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Abstract

tested and inhibited by Hg** and Cu** cations.

acting on several phenolic compounds.

Background: Due to versatility in reaction catalyzed by peroxidases, they have potential applications in different
areas in the health sciences, food industry, and diagnostic purposes. Therefore, the aim of this study is to investigate
the properties of peroxidase from ginger to be meeting the perquisites of several applications.

Results: The cationic peroxidase (GPIl) was purified to homogeneity by anion exchange chromatography using DEAE-
Sepharose column followed by cation exchange chromatography using CM-Sepharose column and finally Sephacryl
S-200 column. The molecular mass of GPIl was 42 kDa. GPIl shows oxidizing activity with several phenolic compounds
by using H,O, as the second substrate. The natural plant phenolic compounds as pyrogallol, catechol, and guaiacol
were found to be excellent electron donors for the enzyme compared to other phenolic compounds. GPII exhibited
K., values of 3.1 and 7.1 mM and V4 values of 0.6 and 0.31 units/assay using H>O, and guaiacol as substrates,
respectively. The enzyme exhibited maximal peroxidase activity at broad pH's 6.0-7.5 and 50 °C. GPIl was thermal stable
up to 50°C and retained 66% of its activity at 70 °C after 1 h incubation. The GPII activated by most divalent cations

Conclusion: PGl could be used in several applications due to its catalytic properties, thermal stability, broad pH, and
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Background

Peroxidases (EC.1.11.1.x) are decomposing hydrogen
peroxide (H,O,) to oxidize a wide variety of phenolic
compounds as well as non-phenolic compounds (Pandey
et al. 2017). The non-animal plant peroxidases, belong-
ing to Class III peroxidase, are enzymes that participate
in diverse physiological and biochemical functions in
higher plant cells and are, therefore, interesting objects
of current biochemical research (Has-Schon et al. 2005;
Pandey et al. 2017). They are implicated in various vital
processes in vivo include cell wall edification, cellular
growth, differentiation and development, in hormone
catabolism, lignin polymerization, suberization, fruit
growth and ripening, ethylene biosynthesis, plasma
membrane redox systems and the generation of H,O,,
auxin metabolism, senescence, and defense mechanisms
against abiotic and biotic stress (Chen et al. 2012;
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Mohamed et al. 2014; Aslmoshtaghi and Shahsavar
2016; Galende et al. 2016; Julido et al. 2016).

Due to versatility in reaction catalyzed by peroxidases,
and their ubiquitous nature, they have potential applica-
tions in different areas in the health sciences, food
industry, and diagnostic purposes (Pandey et al. 2017;
Abdel-Aty et al. 2018). Peroxidases are implicated in
various applications in detoxification of recalcitrant orga-
nopollutants, decolourization of textile effluents, in
bioremediation, polymer synthesis, paper and pulp
industry, in development of biosensor, diagnosis kits, etc.
(Lavery et al. 2010; Bhatti et al. 2012; Kalsoom et al. 2013;
Sarvamangala 2014; Nouren et al. 2015; Tabassum et al.
2015; Mohamed et al. 2017; Moubasher et al. 2017).

Plants as sources of enzymes have become a promising
field of study, because of the simplicity and ease of
obtaining this biological material (Julido et al. 2016).
Despite the variety of plant peroxidase sources, there is
no previous study on peroxidase from Zingiber officinale
commonly known as ginger, originated in the Indo-
Malayan region, is now widely distributed across the
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tropics of Asia, Africa, America and Australia (Yeh et al.
2014). Ginger belonging to the family Zingiberaceae, is
widely consumed as a spice used for over 2000 years in
various foods and beverages (Chari et al. 2013). Ginger
is reported to have several beneficial pharmacological ef-
fects (hypoglycemic, insulinotropic, and hypolipidemic)
on health in humans (Huang et al. 2004) and in experi-
mental animals (Akhani et al. 2004; Kondeti et al. 2011).
Therefore, the aim of this study is to investigate the
properties of peroxidase from ginger to be meeting the
perquisites of several applications.

Methods

Plant

Fresh ginger (Zingiber officinale) was obtained from the
local market, Cairo, Egypt.

Peroxidase assay

Peroxidase activity was determined by the method of
Miranda et al. (1995). One milliliter of reaction mixture
including 40 mM guaiacol, 8 mM H,0,, 20 mM sodium
acetate buffer, pH 5.5, and 100 ul of enzyme. The ab-
sorbance was measured at 470 nm. One unit of peroxid-
ase activity is defined as the amount of enzyme that
increases the optical density of 1.0 per min under stand-
ard assay conditions.

Protein determination

Protein concentration was quantified by the method of
Bradford (1976) wusing bovine serum albumin as
standard.

Crude enzyme extract

Two grams of fresh ginger was homogenized with 20
mM Tris-HCI buffer, pH7.2 using mortar. The hom-
ogenate was centrifuged at 12,000 rpm for 10 min in
cooling centrifuge. The supernatant was designated as a
crude enzyme extract and stored at — 20 °C until further
analysis.

Purification of peroxidases from ginger

Unless otherwise stated, all purification steps of peroxi-
dases from ginger were carried out at 4°C. The crude
enzyme extract was fractionated on DEAE-Sepharose
column (10 x 1.2cm i.d.) pre-equilibrated with 20 mM
Tris-HCI buffer, pH 7.2 and eluted with a stepwise gradi-
ent of NaCl (0.0-0.4 M) in the same buffer. Fractions of
5.0 ml were collected at 4 °C and a flow rate of 30 ml/h.
The most of peroxidase activity was eluted at 0.0 M
NaCl and the remainder of peroxidase activity was
eluted by different concentrations of NaCl. The peroxid-
ase eluted at 0.0 M NaCl was dialyzed against 20 mM
sodium acetate buffer, pH5.5 and applied on CM-
Sepharose column (10x1.2cm id.) pre-equilibrated
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with the same buffer. The adsorbed proteins were eluted
with a stepwise gradient of NaCl (0.0 to 0.4 M) in the
same buffer at a flow rate of 30 ml/h, and 5.0 ml frac-
tions were collected. The most peroxidase activity was
eluted at 0.1 M NaCl and designated as GPII. The GPII
was applied on Sephacryl S-200 and the enzyme eluted
by 20 mM sodium acetate buffer, pH 5.5 at a flow rate of
20 ml/h, and 3.0 ml fractions were collected.

Molecular weight measurement

Molecular weight was determined by gel filtration
technique using Sephacryl S-200 column. The column
(93 x 1.6 cm i.d.) was calibrated with cytochrome C (12,
400), carbonic anhydrase (29,000), bovine serum
albumin (67,000), alcohol dehydrogenase (150,000), and
B-amylase (200,000). Dextran blue (2,000,000) was used
to determine the void volume (Vo). Subunit molecular
weight was estimated by SDS-polyacrylamide gel electro-
phoresis (Laemmli 1970). SDS-denatured phosphorylase
b (94,000), bovine serum albumin (67,000), ovalbumin
(43,000), carbonic anhydrase (30,000), soybean trypsin
inhibitor (20,000), and a-lactalbumin (14,200) were used
for calibration.

Characterization of GPII

The K,,, values of GPII were determined from Linewea-
ver—Burk plots by using different concentrations of
H,0, and guaiacol. The optimum pH of GPII was exam-
ined using 20 mM sodium citrate buffer (pH 4.0-4.5),
sodium acetate buffer (pH 4.5-6.0), sodium phosphate
buffer (pH 6.5-8.0), and Tris—HCI buffer (pH 8.0-9.0),
respectively. The optimum temperature of GPII was de-
termined by incubating the reaction mixture at different
temperatures ranging from 25 to 80°C. The effect of
temperature on the enzyme stability was examined by
pre-incubating the enzyme for 30 min in different tem-
peratures ranging from 25 to 80°C prior to substrate
addition, followed by cooling in an ice bath, and the
remaining activity was measured. The effect of metal
ions on the peroxidase activity was also determined. The
enzyme was pre-incubated for 30 min at 37 °C with some
metal ions individually at the final concentration indi-
cated prior to substrate addition and the remaining
activity was measured.

Statistical analysis
The data were statistically analyzed by a one-way
ANOVA. The data were considered means + S.E. (n = 3).

Results

The purification of peroxidase from ginger was summa-
rized in Table 1. The crude enzyme extract was fraction-
ated on DEAE-Sepharose column (10 x 1.2 ¢cm i.d.). The
most of peroxidase activity was eluted at 0.0 NaCl and
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Step Total activity (Unit) Total protein (mg) Specific activity Fold purification % Recovery
(unitsmg~ " protein)

Crude extract 5368 482 1113 1 100
DEAE-Sepharose

0.0 M Nadl 4574 244 1874 1.7 852
CM-Sepharose

0.0 M NaCl CM (GPI) 704 0.8 880 0.8 13.1

0.1 M NaCl CM (GPII) 3578 0.87 4112 3.7 66.7
Sephacryl S-200

GPII 3284 025 13,136 1.8 61.2

“One unit of peroxidase activity is defined as the amount of enzyme that increases the optical density 1.0 per min under standard assay conditions

five peaks with low-level peroxidase activity were eluted
by different concentrations of NaCl (Fig. 1). The perox-
idase eluted at 0.0 NaCl was applied to CM-Sepharose
column (10 x 1.2 cm i.d.). One peak of protein with low
peroxidase activity was eluted at 0.0 M NaCl and desig-
nated as PGI. The most peroxidase activity was eluted at
0.1 M NacCl and designated as cationic GPII (Fig. 2). The
GPII with high peroxidase activity was applied on Sepha-
cryl S-200, where GPII retained 61.2% of its initial
activity with specific activity 13,136 units/mg protein
and 11.8 purification fold (Fig. 3). In the assessment of
homogeneity using SDS-PAGE, the electrophoretic pro-
file of proteins showed that the purified GPII enzyme
was migrated as a single band of molecular weight of 42
kDa (Fig. 4).

The activity of the purified GPII towards various
substrates was summarized in Table 2. The activity to-
wards guaiacol, considered standard substrate for class
III peroxidase, was taken as 100%. Substrate assay profile
of the GPII enzyme revealed that the enzyme was highly
active towards pyrogallol and catechol with relative
activities % of 140 and 118, respectively. However,

substrates as o-dianisidine, 4-aminoantipyrin, o-phenyl-
enediamine, and m-phenylenediamine are oxidized by
GPII at slower rates with relative activities % of 32, 34,
25 and 20, respectively. The Lineweaver-Burk plots relat-
ing ginger GPII reaction velocities to H,O, and guaiacol
were used for measuring the Michaelis-Menton kinetics
(K,,; and V) (Fig. 5). The K,,, and V., obtained for
the purified GPII were 3.1 mM and 0.6 units/assay and
71mM and 0.31 units/assay for H,O, and guaiacol,
respectively.

The effect of pH on the purified GPII was investigated
at different pH’s ranged from 4.0 to 9.0. The optimum
pH for GPII was found at broad pH’s 6.0-7.5 (Fig. 6).
The optimum temperature for the purified GPII was
50 °C (Fig. 7). The enzyme retained 65 and 40% of its re-
sidual activity at 70 and 80 °C, respectively. GPII was
thermal stable up to 50°C and retained 75 and 55% of
its activity at 70 and 80°C for 1h incubation, respect-
ively (Fig. 8).

The effect of various divalent metal cations on the
activity of GPII is shown in Table 3. Most of the divalent
cations as Ca®*, Ba®*, Zn>*, Mg”*, Fe?*, and Mn*"
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Fig. 1 A typical elution profile for the chromatography of ginger peroxidase on DEAE-Sepharose column (6 x 1.6 cm i.d.) previously equilibrated
with 20 mM Tris-HCl buffer, pH 7.2, at a flow rate of 30 ml/h and 5 ml fractions
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Fig. 2 A typical elution profile for the chromatography of 0.0 M fraction of DEAE-Sepharose of ginger peroxidase on CM-sepharose column (6 x
1.6 cm i.d.) previously equilibrated with 20 mM sodium acetate buffer, pH 5.5, at a flow rate of 30 ml/h and 5 ml fractions
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activated the purified GPII, while the Hg** and Cu** cat-
ions were a strong inhibitor for GPII even at 2 mM, but
this effect was more pronounced at 5 mM.

Discussion

The purification of peroxidase from ginger showed sev-
eral isoenzymes of peroxidases. The cationic GPII bind-
ing on CM-Sepharose possessed the highest peroxidase
activity. The specific activity of GPII (13,136 units/mg
protein) was higher than that reported for commercial
horseradish peroxidase (250 units/mg solid) as a product
from Simgma Company. The presence of several peroxi-
dases in ginger proved that these enzymes belonging to
the class-III peroxidase gene family which had multiple
isoenzymes like several plant species (Boucoiran et al.
2000; Tognolli et al. 2002; Mohamed et al. 2011b). In
this gene family, peroxidases had several roles such as

seed germination, lignin formation, cell elongation, and
stress defense (Shigeto and Tsutsumi 2015; Abdel-Aty
et al. 2019). The molecular weight of purified GPII (42
kDa) on SDS-PAGE is compatible with that obtained by
Sephacryl S-200 column. The obtained molecular weight
was in accordance with peroxidases from Panaeolus
sphinctrinus (42 KDa), horseradish roots (40 kDa), and
chick pea (39kDa) (Heinzkill et al. 1998; Lavery et al.
2010; Bhatti et al. 2006).

Peroxidases catalyzed the oxidation of a wide assort-
ment of electron donor substrates; such as phenols, aro-
matic amines, thioanisoles, and iodide (Mirazizi et al.
2016). The different relative activities observed for GPII
may be accounted for the structural differences between
different substrates. Regarding the chemical nature, GPII
showed the highest oxidative capacity towards phenolic
compounds containing two and three hydroxy groups in
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Fig. 3 A typical elution profile for the chromatography of GPIl CM-Sepharose fraction on a Sephacryl S-200 column (90 x 1.6 cm i.d.) previously
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their chemical structures like catechol and pyrogallol
manifests a moderate activity against phenolic com-
pounds having one hydroxyl group as guaiacol. Similarly,
peroxidases from Cucumis sativus had a high affinity to-
wards pyrogallol and guaiacol (Battistuzzi et al. 2001).
On the obverse side, the GPII was poorly active towards
aromatic amines such as o-dianisidine, aminoantipyrin,

Table 2 Relative activities of ginger PGIl towards substrates

Substrate % Relative activity
Guaiacol 100 £ 3.5
Pyrogallol 140 £ 46
Catechol 118+ 32
4-Aminoantipyrin 34+12
o-Dianisidine 32+£15
o-Phenylenediamine 25+ 12

m- Phenylenediamine 20+08

The values are presented as mean +S.E. (n=3)

and phenylenediamines. On the contrast, peroxidase
POII from Adalia orange had low activity towards cat-
echol compared with o-dianisidine and o-phenylenedi-
amine (Mohamed et al. 2008). The results showed that
the natural plant phenolic compounds as pyrogallol, cat-
echol, and guaiacol were found to be excellent electron
donors for GPII compared to other phenolic com-
pounds. Therefore, GPII could be used as an antioxidant
enzyme for preventing the oxidative damage by removal
of the toxic H,0, which oxidized the phenolic
compounds.

While H,O, theorize as a suicide substrate for peroxi-
dases; the hydrogen donor substrate may keep the per-
oxidase active site safe from the inactivating action of
H,0, (Shukla et al. 2016). Therefore, the K,,, and V.
of purified GPII was determined for H,O, and guaiacol.
A wide range of K,,, and V., values have been reported
for other peroxidases from different plants. Taking guai-
acol into consideration as a substrate, various K, and
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Vmax values were reported for Euphorbia tirucalli perox-
idase (K,, 413mM and V., of 0.627 units/assay)
(Shukla et al. 2016), umbu peroxidase (K,,, 6.83 mM and
Vmax 4.16 units/assay) (Pinto et al. 2015) and peels of
Citrus reticulata var. (K,, 0.66 mM and V., of 380
units/assay) (Nouren et al. 2013). Using H,O, as perox-
idase substrate revealed K,,/V.x values of 1.8 mM/20
units/assay and 0.026 mM/0.8 units/assay for peroxidases
extracted from Gongronema latifolium (Joy and Eze
2015) and garlic Allium sativum (Osuji et al. 2014),
respectively.

GPII had optimum pH at broad pH’s 6.0-7.5. Similar
pH optima were reported for peroxidases obtained from
rice seedlings (Padiglia et al. 1995), strawberry fruits
(Civello et al. 1995), and umbu plants roots (Pinto et al.
2015). A wide variability in the optimum temperature
has been observed for peroxidases from various plants.
The optimum temperature for the purified GPII was

50 °C. Different temperature optima were shown for per-
oxidases from rosemary leaves (40°C) (Aghelan and
Shariat 2015), white Spanish broom (30°C) (Galende
et al. 2016), and fingerroot (Boesenbergia rotunda (L.)
Mansf.) (40°C) (Shank et al. 2015). GPII was thermal
stable up to 50 °C. Peroxidases from Cocos nucifera were
thermal stable up to 50 °C for 1 h. (Balasubramanian and
Boopathy 2013). Generally, peroxidase has been reported
as the most thermostable enzymes in plants (Bhatti
2007; Khatun et al. 2012; Nouren et al. 2013).

The most of metal cations (Ca®*, Ba®**, Zn>*, Mg*",
Fe**, and Mn**) caused enhancement for the activity of
GPIL Similarly, the Ca** has an imperative impact on
molecular folding and usually demonstrates stimulatory
effects on plant class III peroxidases (Ros-Barcelé and
Pomar 2002). Mathé et al. (2010) reported that Mn?* as
well as Ca®* acts as prosthetic groups for particular per-
oxidases known for their specific catalytic action. The
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Fig. 8 Effect of temperature on the thermal stability of ginger GPIl. The enzyme was preincubated at various temperatures for 1 h prior to
substrate addition, followed by cooling in an ice bath. Activity at zero time was taken as 100% activity. The points are presented as mean +
SE (n=3)
J
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Table 3 Effect of metal ion concentration on ginger PGlI

Metals % Relative activity (2 mM) % Relative activity (5 mM)
Non 100 32 100 + 34
Ba®* 130 + 38 180 + 48
Ca** 120 4.2 150 + 5.2
n? 110+ 28 130 + 33
Mg** 145+ 4.3 170 + 45
Mn?* 125 + 34 145 + 35
Ni** 130 = 40 145 + 38
Co™* 110+ 27 130+ 29
Fe?* 155 + 44 215458
Hg*" 65+ 15 45+17
cu?t 22406 18+ 07

Enzyme was preincubated for 15 min at 37 °C with 2 and 5 mM of listed ions
as a final concentration prior to substrate addition. The values are presented
as mean * SE. (n=3)

obtained results for Ca** and Fe®* are in accordance
with Galende et al. (2016). In contrast, Shukla et al.
(2016) show a moderate to high % inhibition using Co>*
(29.6%), Ni** (36.6%), and Zn>* (89.7%) on the activity
of peroxidase from the latex of plant Euphorbia tirucalli.
Fe®* at a concentration of 2 and 5mM activated the
purified GPII with relative activity % of 155 and 215, re-
spectively. Fe** plays an important role in the
peroxidase-oxidase cycle that involves the formation of
ferrous POD (Fe**) and the inactive compound III (oxy-
peroxidase Fe®*) (Yamazaki and Yokota 1973). In con-
trast, Fe** highly inhibited the activity of partially
purified peroxidase from fingerroot (Boesenbergia ro-
tunda (L.) retaining 52% of the activity compared to the
control (Shank et al. 2015). Hg2+ was a strong inhibitor
for GPII, whereas Hg>* interacts with sulphydeyl groups
of peroxidase resulted in inhibition of enzyme activity as
reported by Einollahi et al. (2006). The peroxidase of
Ficus sycomorus was inhibited by Hg?* and Cu®
(Mohamed et al. 2011a).

Conclusions

The cationic peroxidase (GPII) was purified and charac-
terized from ginger (Zingiber officinale), which is widely
used as a spice and folk medicine. The natural plant
phenolic compounds as pyrogallol, catechol, and guai-
acol were found to be excellent electron donors for the
enzyme compared to other phenolic compounds. PGII
could be used in several applications due to its catalytic
properties, thermal stability, broad pH, and acting on
various phenolic compounds.

Abbreviations

CM-Sepharose: Carboxymethyl-Sepharose; DEAE-

Sepharose: Diethylaminethyl-Sepharose; H,O,: Hydrogen peroxide; kDa: Kilo
Dalton; K,,: Micael's constant; PGII: Cationic peroxidase; SDS-

(2020) 44:11

Page 8 of 9

polyacrylamide: Sodium dodecylsulphate-polyacrylamide; Vs Maximum
velocity
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