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Abstract

Backgrond: In silico studies are essential techniques in the modern medicinal chemistry. QSAR modeling and
molecular docking are important techniques in both drug discovery and development and have been successfully
deployed in the field of medicinal chemistry for the discovery, design, and development of many drug candidates.
These techniques were used in this work to come up with a model that relate 2,5-disubstituted furans with their
antiplasmodium activities for the development of more active antimalarial drugs.

Results: Predictive and robust QSAR model was generated using Genetic Function Algorithm. The model was
statistically validated to have internal and external squared correlation coefficient, R2 of 0.982 and 0.735 respectively;
predictive squared correlation coefficient, R2

pred of 0.599; adjusted squared correlation coefficient, Radj of 0.974; and
leave-one-out cross-validation coefficient, Q2

cv of 0.966. It was found out that the antiplasmodium activities of 2,5-
disubstituted furans relied on the parameters: GATS5c, minsCl RDF130m, RDF75p, and RDF115s descriptors. All the
descriptors except minsCl influenced the antiplasmodium activities of the compounds negatively. That is, their
increase decreases the activities of the furans and vice versa. The docking study revealed that most of the furans
bind more tightly to Plasmodium falciparum lactate dehydrogenase (pfLDH) than chloroquine, but the enzyme may
not be their major target.

Conclusion: Insight into the relationship between 2,5-disubstituted furans and their antiplasmodium activities
has been revealed from the results of this work. Therefore, this could serve as a model for designing novel 2,
5-disubstituted furans as potential antimalarial drugs with better activities.

Keywords: Antimalaria, QSAR, Molecular docking, Plasmodium falciparum lactate dehydrogenase, Furans, In
silico studies

Background
World Health Organization reported 228 million cases
and 405,000 deaths worldwide from malaria disease in
2018, where children (< 5 years) accounted for 272,000
deaths. This made it one of the most lives threatening
disease prevalent in Africa, where 93% and 94% of the
2018 global cases and deaths respectively came from the
region (World Health Organization, 2019). Nigeria is the
country with the highest malaria burden responsible for
25% and 24% of the 2018 global cases and deaths, re-
spectively (World Health Organization, 2019). Out of

the five species of Plasmodium parasite known to cause
malaria, Plasmodium falciparum is the most deadly (Co-
hen et al., 2012) and commonest in the WHO African
region responsible for 99.7% of estimated malaria cases
of the region in 2018 (World Health Organization,
2019). Therefore, controlling the disease is important to
global health.

Malaria is prevented by vector control through the use
of treated mosquito nets and insecticides (World Health
Organization, 2019). And the disease is treated by che-
motherapies using quinoline derivatives (Salas et al.,
2013), artemisinin and its derivatives (Jaen et al., 1990),
antifolate drugs (Newton & White, 1999), and some an-
tibiotics (Rathore et al., 2005). But, treatment and
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elimination of malaria remains a global challenge due to
the parasite resistance to existing drugs, mosquito resist-
ance to insecticides, and lack of successful malaria vac-
cine (Singh et al., 2015). WHO recommends the use of
artemisinin-based combination therapies (ACTs) as first-
line treatment for P. falciparum (Martinelli et al., 2008).
However, resistance to ACTs is increasing in South East
Asia Region, the Greater Mekong Subregion (GMS), and
Western Pacific Region (World Health Organization,
2019). This could spread to other regions of the world,
therefore, the need for highly potent antimalaria with
low propensity to resistance.

Krake and coworkers studied 2,5-disubstituted furans
as novel inhibitors of P. falciparum (Krake et al., 2017).
Their study revealed that the furans have good in vitro
activities (in EC50) against P. falciparum NF54 strain,
low propensity to generate resistance and long half-life
which is a good characteristic of antimalaria in accord-
ance with Medicines for Malaria Venture (MMV) object-
ive (Krake et al., 2017). But the analogues had tight
Structure Activity Relationship (SAR) limitations, and
their activities need improvement. In silico studies are
efficient modeling techniques used to screen chemical
databases so as to find novel drug leads (Tropsha, 2010).
Herein, we carried out quantitative structure activity re-
lationships (QSAR) on the 2,5-disubstituted furans ana-
logues so as to come up with an empirical relationship
between the chemical structures of the furans and their
antiplasmodium activities, which could be used to design
novel 2,5-disubstituted furans with better activities
against P. falciparum. We also performed molecular
docking study on the furans with Plasmodium falcip-
arum lactate dehydrogenase (PfLDH) as the potential
target so as to investigate the mode of interactions of
the compounds with the target and have insight into
ways of improving their antiplasmodium activities.

Materials and method
Data collection
2,5-Disubstituted furans with their in vitro activities
against Plasmodium falciparum NF54 strain were gotten
from the paper of Krake and coworkers (Krake et al.,
2017) for used in this research. The antiplasmodial activ-
ities of the furans obtained as EC50 (nM) were converted
to pEC50 (pEC50 = − logEC50) for the purpose of this re-
search. The structures of the furans molecules and their
activities are presented in Table 1.

Geometric optimization
The molecules presented in Table 1 were drawn with
the aid of Chemdraw (Li et al., 2004), and optimized
using B3LYP functional and 6-31G basis set with the aid
of the Spartan 14 software Version 1.1.4 (Becke, 1993).

Table 1 Molecular structures of the 2,5-disubstituted furans
with their activities against P. falciparum NF54 strain

Mahmud et al. Bulletin of the National Research Centre           (2020) 44:77 Page 2 of 10



Descriptors computation, normalization and pretreatment
The optimized molecules were imported to the PaDEL-
Descriptor software in an SD file format, where 1875 mo-
lecular descriptors of the furans molecules were calculated
(Yap, 2011). The descriptors were normalized based on Eq.
(1) in order to give each variable equal opportunity to influ-
ence the construction of a high-quality model (Singh, 2013).

X ¼ Xi−Xmin

Xmax−Xmin
ð1Þ

In the equation, X is the normalized descriptors, Xi is the
descriptor’s value for each molecule, and Xmin and Xmax are
the minimum and maximum values for each descriptor.
Redundancy in the normalized data was eliminated using
the Data Pretreatment software obtained from Drug
Theoretical and Cheminformatics Laboratory (DTC Lab).

Data division
Using the Data Division software of DTC Lab, Kennard
Stone method was employed in dividing the pretreated
data into training set (70%) and test set (30%) (Kenard &
Stone, 1969). The training set was used for model gener-
ation and internal validation while the test set was used
for external validation.

Model generation
Genetic Function Approximation (GFA) incorporated in
the Material Studio software was employed to select de-
scriptors and carry out regression analysis on the train-
ing set so as to generate the model using the descriptors

and the activities of the furans in pEC50 as the independ-
ent and the dependent variable, respectively.

Validation of the model generated
The model generated was assessed using Friedman for-
mula (Friedman, 1991) defined as follows:

LOF ¼ SEE

1− cþdp
M

� �2 ð2Þ

LOF is the Friedman’s lack fit which is a measure of
fitness of a model; SEE stands for standard error of esti-
mation; p, d, c, and M are total number of descriptors in
the model, user-defined smoothing parameter, number
of terms in the model, and the number of compound in
the training set, respectively.

SEE, the standard deviation of the model whose value
has to be low for a good model is defined as follows:

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y exp−Y prd
� �2

N−P−1

s
ð3Þ

Square correlation coefficient, R2, of a built model is
another parameter considered and the closer it is to 1.0,
the better the model built. This is expressed as follows:

R2 ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Y exp−Y prd
� �2

P
Y exp−Y mtrn
� �2

vuut ð4Þ

Table 2 Validation parameters of the model

Parameters Threshold Model values Remarks References

R2 R2 > 0.6 0.982 Passed (Tropsha, 2010)

R2
adj R2

adj > 0.5 0.974 Passed (Tropsha, 2010)

F Large 47992 Passed (Tropsha, 2010)

Q2
cv Q2

cv > 0.5 0.966 Passed (Tropsha, 2010)

|R2 − Q2
cv| |R2 − Q2

cv| < 0.3 0.016 Passed (Eriksson et al., 2003)

SEE Low 0.066 Passed (Damme & Bultinck, 2007)

R2
pred R2

pred > 0.5 0.599 Passed (Tropsha, 2010)

r2 r2 > 0.6 0.735 Passed (Golbraikh & Tropsha, 2002)

r0
2 0.735

r′0
2 0.660

|r0
2 − r′0

2| |r0
2 − r′0

2| < 0.3 0.075 Passed (Golbraikh & Tropsha, 2002)

k 0.85 < k < 1.15 1.044 Passed (Golbraikh & Tropsha, 2002)

(r2 − r0
2)/r2 (r2 − r0

2)/r2 < 0.1 0.00082 Passed (Golbraikh & Tropsha, 2002)

k′ 0.85 < k′ < 1.15 0.955 Passed (Golbraikh & Tropsha, 2002)

(r2 − r′0
2)/r2 (r2 − r′0

2)/r2 < 0.1 0.102 Passed (Golbraikh & Tropsha, 2002)

Note that r2 is the square correlation coefficients of the plot of observed versus predicted values for the test set with intercept while r02 is the square correlation
coefficients of the same plot that passed through the origin, i.e., without intercept, and r′02 is its reverse. k is the gradient of the plot of observed versus predicted
values for the test set without intercept, and k′ is its reverse
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Yprd, Yexp, and Ymtrn are the predicted, experimental,
and mean experimental activities in the training set,
respectively.

The value of R2 is directly proportional to the number
of descriptors; hence, the stability of the model is not re-
liable on it. Thus, to have a reliable and stable model, R2

is adjusted according to the expression as follows:

R2
adj ¼

n−1ð Þ R2−p
� �

n−p−1

� �
ð5Þ

where p is the number of descriptors in the model,
and n is the number of compounds used in training set.

Cross-validation coefficient, Q2
cv, is expressed as

follows:

Q2
cv ¼ 1−

P
Y prd−Y exp
� �2

P
Y exp−Y mtrn
� �2 ð6Þ

where Yprd, Yexp, and Ymtrn are the predicted, experi-
mental, and average experimental activity in the training
set, respectively.

Square correlation coefficient, R2
pred, of the generated

model using test set was calculated for external valid-
ation. The closer the value is to 1.0, the better the model

Table 3 Experimental and predicted activities for the compounds with residual

Compounds Experimental activity (pEC50) Predicted activity (pEC50) Residual

1 6.058 5.941 0.117

2 5.142 5.168 − 0.030

3 5.581 5.559 0.023

4 6.466 6.416 0.050

5a 6.355 5.488 − 0.870

6 5.444 5.420 0.024

7a 5.141 5.009 − 0.130

8a 5.200 4.894 − 0.310

9 5.719 5.708 0.011

10 5.834 5.785 0.049

11a 6.580 6.456 − 0.120

12 5.924 5.978 − 0.050

13 5.271 5.235 0.036

14 5.917 5.895 0.022

15a 5.012 5.325 0.313

16 5.205 5.276 − 0.070

17 5.729 5.786 − 0.060

18a 6.323 6.150 − 0.170

19 6.085 6.174 − 0.090

20 6.263 6.306 − 0.040

21a 6.376 5.933 − 0.440

22 6.095 6.091 0.004

23 5.233 5.227 0.006
aTest set

Table 4 Pearson’s correlation, VIF, and MF of the descriptors in the model

Inter-correlation VIF MF

GATS5c minsCl RDF130m RDF75p RDF115s

GATS5c 1 1.2649 0.6369

minsCl 0.17831 1 1.3483 − 0.1692

RDF130m − 0.27219 0.008516 1 1.2157 0.0953

RDF75p 0.209875 0.465085 − 0.30509 1 1.6035 0.3748

RDF115s − 0.26361 0.039071 − 0.07017 0.263373 1 1.2233 0.0623
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generated (Tropsha et al., 2003). It is expressed as
follows:

R2
pred ¼ 1−

P
Y prd−Y exp
� �2

Y exp−Y mtrn
� �2 ð7Þ

Yprd and Yexp are respectively the predicted and experi-
mental activities of the test set, and Ymtrn is the mean
experimental activity of the training set.

Descriptors contribution
Degree of contribution of each descriptor in affecting
the antiplasmodium activities of the furans was

accessed by Mean Effect (MFj) value expressed as
follows:

MFj ¼
β j

Pi¼n
i¼1dijPm

j β j

Pn
i dij

ð8Þ

bj is the coefficient of descriptor j in the model, dij is
the value of the descriptor j in the descriptor matrix for
each molecule in the training set, and m and n are the
number of descriptors in the model and the number of
training set molecules (Habibi-Yangjeh & Danandeh-
Jenagharad, 2009). Variance inflation factor, VIF, and
correlation analysis were performed on the descriptors
in other to check for multi-co-linearity problem.

Y-randomization test
Random multi-linear regression models were generated
(using training set) in Y-randomization test whose R2

and Q2 values have to be low for the QSAR model to be
robust (Tropsha et al., 2003). Coefficient of determin-
ation, cR2

p, whose value has to be greater than 0.5 for
passing this test is also calculated in the Y-
randomization test and is expressed as follows:

cR2
p ¼ R x R2−R2

r

� �2 ð9Þ

R is the correlation coefficient for Y-randomization,
and R2

r is the average “R” of the random models.

Applicability domain of the generated model
The applicability domain of the model was determined
using leverage (hi) (Veerasamy et al., 2011) and is
expressed for a compound, i, as follows:

hi ¼ Xi XT X
� �−1

XT
I ð10Þ

Table 5 Y-randomization result

Model R R2 Q2

Original 0.991149 0.982376 0.966271

Random 1 0.657806 0.432709 − 0.28015

Random 2 0.784663 0.615696 − 0.06113

Random 3 0.555799 0.308912 − 1.1963

Random 4 0.298158 0.088898 − 2.53749

Random 5 0.335574 0.11261 − 1.20732

Random 6 0.601249 0.3615 − 1.01836

Random 7 0.459864 0.211475 − 0.99247

Random 8 0.651475 0.424419 − 0.65971

Random 9 0.355801 0.126594 − 1.38264

Random 10 0.383741 0.147257 − 1.10704

Random models parameters

Average R 0.552298

Average R2 0.346586

Average Q2 − 0.86149

cRp2 0.843288

Fig. 1 Plot of predicted activities against experimental activities of the compounds
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Xi is the training compounds matrix of i. X is the n ×
k descriptor matrix of the training set compound, and
XT is the transpose matrix of X used to generate the
model. The warning leverage, h*, is the maximum value
for X and is expressed as follows:

h� ¼ 3 p þ 1ð Þ
n

ð11Þ

n is the number of training compounds, and p is the
number of descriptors in the model.

Molecular docking
Optimized structures of chloroquine and nine furans
molecules having the best antiplasmodium activities
were saved as PDB file from the Spartan software and
exported to the pyrex software were they were converted
to PDBQT file. Crystal structure of the enzyme,

Plasmodium falciparum lactate dehydrogenase (pfLDH)
was obtained from protein data bank (PDB ID: 1CET)
(Read et al., 1999), prepared by removing water mole-
cules, co-crystallized ligand and hetero-atoms using the
Discovery Studio software, then saved as PDB file and
exported to the pyrex software were it was converted to
PDBQT file. The prepared furan molecules (the ligands)
and the prepared enzyme (the receptor) were docked
using Autodock Vina in the Pyrx software after assessing
the reliability of the protocol by re-docking of the en-
zyme with chloroquine (Trott & Olson, 2010).

Results and discussion
Genetic Function Algorithm (GFA) was used to generate
QSAR model that relate the chemical structure of 2,5-di-
substituted furans with their biological activities as active
antimalarials. The model is presented as follows:

Fig. 2 Plot of standardized residual activity against experimental activity

Fig. 3 Williams plot
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pEC50 ¼ ‐1:724449942GATS5c þ 1:042828833minsCl
⋯ ‐0:133382678RDF130m‐0:185848627RDF75p
⋯ ‐0:029658471RDF115s þ 8:465152376

A predictive, robust, and reliable QSAR model that
passed all the validation criteria was generated. The val-
idation parameters of the model were given in Table 2.
The model contained autocorrelation (GATS5c), atom

type electro-topological (minsCl), and radial distribution
function (RDF130m, RDF75p, and RDF115s) descriptors.
GATS5c is a 2D Geary autocorrelation of lag 5 weighted
by gasteiger charge. Here, gasteiger charge is the physico-
chemical property calculated for every atom in the mol-
ecule and is the Geary coefficients. Increase in GATS5c
decreases the pEC50 of the furans and vice versa. Mini-
mum atom-type E-State: -Cl, minsCl is a 2D descriptor

Table 6 Docking result between the selected ligands and pfLDH

Interaction Binding
affinity
(kcal/
mol)

Hydrogen bond Hydrophobic interaction

Ligand-
receptor

Amino acid(bond length/Å) Amino acid(bond type)

Chloroquine-
pfLDH

− 6.1 ASP230(2.58)a, LEU201(2.80)a, MET199(3.45)b PHE229(π → π)

1-pfLDH − 6.3 THR97(3.06)a, THR97(3.43)b, PRO246(3.56)b ALA236(R → R), PRO246(R → R), ILE31(π → R), VAL138( π→ R), PRO246(π →
R), PRO250(π → R)

4-pfLDH − 5.9 SER170(2.25)a, GLU256(3.59)b, GLU256(3.66)b ILE239(R → R), ALA249(π → R), ARG171(π → R), ALA249(π → R)

5-pfLDH − 5.7 THR97(2.25)a, VAL138(3.79)b, ASN140(3.75)b,
VAL138(3.77)b, HIS195(3.62)b

ASP53(π → π), ILE31(π → R)

11-pfLDH − 6.1 THR97(2.04)a, THR97(3.51)b, THR97(3.41)b,
ASP53(3.63)b, THR97(3.53)b, GLY99(3.56)b

ILE31(π → σ), ALA236(R → R), LEU163(R → R), LEU167(R → R), PRO250(R →
R), HIS195(π → R), HIS195(π → R), PRO246(π → R)

18-pfLDH − 6.7 TYR247(2.16)a, VAL248(2.21)a ILE239(π → σ), ARG171(R → R), ALA244(R → R), ILE239(R → R), TYR174(π →
R), ILE239(π → R), PRO246(π → R), VAL248(π → R), ALA249(π → R)

19-pfLDH − 6.7 ARG171(2.22)a, SER170(2.45)a, GLU256(3.55)b ALA249(R → R), PRO184(π → R), ARG171(π → R), ALA249(π → R)

20-pfLDH − 6.8 ARG185(2.53)a, SER170(2.53)a, SER170(2.30)a,
PRO184(3.50)b

TYR174(π → R), TYR175(π → R), ARG171(π → R), ALA249(π → R)

21-pfLDH − 6.0 ARG231(2.97)a, SER170(2.04)a TYR174(π → π), TYR175(π → π), TYR175(π → R)

22-pfLDH − 6.9 MET30(2.54), ILE31(2.02), THR97(2.53),
GLY99(3.75)

ILE31(π → σ), ILE31(π → σ), ALA236(R → R), PRO246(R → R), PRO246(π → R)

aConventional hydrogen bond
bCarbon hydrogen bond (π → π) = pi-pi bond type, (R → R) = alkyl-alkyl bond type (π → R) = pi-alkyl bond type (π-σ) = pi-sigma bond type

Fig. 4 3D and 2D structures of 22-pfLDH interactions
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which showed the important of the present of chlorine
atoms in the furans molecules. This descriptor incorpo-
rated the steric and electronic effects of the atoms sur-
rounding any chlorine atom in the molecules (Kier & Hall,
1999), and it had positive contribution to the model;
hence, increase in the descriptor increases the antiplasmo-
dium activities of the furans. The third class of descriptors
in the model was a radial distribution function descriptor
denoted as RDF� ω where ω is any measurable molecular
property, and S is the radius from the geometrical center
of the molecule at which ω is measured for any atom or
group of atoms in the molecule. S and ω for the descrip-
tors RDF130m, RDF75p, and RDF115s were atomic mass,
atomic polarizability, and electronic inductive effect (I-
state) and 13 Å, 7.5 Å, and 11.5 Å, respectively. These de-
scriptors contributed negatively to the antiplasmodium ac-
tivities of the furans that is increase in them decreases the
activities of the furans. The power of model in predicting
the antiplasmodium activities of the furans is indicated by
the low residual values (Table 3).

Table 4 presents the Pearson’s correlation matrix, vari-
ance inflation factor and Mean Effect of the five descrip-
tors in the model. The highest coefficient in the
correlation matrix was 0.465085 between the descriptors
RDF75p and minsCl which showed no significant inter-
correlation among the descriptors in the model, and the
variance inflation factor values for all the descriptors
were less than 2. These mean that the descriptors in the
model were good and void of multi-co-linearity
(Beheshti et al., 2016).The Mean Effect revealed the extent
to which each descriptor contributed to the antiplasmo-
dium activities of the compounds. Therefore, the most im-
portant descriptor in the model was GATS5c, and the

least was minsCl. The average R, R2, Q2, and the cRp2

from the Y-randomization test result presented in Table 5
confirmed the reliability, robustness, and stability of the
built QSAR model (Tropsha et al., 2003; Roy et al., 2016).
Hence, the model was not gotten by chance.

The plot of predicted against experimental activities
of the compounds as presented in Fig. 1, which indi-
cated the predictive power of the generated model as
shown by the linearity of the plot. Therefore, the
model is good in predicting the antiplasmodium activ-
ities of 2,5-disubstituted furans scaffold. The gener-
ated model is void of systematic error as shown by
the distribution of standardized residual on both sides
of zero (Fig. 2) (Jalali-Heravi & Kyani, 2004). The plot
of standardized residuals versus leverages (Williams
plot) is given in Fig. 3. It showed that all the training
and test set compounds are within the applicability
domain as their leverage values was less than the
warning leverage (h∗ = 1.125) and their standardized
residuals within ± 2.5. Therefore, there is no outlier
or influential compound; hence, any of the compound
can be used in designing new potent 2,5-disubstituted
furans molecules.

The docking result shows that out of the nine docked
furans, five had greater binding affinity, and almost all had
greater interactions with the enzyme than chloroquine
(Table 6). The compounds bind to the receptor via differ-
ent amino acid; this suggests that they have different
mechanisms of action. Compound 22 has the highest
binding energy of − 6.9 kcal/mol among the docked com-
pounds. This compound formed two conventional hydro-
gen bonds between the oxygen atom of the furan moiety
and the HN fragment of MET30 and ILE31 amino acids of

Fig. 5 Hydrogen bonds and hydrophobicity surfaces of 22-pfLDH interactions
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