataset was mainly split into 
two parts containing 70% dataset for constructing the 
model and 30% dataset which is unused during model 
construction but was used in the determination of the 
model’s predictive ability (Tropsha 2010).

Model generation
The correlation analysis was achieved by Material Studio 
software and Genetic Function Approximation (GFA) 
was incorporated in the process to define the ideal QSAR 
models. In regression analysis, X (descriptors) relies on 
the conditional value of predictor variables Y (pIC50) 
(Veerasamy et  al. 2011). GFA is the technique used to 
generate statistical data models using the evolution pro-
cess. Substituting regression study further with the GFA 
algorithm enables model-building to be comparable with, 
or better to conventional approaches, and provides addi-
tional information accessible that is not given by other 
methods. As with most methods for extrapolation, GFA 
offers various models for the user (Rogers 1997).

Assessment of the generated model
The established model was assessed by the following 
numerical measures: cross-validated correlation 

coefficient ( q2CV ), external explained variance ( r2pred ), 
random R2 ( cR2

p ), variance inflation factor (VIF), and 
mean effect (MF), which are defined as follows:

yexp,yest and y represents the experimental, estimated, 
and average data point of experimental biological 
response, respectively.

The external explained variance ( r2pred ) was computed 
using the equation:

yexp(Test) and yest(Test) represent experimental and 
estimated activity data for the test set molecules, and 
yTraining represents the average experimental biological 
response of the training set.

The random R2 values ( cR2
p ) of the model were esti-

mated from the equation:

where R, R2 and R2
r represents correlation coefficient, 

coefficient of determination, and mean of randomized 
coefficient of determination, respectively.

The variance inflation factor (VIF) of each descriptor 
in the model was estimated by the equation:

where R2 is the various correlation coefficient of one 
descriptor’s influence regressed in the model over the 
other molecular descriptors (Beheshti et al. 2016).

Ery descriptor’s mean effect (MF) value had been 
used to determine the descriptor’s comparative impact 
on the model. The MF was determined by the Formula:

where βj, dij, m, and n represents the descriptor coeffi-
cient j in that model, the descriptor’s value in the sam-
ple space for each compound in the training dataset, the 
number of descriptors in the model, and the number of 
compounds in the training dataset, respectively (Arthur 
et al. 2020; Oluwaseye et al. 2020).

q2CV = 1−

∑
(

yexp − yest
)2

∑n
i=1

(

yexp − y
)2

r2pred = 1−

∑
(

yexp(Test) − yest(Test)
)2

∑

(

yexp(Test) − yTraining

)2

cR2
p = R×

√

R2 − R
2
r

VIF =
1

1− R2

MF =
βj

∑i=n
i=1 dij

∑m
j βj

∑n
i dij

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/


Page 4 of 15Ejeh et al. Bull Natl Res Cent            (2021) 45:3 

Applicability domain (AD)
Williams’s plot was used to measure the established 
QSAR model’s AD. The actual reference space ( hi ) of a 
molecule, as well as the threshold value (h*), are evalu-
ated using the equations below:

For which X is the row-matrix descriptor of the query 
item, which is distinctive array of the training dataset, n 
represents the total of query item and q represents the 
total descriptors in the model (Arthur et al. 2020; Eriks-
son et al. 2003; Li et al. 2011). The standardized residual 
(SDR) of the model AD is estimated by the equation:

In which Y is the observed response value for which-
ever the set (training or validation sets), Y  is the model’s 
predicted activity value, and the total of compound pre-
sent in the dataset is represented by n. The conventional 
dimension prediction for a given molecule is usually 
demarcated by 0 < hi < h∗ and − 3 < SDR < 3 boundaries. 
Consequently, whichever molecule through SDR less 
than − 3 or greater than + 3 are labeled an outlier in the 
variable response area, as well as any molecule with con-
trol higher value than h∗ , is labeled a distinguished mol-
ecule foreign to the most compounds used during model 
construction.

Docking studies
Ligand structure preparation
ChemBio Ultra 12.0 was used to draw 2D Ligand struc-
tures (Evans 2014; Li et al. 2004). The density functional 
theory (DFT) technique in Spartan 14 was used to mini-
mize the energy of each ligand in the dataset and input 
into PyRx in PDB file format (Huey et al. 2012).

Protein structure preparation
The structure of HCV NS3/4a protease was extracted 
via Research Collaboratory for Structural Bioinformat-
ics Protein Data Bank (RCSB PDB) with the HCV NS3/4a 
protease structural PDB ID being 4A92. The co-crystal-
lized ligand macrocyclic protease inhibitor in complex 
with the HCV NS3/4a protease crystal structure was dis-
carded, hydrogen atoms were introduced, slight use resi-
due structures were discarded, partials side chains were 

hi = X
(

XTX
)−1

XT

h∗ =
3(q + 1)

n

SDR =
Y − Y

√

∑n
i=1

(Y−Y )
2

n

substituted with the use of discovery studio (Danishud-
din et  al. 2010). The structures are again saved in PDB 
form for use in PyRx tools (Huey et al. 2012).

Docking procedure and evaluation
A rectangular grid measuring 
65.5217 × 72.7141 × 80.3011  Å, centered on 5.2017, 
15.6939, 30.8304 was built across the binding site of 
ligand on HCV NS3/4a protease by autodock tools. The 
grid center was fixed at ligand, and grid energy measure-
ments were performed. The Autodock docking compu-
tation used default settings, and 10 docked alignments 
were produced for each molecule. The bonded ligand 
was deleted from the complexes test the validity and reli-
ability of the docking computations and forwarded for 
one-ligand run computation. This replicated core-scoring 
sequences of 4 falling from bonded X-ray verification 
for HCV NS3/4a protease roots mean square deviation 
(rmsd) standards of 0.71–0.74 Å, proposing that this pro-
cess is sufficiently valid to be enough for docking studies 
of other molecules. The results were transferred for thor-
ough observation of the binding relationships and corre-
lations between the molecules and amino acid sequences 
at the active spots using discovery-studio software (Trott 
and Olson 2010).

Results
A QSAR method for investigating the structure–activ-
ity relationship of 63 HCV NS3/4a protease inhibitors 
was implemented in the present research, and the QSAR 
model is presented as:

where ntrain and ntest are amounts of data present in the 
training and validation dataset, respectively, r2train and r2test 
are the coefficients of correlation for internal and exter-
nal validation, respectively, Q2

LOO is the squared cross-
validation coefficients for leave one out, F is the Fisher F 
statistic, and RMSEtrain and RMSEtest are the roots mean 
square error for training and test set, respectively, K is the 
predictor parameters (descriptors) present in the model.

Additional file  1: Table  S1 displays the chemical 
structure, Pubchem SID and CID, experimental IC50, 
and Estimated pIC50 of all the compounds used for this 
analysis. Table 1 describes the model figures. The mod-
el’s correlation matrix and VIF are stated in Table  2. 
Table 3 presents 10 iterations of y-randomization test. 

pIC50 = −50.5082(±22.1927)− 0.0021(±0.0004)ATSC5i

+ 47.1967(±8.8627)SpMin3_Bhs + 23.7391(±7.2362)SpMax3_Bhs

+ 13.2688(±1.8530)MDEN33− 23.4365(±3.7989)piPC3

ntrain = 44, r2train = 0.7704, K = 5, F = 25.4979, q2LOO = 0.6914, RMSEtrain = 0.3880,

ntest = 19, r2test = 0.7047, RMSEtrain = 0.3392, Outliers > 3.0 = 3, Influential molecules > h∗ = 4.
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The descriptions of the descriptors used in the model 
and the computed mean effect (MF) of each descrip-
tor present in the model are stated in Table 4. Table 5 
represents the Template molecule, designed mol-
ecules, and approved direct-acting antiviral agents 
(Telaprevir, Simeprevir, and Voxilaprevir) with their 
estimated pIC50 and leverages while Table  6 presents 
the docking results of the template molecule, designed 
molecule with the highest activity, and approved 
direct-acting antiviral agents (Telaprevir, Simeprevir, 
and Voxilaprevir). In Fig.  1 the model applicability 
domain (AD) was represented using Williams’s plot. 
Figure 2 presents a plot of the model estimated against 

experimental anti-hepatitis C activity values for both 
the training and test sets. Figure  3 represents the 
chart of SDR vs estimated pIC50 values for the whole 
data point. The structure of the precursor molecule 
which is compound 33 in Additional file 1: Table S1 is 
presented in Fig.  4. The three-dimensional and two-
dimensional interactions of the template molecule 
(Molecule 1, see Table 6), the newly designed molecule 
(molecule 7, see Table 6), Telaprevir (molecule 14, see 
Table  6), Simeprevir (molecule 15, see Table  6) and 
Voxilaprevir (molecule 16, see Table 6) with the bind-
ing pocket of 3D structures of HCV NS3/4a protease/
helicase are presented in Figs. 5, 6, 7, 8 and 9, respectiv
ely.

Table 1  QSAR models validation parameters and scores

a = (Veerasamy et al. 2011), b = (Tropsha 2010), c = (Damme and Bultinck 2007), d = (Roy et al. 2012), e = (Golbraikh and Tropsha 2002), f = (Tropsha et al. 2003)

Statistical parameter Values for the developed model Threshold value Comments Source

Internal validation (validation with the training set data)

 LOF 0.1574

 R2 0.7704 > 0.6 Passed a

 R2
adj 0.7402 > 0.6 Passed b

 F 25.4979

 Q2
LOO 0.6914 > 0.5 Passed b

 SEE 0.4175

 RMSE 0.3880

 R2
m(LOO)

0.6507 > 0.5 Passed c

 R2
′

m(LOO)
0.5106 > 0.5 Passed c

 �R
2

m(LOO)
0.1401

 cR2
p 0.7025 > 0.5 Passed d

External validation (validation with test set data)

 R2
(pred) 0.7047 > 0.6 Passed a

 r2 0.6359 > 0.5 Passed e

 r20 0.6235 > 0.5 Passed e

 r′20 0.5651 > 0.5 Passed e

 |r20 − r′20| 0.0584 < 0.3 Passed e

 r2 − r
2
o/r

2 0.0195 < 0.1 Passed f

 k 1.0004 0.85 < k < 1.15 Passed f

 r2o − r
′
2
o /r

2
o

0.0937 < 0.1 Passed f

 k′ 0.9979 0.85 < k < 1.15 Passed f

Table 2  Pearson’s correlation, Variance Inflation Factor (VIF) of descriptors used in the model

Descriptors ATSC5i SpMin3_Bhs SpMax3_Bhs MDEN33 piPC3 VIF

ATSC5i 1 1.659

SpMin3_Bhs − 0.324 1 2.539

SpMax3_Bhs − 0.712 0.622 1 3.280

MDEN33 − 0.528 0.608 0.623 1 2.029

piPC3 − 0.675 0.841 0.865 0.754 1 1.259
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Discussion
The developed model explains seventy-seven percent 
(77%) and predicts seventy percent (70%) of the variances 
of the considered molecules with anti-hepatitis-C virus 
activity against HCV NS3/4a protease. The model sta-
tistics described in Table 1 meet the criteria for validat-
ing a QSAR model developed by OECD (Roy et al. 2012; 
Veerasamy et al. 2011). The findings show that the R2 and 
Q2 for the model’s internal evaluation have been stated 
as 0.7704 and 0.6914, respectively. This implies that the 
model correctly interpreted the data when evaluated and 
that the model can estimate the fitted training set, as the 
model predicted approximately 70% of the data and thus 
met the minimum condition of 50% (Veerasamy et  al. 
2011). The error statistics, such as SEE and RMSE, have 
also been documented in Table 2 and have been found to 
backing model robustness.

Qin et al. reported a QSAR study of the bioactivity of 
hepatitis C virus (HCV) NS3/4A protease inhibitors by 
multiple linear regression (MLR) and support vector 
machine (SVM) in the literature, and results show R2 val-
ues for internally and externally evaluation were, respec-
tively, 0.75 and 0.72 (Qin et al. 2017), which seem to be 

close in values compared to R2 values for internally and 
externally evaluation of 0.77 and 0.70, respectively, as 
noted in this article.

From Table  2, it was detected that all the descrip-
tors have VIF scores below 5, which means the model 
obtained has significant results and that the descrip-
tors were considered to be fairly orthogonal (Eriksson 
et al. 2003). The mean effect (MF) value offers significant 
details on the impact of the model’s molecular descrip-
tors, the size and the signs of these descriptors MF show 
their intensity and direction in manipulating the activi-
ties of the study compounds and are observed to be in 
decreasing order of piPC3 > SpMax3_Bhs > SpMin3_
Bhs > ATSC3i > MDEN33 (see Table  4). SpMax3_Bhs, 
SpMin3_Bhs, and MDEN33 contribute positively, while 
piPC3 and ATSC3i contribute negatively to the activ-
ity of the anti-hepatitis-C virus compounds. The y-ran-
domization test computed shows that the value for the 
model’s random R2 (cR2p = 0.7025) is substantially higher 
compared to the target value of 0.50, meaning the model 
is never the product of simple possibility alone (Arthur 
et al. 2016).

The square area in Fig.  1 represents the model AD. 
Where h∗ (0.41) boundary is the model warning lever-
age and SDR is the standardized residual of the models. 
The outcome shows that 89% of the molecules consid-
ered were inside the AD of the model while 5% formed 
the Outliers which are compound 16, 18, and 32 in Addi-
tional file 1: Table S1 as identified and indicated in Fig. 1 
(> ± 3.0) and 6% of the studied molecules are Influen-
tial molecules which are compound 2, 6, 21, and 39 in 
Additional file 1: Table S1 as identified and indicated in 
Fig. 1 (> h*). In summary, the suggested model had high 
potential and efficiency. Thus, it can be used as an instru-
ment for optimizing the activity of any of the compounds 
considered.

Figure  2 indicates a meaningful correlation among 
the models’ experimental and estimated activity values, 
and there was also propagation of the models residual 
along with the axis SDR equivalent to zero in Fig. 3. Such 
results showed that the models had the high predictive 
potential both internally and externally and were free 
of systemic bias. Consequently, they could be used to 

Table 3  Y-randomization test scores

Iteration R R2 Q2

Random 1 0.251435 0.063219 − 0.37456

Random 2 0.55169 0.304362 0.124734

Random 3 0.599885 0.359861 0.063428

Random 4 0.177018 0.031335 − 0.74622

Random 5 0.257091 0.066096 − 0.19249

Random 6 0.537332 0.288726 0.116066

Random 7 0.357103 0.127522 − 0.38471

Random 8 0.344553 0.118717 − 1.45487

Random 9 0.284942 0.081192 − 0.21375

Random 10 0.241769 0.058452 − 0.48915

Random models parameters

 Average r 0.360282

 Average r2 0.149948

 Average Q2 − 0.35515

 cRp
2 0.702485

Table 4  A description of the descriptor used in the model and the MF

S/N Descriptor Description Class bj MF

1 ATSC5i Centered Broto-Moreau autocorrelation—lag 5/weighted by first ionization potential 2D − 0.002 0.032

2 SpMin3_Bhs Smallest absolute eigenvalue of Burden-modified matrix—n 3/weighted by the relative I-state 2D 47.197 1.592

3 SpMax3_Bhs Largest absolute eigenvalue of Burden-modified matrix—n 3/weighted by relative I-state 2D 23.739 1.594

4 MDEN33 Molecular distance edge between all tertiary nitrogens 2D 13.269 0.0273

5 piPC3 Conventional bond order ID number of order 3 (ln(1 + x) 2D − 23.437 − 2.246
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Table 5  Template molecule, designed molecules, Telaprevir, Simeprevir, and  Voxilaprevir with  their estimated pIC50 
and leverages

Molecule Structure Estimated
pIC50

Leverages

1x 8.3572 0.3155

2y 9.0010 0.2157

3 8.2936 0.4872

4 8.0445 0.2300

5y 9.1787 0.2976

6y 9.1765 0.2858

7yy 17.3373 0.2339

8y 11.6416 0.4126

9y 8.4136 0.3166

10 8.3165 0.3628
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predict known molecules lacking activity, as long as the 
molecule is inside the AD of the model.

Explanation of descriptors utilized in the established QSAR 
model
The first predictor parameter in the model is a two-
dimensional Autocorrelation descriptor (ATSC5i) and 
is characterized as based Broto-Moreau autocorrela-
tion of lag 5 measured by first ionization potential which 

explains how the first ionization potential is spread along 
with the topological structures of the molecules (Gra-
matica et al. 2000), and its presence in the model linked 
the first ionization potential of pairs atoms that are dis-
connected by five bonds (lag 5) of the researched mole-
cules with anti-hepatitis-C virus activity on HCV NS3/4a 
protease. It was found from the developed model that 
ATSC5i negatively influences the activity of the com-
pounds when increased.

Table 5  (continued)

Molecule Structure Estimated
pIC50

Leverages

11y 10.2050 0.2694

12y 9.5078 0.3581

13y 8.5560 0.4126

14f 13.5142 0.3446

15s 15.1774 0.3811

16t 16.9516 0.2767

x  Template molecule, ydesigned molecules with improved activity, yydesigned molecule with better activity compared to Telaprevir, Simeprevir, and Voxilaprevir, 
fTelaprevir, sSimeprevir, tVoxilaprevir (f, s, t are first, second and third generation DAAs, respectively)
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Table 6  Docking results of  Template molecule, designed molecule with  the  highest activity, first, second, and  third 
generation approved direct-acting antiviral agents

The compound 
from Table 5

Binding 
energy kCal/
mol

Residues interacting with ligand Types of interaction Bond length (Å)

1 − 7.5 THR298, SER229 Conventional Hydrogen Bond 2.17, 3.60

SER297 Carbon Hydrogen Bond 3.69

GLU291 Pi-Anion 3.51

SER294, TRP501 Pi-Donor Hydrogen Bond 3.78, 3.54

ALA497, PRO230, HIS293 Pi-Alkyl 4.48, 4.79, 5.48

7 − 10.7 THR416, THR416, SER294, THR295, GLY484 Conventional Hydrogen Bond 2.91, 2.79, 3.02, 2.85, 3.10

TYR391, HIS293 Carbon Hydrogen Bond 3.70, 3.10

ASP454 Pi-Anion 3.43

SER457, THR295, SER483 Pi-Donor Hydrogen Bond 3.75, 4.05, 3.56

ARG393, VAL456 Pi-Alkyl 4.69, 4.64

14 − 9.5 ARG481, MET485, GLY484, THR295, THR295, HIS369 Conventional Hydrogen Bond 3.18, 1.95, 3.11, 3.31, 3.10, 2.32

VAL490, VAL490, PRO523, VAL456 Alkyl 4.99, 4.71, 4.34, 4.61

VAL432 Pi-Alkyl 5.01

15 − 10.0 ALA413, GLN434 Conventional Hydrogen Bond 2.80, 3.21

ASN556, SER489, GLU493 Carbon Hydrogen Bond 3.58, 3.14, 3.63

ASP454 Pi-Anion 4.09

THR295, THR433 Pi-Donor Hydrogen Bond 3.71, 3.88

VAL456, VAL490 Alkyl 3.96, 3.57

VAL456 Pi-Alkyl 4.93

16 − 10.5 GLU493, TRP501, TYR502, GLY253 Conventional Hydrogen Bond 2.39, 3.16, 2.50, 3.17

THR269 Carbon Hydrogen Bond 3.47

ASP412, ASP412 Halogen (Fluorine) 3.31, 3.40

GLY271 Amide-Pi Stacked 4.59

ALA413, PRO558 Alkyl 4.19, 4.50

ALA497, TRP501 Pi-Alkyl 4.86, 5.06

Fig. 1  The model Applicable Domain plot (Williams plot)
Fig. 2  Plot of the model estimated against experimental 
anti-hepatitis C activity values
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SpMin3_Bhs and SpMax3_Bhs have positive influences 
on the anti-hepatitis-C virus activity of the analogs on 
HCV NS3/4a protease. They are both Burden-Modified 
Eigenvalues Descriptor. SpMin3_Bhs reveals the smallest 
absolute eigenvalue of the Burden modified matrix—n 3/
measured by the relative I-state. Fluorine/fluorine-con-
taining substituents, e.g., C6H5F, drop the estimated value 
and so are unfavorable to the activity. The SpMax3_Bhs 
is defined as the largest absolute eigenvalue of Burden-
modified matrix—n 3 / measured by relative I-state. A 
transformed correlation matrix (Burden matrix) is con-
sidered, the diagonal element of which is being replaced 
by the comparative interpretative condition of the atoms 
in the molecule, and the two bonded atoms are repre-
sented off-diagonally. The descriptor encrypts facts about 
the underlying molecular structure feature and is usually 

employed for similarity/differences searching (Todes-
chini and Consonni 2008).

MDEN33 is another descriptor found in the model 
and is described as a Molecular distance edge among 
all tertiary nitrogen. The descriptors are symbolized as 
MDEXst in which X represents the element, s stand for 
the first atom kind, and t stand for the second atom kind. 
The kind or level of the atom (primary, secondary, or ter-
tiary) is derived from the number of non-hydrogen atoms 
connected to a specified atom (Todeschini and Consonni 
2008). It is positively related to the activity of researched 
molecules. This is an indication that the N-contain-
ing moiety introduction rises the activity values of the 
researched molecules. A molecule with an extra nitrogen 
atom had a high value of MDEN33 in its structure, hence 
better activity e.g., molecule, 7, 8, 11, and 12 in Table 6.

In the model, the last descriptor is piPC3 which is a 
two-dimensional descriptor and is known as a Standard 
bond order 3 (ln(1 + x), and was found to have a negative 
impact on the activity of the researched molecules when 
improved (Todeschini and Consonni 2008).

New molecule proposal and estimation of activity
Based on the built QSAR model and evaluated results, 
compound 33 in Additional file  1: Table  S1 shown in 
Fig.  4 was used as a pattern to improve the molecu-
lar structure. Compound 33 was used as a template 
for designing novel molecules because it was care-
fully chosen from Fig. 1, detecting the compound with 
high activity, low standardized residual, and was dis-
covered inside the established model’s AD. The previ-
ously established QSAR model was used to estimate the 
activity of the template molecule, newly designed mol-
ecules, and approved direct-acting antiviral agents (Tel-
aprevir, Simeprevir, and Voxilaprevir). The result shows 
that all designed derivatives and DAAs have enhanced 

Fig. 3  The plot of standardized residual against estimated pIC50 
values for the entire data set

Fig. 4  The structure of the template molecule see Additional file 1: Table S1, C 33 (2-(4-fluorophenyl)-5-(3-(1-(4-fluorophenyl)ethyl)-4-oxo-3,4-dihyd
ro-2H-pyrido[2,3-e][1,3]oxazin-6-yl)-N-methyl-6-(N-methylmethylsulfonamido)benzofuran-3-carboxamide)



Page 11 of 15Ejeh et al. Bull Natl Res Cent            (2021) 45:3 	

pIC50 value than the template except molecule 3, 4, 
and 10 (see Table  5). Also, molecule 7 in Table  5 has 
the highest activity among them even better compared 
to DAAs. The structure of the template, newly designed 
molecules, and approved direct-acting antiviral agents 
(Telaprevir, Simeprevir, and Voxilaprevir) together 
with their estimated activity and Leverages are pre-
sented in Table  5. The outcomes of the leverage were 
good and found to be lower than the leverage threshold 
(h* = 0.41), this implied that all the designed molecules, 
as well as approved direct-acting antiviral agents (Tel-
aprevir, Simeprevir, and Voxilaprevir), were within the 
model’s sphere of applicability.

Molecular docking results and analysis
Among all the molecules in Table 5 including approved 
direct-acting antiviral agents, it was observed that 
molecule 7 has the highest predicted pIC50 value 
(17.3373) and therefore was exposed to a molecular 
docking study. Also, Telaprevir, Simeprevir, and Vox-
ilaprevir (approved direct-acting antiviral agents) and 
the template molecule with predicted pIC50 of 13.5142, 
15.1774, 16.9516, and 8.3572, respectively, are exposed 
to a similar docking analysis for comparison. The 
results of the docking analysis such as Binding Energy 
(kCal/mol), Interactions with amino acid, Types of 
Interaction, Bond length (Å) of the template molecule 
(1 in Table  5), designed molecule (7 in Table  5), and 

Fig. 5  The 3D and 2D interaction of the Template molecule (Molecule 1, see Table 6) with the binding pocket of 3D structures of HCV NS3/4a 
protease/helicase (PDB ID: 4A92)

Fig. 6  The 3D and 2D interaction of the designed Molecule (Molecule 7, see Table 6) with better activity to Telaprevir, Simeprevir, and Voxilaprevir 
(approved direct-acting antiviral agents) with the binding pocket of 3D structures of HCV NS3/4a protease/helicase (PDB ID: 4A92)
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the approved direct-acting antiviral agents (Telaprevir, 
Simeprevir, and Voxilaprevir) is reported in Table  6, 
while Figs. 5, 6, 7, 8, 9 show the three-dimensional and 
two-dimensional interaction of the template molecule 
(molecule 1 in Table  5), designed molecule (molecule 
7 in Table  5), and the approved direct-acting antiviral 
agents (molecule 14, 15, and 16, respectively, in Table 5) 
with the binding pocket of 3D structures of HCV 
NS3/4a protease/helicase (PDB ID: 4A92), respectively.

As shown in Fig. 6, we observe that the designed mol-
ecule is excellently placed in the active pocket of the 
receptor. Because it has the highest activity and the low-
est binding energy (17.3373 and − 10.7) compared to 
molecule 1 (8.3572 and − 7.5), molecule 14 (13.5142 and 
− 9.5), molecule 15 (15.1774 and − 10.0), and molecule 
16 (16.9516 and − 10.5).

Figure  5 shows that THR298, SER229, SER297, 
GLU291, SER294, TRP50, ALA497, PRO230, and 

Fig. 7  The 3D and 2D interaction of the Telaprevir (first generation approved direct-acting antiviral agent) (Molecule 14, see Table 6) with the 
binding pocket of 3D structures of HCV NS3/4a protease/helicase (PDB ID: 4A92)

Fig. 8  The 3D and 2D interaction of the Simeprevir (second generation approved direct-acting antiviral agent) (Molecule 15, see Table 6) with the 
binding pocket of 3D structures of HCV NS3/4a protease/helicase (PDB ID: 4A92)
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HIS293 amino acid of the target receptor are involved 
in the interaction with template molecule (molecule 
1 in Table  6). Figure  6 shows that THR416, THR416, 
SER294, THR295, GLY484, TYR391, HIS293, ASP454, 
SER457, THR295, SER483, ARG393, and VAL456 are 
the amino acid of the target receptor involved in the 
interaction with a designed molecule (molecule 7 in 
Table  5), while Fig.  7 shows that ARG481, MET485, 
GLY484, THR295, THR295, HIS369, VAL490, VAL490, 
PRO523, VAL456, and VAL432 are the amino acid of 
the target receptor involved in the interaction with the 
approved direct-acting antiviral agents (molecule 14 
in Table  5). Also Fig.  8 shows that ALA413, GLN434, 
ASN556, SER489, GLU493, ASP454, THR295, THR433, 
VAL456, and VAL490 are the amino acid of the target 
receptor involved in the interaction with molecule 15 in 
Table 5 and Fig. 9 shows that GLU493, TRP501, TYR502, 
GLY253, THR269, ASP412, ASP412, ALA413, PRO558, 
ALA497 are the amino acid of the target receptor 
involved in the interaction with molecule 16 in Table 5. 
It was observed from the docking results presented in 
Table 6 that the target amino acid THR is involved in the 
interaction with all the docked molecules. This implies 
the importance of this amino acid in the inhibition of 
HCV NS3/4a protease/helicase. The bound complex of 
telaprevir with HCV NS3/4a protease/helicase is accom-
panied by the establishment of a covalent bond between 
the serine nucleophile of the HCV protease catalytic triad 
and the ketoamide connectivity of telaprevir which forms 

a stable, covalent and reversible complex with the serine 
protease, but the designed molecule accounts for both 
covalent and non-covalent interactions of the inhibitor 
with HCV NS3/4a protease/helicase. It was also observed 
that molecule 7 shows more interaction with the target 
receptor when compared to the template molecule and 
approved direct-acting antiviral agents which imply, the 
more the interaction the better the inhibition.

Limitations of the present study
Non-availability of reliable experimental datasets on hep-
atitis C virus.

Conclusion
The theoretically verified QSAR model found offered 
rationales to describe the anti-hepatitis-C virus activities 
of researched molecules. The model is theoretically relia-
ble with sound statistical record ( r2 = 0.7704 and 
r2pred = 0.7047 ). And meet the conditions of a satisfactory 
QSAR model suggested by various groups. Different mol-
ecules having improved anti-hepatitis-C virus activity 
compared to the better active molecule in the data collec-
tion (compound 33), have been proposed for deep inves-
tigation. The binding affinity (− 10.7) of this newly 
identified molecule docked into the binding pocket of 3D 
structures of HCV NS3/4a protease/helicase (PDB ID: 
4A92) were found to be better than that of compound 33 
(− 7.5) in the datasets as well as approved direct-acting 
antiviral agents (Telaprevir, Simeprevir, and Voxilaprevir) 

Fig. 9  The 3D and 2D interaction of the Voxilaprevir (third generation approved direct-acting antiviral agent) (Molecule 16, see Table 6) with the 
binding pocket of 3D structures of HCV NS3/4a protease/helicase (PDB ID: 4A92)
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which are − 9.5, − 10.0, and − 10.5, respectively. Hence, a 
novel molecule was identified showing high potency as 
HCV NS3/4a protease inhibitors.
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