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Abstract

Background: Aphis craccivora has many plant hosts, though it seemingly forechoice to groups of bean family.
Other plants it hosts are families of Solanaceae, Rosaceae, Malvaceae, Chenopodiaceae, Caryophyllaceae,
Ranunculaceae, Cucurbitaceae, Brassicaceae, and Asteraceae.

Result: A computational study was carried out on a series of twenty compounds of novel 4-(N,N-diarylmethylamines)
furan-2(5H)-one derivatives against Aphis craccivora insect. Optimization of the compounds was performed with the aid
of Spartan 14 software using DFT/B3LYP/6-31G** quantum mechanical method. Using PaDel descriptor software to
calculate the descriptors, Generic Function Approximation (GFA) was employed to generate the model. Model 1 found
to be the optimal out of four models generated which has the following statistical parameters; R2 = 0.871489, R2adj =
0.83644, cross-validated R2 = 0.790821, and external R2 = 0.550768. Molecular docking study occurred between the
compounds and the complex crystal structure of the acetylcholine (protein AChBP) (PDB CODE 2zju) in which
compound 13 was identified to have the highest binding energy of − 8.4 kcalmol−1. Statistical analyses, such
as variance inflation factor, mean effect, and the applicability domain, were conducted on the model. This
compound has a strong affinity with the macromolecular target point of the A. craccivora (2zju) producing H-
bond and as well the hydrophobic interaction at the target point of amino acid residue. Molecular docking
gave an insight into the structure-based design of the new compounds with better activity against A.
craccivora in which three compounds A, B, and C were designed and discovered to be of high quality and
have greater binding affinity compared to the one obtained from the literature.

Conclusion: The QSAR model was generated by the employment of Genetic Function Approximation (GFA).
The model was found to be robust and possessed a good statistical parameter. Furthermore, a molecular
docking study was performed to get an idea for structure-based design in which three (3) compounds A, B,
and C were designed and were found to be more active than the template (compound 13, i.e., the one with
highest docking score). QSAR model was developed to give an insight into the ligand/template-based design
of computer-aided drug design.
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Background
Aphis craccivora, known as cowpea aphid, peanut
(groundnut) aphid, or black legume aphid, is one of the
most dangerous agricultural pests which directly causes
harm to plants by delaying and deforming the growth of
the plants through malnutrition. The molasses manufac-
tured by the vector are placed on plants and stimulate
the growth of molds with soot that limits photosyn-
thesis. Aphis craccivora has many plant hosts, though it
seemingly forechoice to groups of bean family. Other
plants it hosts are families of Solanaceae, Rosaceae, Mal-
vaceae, Chenopodiaceae, Caryophyllaceae, Ranuncula-
ceae, Cucurbitaceae, Brassicaceae, and Asteraceae. Aphid
is a vector of a series of plant viruses that include peanut
rosette virus, groundnut mottle virus, mosaic virus com-
mon bean, alfalfa mosaic virus, and cucumber mosaic
virus (Wikipedia, 2018).
Furan- and amide-containing compounds are among

the molecular structures found to have an extensively
wide range of applications in the field of medicine
and agrochemical due to their extensive range of bio-
logical activity like antimicrobial/anti-inflammatory
activity (Huczyński et al. 2012; Ravindra et al. 2006;
Özden et al. 2005), as antibiotic activity (Arjona et al.
1999), as pesticides such antifungal (Yao et al. 2017),
and insecticides (Teixeira et al. 2015; Wang et al.
2013) among others. The furan-2(5H)-one was exam-
ined to be a potential inhibitor of nicotinic acetylcho-
line receptor (Tian et al., 2019), and this was the
reason for the docking study on the crystal structure
of this protein.
The quantitative analysis of the structure-activity rela-

tionship (QSAR) is among the most efficient ways to
optimize the main compounds and design new com-
pounds. QSAR can be used to predict bioactivities, like
toxicity, carcinogenicity, and mutagenicity, depending on
the structural characteristics of the molecules and the
actual mathematical models. Nowadays, one can easily
and accurately calculate quantum chemical parameters
of the compounds due to fast development in computer
technology as well as theoretical quantum chemical
study which helps in predicting the new compounds
with better activity than the existing ones. This quantum
chemical calculation is extensively applied while forming
the QSAR models (Gagic et al. 2016). Molecular docking
helps to investigate the capacity of the prepared com-
pounds toward the interaction with the protein residue
of the target organism and to also predict the preferred
orientation of the molecules.
The objective of the research is to discover a new

model that predicts the activity of chemical products
with better activity capable of destroying Aphis cracci-
vora using Genetic Function Approximation (GFA) or
molecular docking techniques.

Material and methods
Dataset
In this work, we used a dataset of 20 compounds to design
a relation between the chemical traces of compounds and
their insecticidal activity. These 20 compounds of novel4-
(N,N-diarylmethylamines) furan-2(5H)-one derivatives
were obtained from the literature (Tian et al., 2019). The
logarithm of the measured LC50 (μg mL−1) against

Fig. 1 The parent compound of the dataset

Table 1 Dataset compounds

S/No R1 R2 pLC50

1 6-Cl-Pyrid 2-FluoroPhenyl 0.695482

2 6-Cl-Pyrid 3,4-DiFluoroPhenyl 0.848189

3 3-Pyrid 4-FluoroPhenyl 1.558829

4 6-Cl-Pyrid 3-Chloro-4-FluoroPhenyl 0.637490

5 6-Cl-Pyrid 3-CN-4-FluoroPhenyl 0.872739

6 6-Cl-Pyrid 3,4-DiChloroPhenyl 1.146748

7 6-Cl-Pyrid 2-ChloroPhenyl 1.024896

8 6-Cl-Pyrid 2,4,5-TriFluoroPhenyl 1.559787

9 6-Cl-Pyrid 2-Thiophen 1.061075

10 6-Cl-Pyrid 4-FluoroPhenyl 0.725095

11 6-Cl-Pyrid 3-BromoPhenyl 0.735599

12 6-Cl-Pyrid 3-ChloroPhenyl 0.836324

13 6-Cl-Pyrid 4-TriFluoromethy-Phenyl 1.257198

14 6-Cl-Pyrid 4-F-3-NO2-Phenyl 1.296665

15 6-Cl-Pyrid 2,3-DiFluoroPhenyl 1.128399

16 6-Cl-Pyrid 5-Cl-2-FluoroPhenyl 1.492900

17 6-Cl-Pyrid 4-CN-Phenyl 0.825426

18 6-Cl-Pyrid 3-NO2-Phenyl 1.107549

19 6-Cl-Pyrid 4-((3,3-Dichloroally) oxy-Phenyl) 1.697317

20 6-Cl-Pyrid 3-Br-4-F-Phenyl 0.235528
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insecticidal activity given by p LC50 (p LC50 = −log 1/
LC50) was taken as a dependent parameter; therefore, the
data was linearly correlated with the independent param-
eter/descriptors (Edache et al. 2017).

Optimization/molecular descriptor calculation
The database (see Fig. 1 and Table 1) was optimized at a
density function theory level using the “Becke’s three-
parameter read-Yang-Parr hybrid” (B3LYP) function to-
gether with “6-31G**” basis set of Spartan14 software
(Arthur et al. 2016a). Graphical-user-interface of Spar-
tan14 was utilized in drawing the 2D molecular struc-
tures of the dataset which were later exported in the
form of 3D. The optimized structures were then taken
to PaDel descriptor software to calculate the quantum
molecular descriptors (Yap 2011).

Data division
To get a validated model, the dataset was split into (3:1)
train test sets. Accordingly, the split was done in such a
way that the compounds forming the train (70% of the
data) and the test sets (30% of the data) are shared

within an entire descriptive space filled by the complete
dataset as described by Kennard-Stone Algorithm
method (Arthur et al. 2016b).
The generated molecular descriptors were taken for

regression analysis, with experimental activities as
dependent parameters where the molecular descriptors
served as independent parameters. With the Genetic
Function Approximation method (GFA) incorporated in
“Material Studio 2017” software, the compounds of train
sets were utilized to develop the QSAR model. Four
QSAR models were built where the best model was
chosen according to the one with the lowest score of
lack of fit (LOF) given as follows:

LOF ¼ SSE 1−
cþ dp
M

� �2

ðiÞ

where SSE represents the sum of squares of errors, d is a
smoothing parameter defined by the user, c = number of
terms a model possessed in addition to the constant
term, M is equal to the number of samples present in
the training set, and p = overall number of descriptors
present in all terms of the model excluding the constant
term (Edache et al. 2015).

Internal validation
The generated model was validated internally by the fol-
lowing parameters:
(a) The correlation coefficient (R2): explain the division

of overall variation ascribed to the built model. The

Fig. 2 Prepared receptor

Fig. 3 Prepared ligand

Table 2 Validation parameter of the model

Friedman LOF 0.064842

R-squared 0.871489

Adj R-squared 0.83644

Cv R-squared 0.790821

Significant regression Yes

Significance of regression (F value) 24.86516

Critical SOR F value (95%) 3.748716

Replicate points 0

Computed experimental error 0

LOF points 11

Min expt. error for non-significant LOF (95%) 0.090103

Table 3 Descriptors and their description

S/no Descriptor Description Class

1 nCl Number of chlorine atoms 2D

2 ATSc4 ATS autocorrelation descriptor,
weighted by charges

2D

3 Weta3.polar Directional WHIM, weighted by atomic
polarizabilities

3D
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accepted value of R2 ranges from 0.5 to <1 and more the
value of R2 and the model considered to be a better
model as R2 approaches 1.0, though there are other ana-
lyses that the model passed to be a better one. Being the
most common internal validation pointer, R2 is expressed
as follows:

R2 ¼ 1−

P
Y expt−Yperdtð Þ2P
Y expt−Y train
� �2 ðiiÞ

where Yexpt, Ypredt, and Y train represent the experimental,
predictive, and average activities of the training set (Ade-
niji et al. 2018).
(b) Adjusted R2: The value of R2 is inconsistent to

evaluate the power of the built model. Thus, R2 is ad-
justed to restore and stabilize the model. This adjusted
R2 is defined in equation iii as:

R2adj ¼ 1−R2ð Þ n−1ð Þ
n−P−1

¼ n−1ð Þ R2−P
� �

n−P þ 1
ðiiiÞ

where p presents “the number of descriptors constituted
the model,” while n = number of training set compounds
(Ibrahim et al. 2018a).
(c) Cross-validated R2: The validity of the models was

identified by a cross-validation test measured by predict-
ive Q2cv. For a “leave one out (LOO) cross-validation,” a
data point is eliminated (left-out) in the set and the
model is readjusted; the predicted value of the elimi-
nated data point is compared to its real value. This is re-
peated until each data removed. We can then calculate
the value of Q2 using the sum of the squares of these
elimination residues as in the equation below:

Q2cv ¼ 1−

P
Ypredt−Y exptð Þ2P
Y expt−Y train
� �2 ðivÞ

where Yexpt, Ypredt, and Y train represent the experimental, pre-
dictive, and average activities of the training set (Adedirin
et al. 2018).

External validation
The prediction ability of the model was examined by an
external validation through the ability of the model to
predict the activity values of the test set compounds as
well as its application in the calculating the predicted
value of R2

pred according to the equation below:

R2 ¼ 1−

P
Ypredt−Y exptð Þ2P
Y expt−Y train
� �2 ðvÞ

where Ypredt and Yexpt are the test set’s experimental and
predicted activities while Ytrain indicates the average ac-
tivities of the training set (Edache et al., 2017).

Statistical analysis of the descriptors
Variance inflation factor (VIF)
VIF is defined as the measure of multicollinearity
amongst the independent variables (i.e., descriptors). It
quantifies the extent of correlation between one pre-
dictor and the other predictors in a model.

VIF ¼ 1

1−R2
� � ðviÞ

where R2 gives multiple correlation coefficient between
the variables within the model. If the VIF is equal to 1, it

Table 4 External validation

Name pLC50 nCl ATSc4 Weta3.polar Ypred (Ypred − Yobs)

3 1.558828525 1 − 0.1014418 0.293087860 0.952953889 − 0.60587464

8 1.559786968 1 − 0.1615480 0.274664020 1.382496168 − 0.1772908

12 1.29666519 1 − 0.1538037 0.385254528 0.71496466 − 0.58170053

15 1.128399269 1 − 0.1126655 0.253145528 1.239656943 0.111257674

19 1.697316542 3 − 0.2024771 0.325435894 1.840893036 0.143576494

Table 5 Continuation of external validation

(Ypred − Yobs)
2 YmeanTrain Yobs − YmeanTr (Ypred − YMeanTrain)

2

0.367084074 0.900149221 0.65867930 0.433858425

0.031432028 0.900149221 0.65963775 0.435121957

0.338375507 0.900149221 0.39651597 0.157224914

0.01237827 0.900149221 0.22825005 0.052098084

0.02061421 0.900149221 0.797167321 0.635475737

∑(Ypred − Yobs)
2 = 0.769884088 ∑(Ypred − YMeanTrain)

2 = 1.713779118

R2 = (1 − 0.7698841/1.713779) = 0.550768
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means there is no intercorrelation in each variable, and
if it ranges from 1 to 5, then it is said to be suitable and
acceptable. But if the VIF turns out to be greater than
10, this indicates the instability of the model and need to
be reexamined (Pourbasheer et al. 2015; Karthikeyan
et al. 2009).

Mean effect (ME)
The average effect (mean effect) correlates the effect or
influence of given molecular descriptors to the activity
of the compounds that made up the model. The sign of
descriptors shows the direction of their deviation toward
the activity of compounds. That is an increase or de-
crease in the value of the descriptors will improve the
activity of the compounds. The mean effect is defined by
the following:

Mean effect ¼ Bj
Pn

i D jPm
j B j

Pn
i Dj

� � ðviiÞ

where Bj and Dj are the j-descriptor coefficient in a
model and the values of each descriptor in training set,
while m and n stand for the number of molecular de-
scriptors as well as the number of compounds in the
training set. To evaluate the significance of the model,
the ME of all the descriptors was calculated (Edache
et al. 2015).

Applicability domain
To confirm the reliability of the model and to examine
the outliers as well as the influential compounds, it is
very important to evaluate its domain of applicability. It
aimed at predicting the uncertainty of a compound de-
pends on its similarities to the compounds used in build-
ing the model and also the distance between the train
and test set of the compounds. This can be achieved by
employing William’s plot which was plotted using stan-
dardized residuals versus the leverages. The leverages for
a particular chemical compound are given as follows:

hi ¼ Zi Z
T Z

� �−1
Zi

T ðviiiÞ

where hi = leverage for a particular compound, Zi =
matrix i of the training set. Z = nxk descriptor-matrix
for a training set compounds. ZT = transpose of Z
matrix. The warning leverage (h*) that is the boundary
for usual values of Z outliers is given as follows:

h� ¼ 3
pþ 1ð Þ
n

ðixÞ

where n = number of compounds in the training set
whereas p gives the number of descriptors present in the
model (Ibrahim et al. 2018a).

Ligand and receptor preparation
From the RCSBPDB (www.rcsb.org), the PDB format of
the receptor was successfully downloaded. This was then
taken to the discovery studio for an appropriate prepar-
ation where all the residues associated with it such as a
ligand, water molecules, and other traces associated with
the receptor were removed. The ligands (the optimized
compounds) which were in the SDF file were trans-
formed into the PDB file format. Figures 2 and 3 showed
the prepared receptor and ligand (Ibrahim et al. 2018b).

Results
QSAR model
Genetic function algorithm (GFA) was used to generate
the three QSAR models which predicted the activity of
the compounds. The first model was chosen as the opti-
mal model due to its statistical significance was pre-
sented in equation (x) below:

Table 6 The experimental, predictive, and residual activity

Name pLC50 predicted pLC50 Residual

1 0.695482 0.733838 − 0.038360

2 0.848189 0.751294 0.096895

3 1.558828 0.952954 − 0.605870

4 0.637490 0.651660 − 0.014170

5 0.872739 0.815291 0.057448

6 1.146748 1.123891 0.022857

7 1.024896 1.094485 − 0.069590

8 1.559787 1.382496 − 0.177290

9 1.061075 1.032018 0.029057

10 0.725095 0.573817 0.151278

11 0.735599 0.622145 0.113453

12 0.836324 0.797338 0.038986

13 1.257198 1.254363 0.002835

14 1.296665 0.714965 − 0.581700

15 1.128399 1.239657 0.111258

16 1.492900 1.493841 − 9.41E−04

17 0.825426 0.992587 − 0.16716

18 1.107549 1.061123 0.046426

19 1.6973165 1.8408930 0.143576

20 0.2355280 0.5045470 − 0.269020

Table 7 Pearson’s correlation

nCl ATSc4 Weta3.polar VIF

nCl 1 1.064331

ATSc4 0.12939 1 1.043468

Weta3.polar 0.19040 −0.1303 1 1.064594
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Y ¼ 0:262046205�nCl−5:412377232�ATSc4
−5:657053582�weta3:polarþ 1:799880140

ðxÞ

All the validation/statistical parameters that signified
the stability, robustness, and the prediction capability of
the model were presented in Table 2.
The name, symbol, and class of the three selected descrip-

tors that made up the model are presented in Table 3.
Since the selected model is internally valid, then an ex-

ternal validation is the next step. Tables 4 and 5 repre-
sent the external validation as well as the calculation of
predicted R2 of the best-chosen model.
The experimental, predictive, and residual activity for

both training sets and test sets are shown in Table 6.
This table is represented to show the robustness of the
model considering the lower residual values.

Statistical analyses
Statistical analyses on the model’s descriptors are very
necessary in order to know how related they are. For
that, Pearson’s correlation, variance inflation factor,
mean effect (which contains regression analysis), and ap-
plicability domain were carried out.

Pearson’s correlation (Tables 7 and 8)
Figures 4 and 5 are the plot of predicted activity against
the experimental activity (pLC50) and plot of standard-
ized residual against the experimental activity (pLC50).

Applicability domain
A graph of leverages of each compound of dataset versus
their standardized residuals terms William’s plot was
presented in the Fig. 6 below.

Docking studies
Molecular docking analysis was carried out between the
ligands (compounds) and the receptor to evaluate the
binding affinity at the ligand-receptor interface.

Result of the design
The structure of the three (3) compounds which were
designed using an optimization method of structure-
based design. The structure of the chosen scaffold (com-
pound 13) was presented in Fig. 9 below.

Discussion
QSAR model
The QSAR examination was carried out to relate the
structure-activity relationship of novel 4-(N,N-diaryl-
methylamines) furan-2(5H)-one derivatives as a potent
inhibitor of Aphis craccivora. Three descriptors were uti-
lized in constructing the QSAR model which predicted
the activity of the compounds based on the genetic func-
tion algorithm (GFA). The first model was chosen as the
optimal model due to its statistical significance. The best-
chosen model constructed was presented in equation.
All the validation/statistical parameters that signified

the stability, robustness, and the prediction capability of

Table 8 Standard regression coefficients “bj”, the values of
mean effect (ME) and confidence interval (p values)

Descriptors Standard regression
coefficient (bj)

Mean
effect (MF)

P value
(confidence
interval)

nCl 0.262046 0.40756 0.000416

ATSc4 − 5.41238 0.666756 0.000535

Weta3.polar − 5.65705 − 2.07385 1.87E−05

Fig. 4 A plot of predicted activity against experimental activity (pLC50)
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the model were presented in Table 2. From the table,
the highly calculated R2 value (0.8715) for the predicted
activity indicated the robustness of the model. The de-
scriptors, definitions, and their classes are represented in
Table 3 below. The fact that 2D and 3D descriptors are
present in the model implies that the descriptors used in
the model can determine a better insecticidal activity of
the compounds. The individual capability and inducing
power of the selected descriptors toward the activity of
the compounds depend on their values, signs, and as
well their mean effects. Tables 4 and 5 represent the ex-
ternal validation as well as the calculation of predicted
R2 of the best-chosen model.

Statistical analysis
The experimental, predictive, and residual activity for
both training sets and test sets are shown in Table 6.
The residual value is the difference between the pre-
dicted and actual activity.

To evaluate the relationships between each descriptor
used in the built model, Pearson’s correlation was car-
ried out on the values of the model’s descriptors and the
results were presented in Table 7. The results show that
the descriptors are not significantly inter-correlated for
the fact that none of their correlation coefficients are up
to 0.5, and this indicates the robustness as well as the
stability of the built model. The variance inflation factor
(VIF) values for each of the three descriptors were not
up to 2, which indicates that the descriptors and the
model are stable and accepted.
Table 8 showed the standard regression coefficients

“bj,” the values of mean effect (ME), and confidence
interval (p values). These give vital information on the
impact and contribution of the descriptors toward the
built model. The individual capability and inducing
power of the selected descriptors toward the activity of
the compounds depend on their values, signs, and as
well their mean effects. The p values of the three

Fig. 5 A plot of standardized residual against experimental activity (pLC50)

Fig. 6 William’s plot
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descriptors (at 95% c.l.) that made up the model are all <
0.05; this implies that there is a significant relationship
among these descriptors (as contrary to the null hypoth-
esis) and the inhibitory concentration of the compounds.
Figure 5 which presented a graph of observed activity ver-

sus standardized residual shows a random dispersion at the
baseline where the standardized residual is zero. Therefore,
no systematic error occurred in the built model.
A graph of leverages of each compound of dataset ver-

sus their standardized residual terms William’s plot was
plotted to discover the outliers as well as the chemical
influential values of the model. The domain of applic-
ability was established within a box at ± 3.0 limit for the
residuals and leverage threshold h* (where h* calculated
to be 0.8). The result indicates that except three com-
pounds from the test set, all the molecules in the dataset
are within the box of the applicability domain of the
model. This may be characterized by their clear differ-
ences in chemical structures by considering the rest of
the compounds highlighted in the dataset.

Molecular docking study
Due to unavailability of the crystal structure of Aphis
craccivora, the complex crystal structure of the acetyl-
choline (protein AChBP) from Lymnaea stagnalis and
imidacloprid with PDB code 2ZJU was utilized for the
docking analysis since it possess “high homology extra-
cellular domain” of the A. craccivora protein (nAChR)
which has been used for many docking studies involving
A. craccivora. The docking studies were performed be-
tween 2ZJU and the ligands (compounds) of novel4-(N,
N-diarylmethylamines) furan-2(5H)-one derivatives to
investigate the binding energy of the compounds to the
target site of the insect. The ligands show a good inter-
action with the active site of the Aphis craccivora that is
to say they inhibit the activity of the insect. Some ligands
show high binding energy that varies from − 7.9 to − 8.4
kcalmol−1 as presented in Table 9. However, compound
13 with the highest binding score (− 8.4 kcal/mol) pos-
sessed an interaction mode with H-bond of ARG137 and
2.60716 bond length and hydrophobic interaction of

TYR89, TYR89, ASN90, VAL183, TRP53, TYR89, and
TYR185. The interaction between the compound with
highest binding energy and the binding pocket of the
receptor is shown in Fig. 7 while Figs. 8 and 9 is the 2D
hydrogen bond interaction of compound 13 with the
receptor.

Design
In our research, we utilized the method of structure-based de-
sign to design a new (novel) insecticidal compound with a
better activity by taking the compound with the highest dock-
ing score which is compound 13 (with binding energy of −
8.4 kcal/mol) as our template compound and thus provides
suitable insecticidal activity and appeared very inspiring as a
noteful scaffold. Compound 13 was selected as a synthetically
best structure in which some structural advancement was
performed on it. The newly designed compounds (A) 4-(((2-
chloro-4-(trichloromethyl)pyridine-1(2H)-yl)methyl)(2-chloro
-4-(trifluoromethyl)benzyl)amino)furan-2(5H)-one, (B) 4-((
(2-chloro-4-(trichloromethyl)pyridine-1(2H)-yl)methyl)(3-
chloro-4-(trifluoromethyl)benzyl)amino)furan-2-(5H)-one,
and (C) 4-(((2-chloro-4-(2,2,2-trichloroethyl)pyridin-1(2H)-
yl)methyl)(4-(trifluoromethyl)benzyl)amino)furan-2(5H)-one

Table 9 Ligands, binding affinity, H-bond, and hydrophobic interaction between high binding score compounds and receptor

Ligands Binding
affinity

Hydrogen bond Hydrophobic interaction

Amino acid Bond distance (Å)

1 − 7.5 TYR164 3.40384 TYR89, LYS139, VAL183

3 − 7.5 ARG137, ARG137, LYS139 2.36455, 2.46429, 3.61889 TYR89

4 − 7.9 ARG137, ARG137, TYR164 2.77808, 2.62344, 3.57359 LYS139, VAL183

5 − 8.2 ALA88, GLN119 2.29854, 2.63975 VAL83, ALA87, PRO95, PRO100

6 − 7.9 ARG137, ARG137, SER122, TYR164 2.89161, 2.67782, 3.65143, 3.56844 VAL183, LYS139, VAL183, TRP53, TYR164, TYR89, TYR185

7 − 7.5 SER166 3.67404 LYS139, VAL183, TYR164, TYR89

13 − 8.4 ARG137 2.60716 TYR89, TYR89, ASN90, VAL183, TRP53, TYR89, TYR185

Fig. 7 The interaction between the compound with the highest
docking score and receptor
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with their binding energy of – 8.9, – 9.1, and – 9.0 kcal/mol
(as shown in Figs. 10, 11, and 12) were discovered to be of
high quality and have greater binding affinity compared to
the one obtained from the literature.

Conclusion
This research involves a QSAR and molecular docking
studies on 20 compounds of novel 4-(N,N-diarylmethyla-
mines) furan-2(5H)-one derivatives against Aphis cracci-
vora. Using DFT for molecule optimization, Genetic
Function Approximation (GFA) was employed in generat-
ing the built model. Out of three models built, the first
model was identified to be the optimal constituted with
good statistical parameters such as R2 = 0.871489, R2adj =
0.83644, cross-validated R2 = 0.790821, and external R2 =
0.550768. A decrease in negative coefficient descriptors

(like ATSc4 and Weta3.polar) and an increase in positive
coefficients descriptors (like nCl) will improve the activ-
ities of the compounds against A. craccivora. According to
the docking scores, most of the ligands (compounds) show
good inhibitory activity against A. craccivora protein.
However, ligands 13 showed a higher binding affinity of –
8.4 kcal/mol. This compound has a strong affinity with
the macromolecular target point of the A. craccivora
(2zju) producing H-bond and as well the hydrophobic
interaction at the target point of amino acid residue. Mo-
lecular docking gave an insight into the structure-based
design of the new compounds with better activity against
A. craccivora in which three compounds A, B, and C were
designed and discovered to be of high quality and have
greater binding affinity compared to the one obtained
from the literature.

Fig. 8 2D interaction of compound 13

Fig. 9 2D structure of the template
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Fig. 10 2D structure of the designed compound (A)

Fig. 11 2D structure of the designed compound (B)

Fig. 12 2D structure of the designed compound (C)
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