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Abstract

Background: Etoposide is one of the most potential anti-cancerous drugs that targets topoisomerase II (topoII) and
inhibits its activity by ligation with the DNA molecule.

Results: In silico study confirmed that the etoposide-binding sites of topoII are conserved among the plants and
human. The efficacy of the drug on plant system was initially assessed using germinated grass pea (Lathyrus sativus
L.) seedlings (in vivo) in relation to radicle length and mitotic index. The callus system (in vitro) was also used to
elucidate the effect of etoposide on callus growth kinetics. Furthermore, it was observed that etoposide able to
inhibit the division of polyploid cells induced by colchicine treatment (0.5%, 8 h). To determine the molecular
interaction, topoII was isolated from young grass pea leaves using polyethylene glycol fractionation and
ammonium sulphate precipitation followed by column chromatography on CM-Sephadex (C-25). The plasmid
linearization assays by isolated plant topoII in the presence of etoposide significantly revealed the functional
similarity of plants and human topoII. Results indicated that the effect of etoposide on plant topoII is significant.

Conclusions: This study may pave the way to develop a plant-based assay system for screening the topoisomerase
targeted anti-cancerous drugs, as it is convenient and cost-effective.

Keywords: Callus growth kinetics, Etoposide, Lathyrus sativus L., Mitotic index, Topoisomerase II, Topoisomerase
assay

Background
New drug discovery for cancer treatment is facing ser-
ious challenges due to limited number of approvals be-
cause of complex screening processes (Batra and Sharma
2013; Denayer et al. 2014), high cost, and stringency in
the use of animal model/cell culture (Astashkina et al.
2012). It widens the necessity to explore a simple and
cost-effective novel approach for drug discovery based
on plant system. Plants and animals originated from a
common ancestor (Meyerowitz et al. 2002) though they
are structurally and functionally different but their basic
cellular activities namely, cell cycle, DNA replication,
and its regulations are conserved in nature (Elledge
1996; Shirahige 1998; Jensen 2006; Sclafani and Holzen
2007). Like in animal system, it may be assumed that in

plant system as well, cell cycle regulatory proteins or
check points can be the potential target for anti-cancer
compound(s) to block the different steps of cell cycle
and cell division.
Etoposide is an important and widely used anti-cancerous

drug mostly effective against lung cancer, lymphoma, and
leukemia (Issell 1984; Hande 1998; Baldwin and Osheroff
2005). The functional activity of etoposide is to inhibit the
topoisomerase II (topoII), which is an essential enzyme for
DNA replication. TopoII is responsible for relaxing, unknot-
ting, and untangling the DNA by generating the transient
double strand breaks in a separate segment of DNA (Wang
1995; Nitiss 1998; Champoux 2001; Wang 2002). Etoposide,
topoII, and DNA form a drug-enzyme-DNA ternary com-
plex, which is a critical stoichiometry for the drug activity
(Nitiss 1994; Fortune and Osheroff 2000). Etoposide stabi-
lizes the cleavage complex created by topoII with DNA and
thereby inhibits the functional activity of the enzyme.
Etoposide contains five rings namely A, B, C, D, and E
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(McClendon and Osheroff 2007). The E ring is mainly
responsible for interaction with G-478, D-479, L-502, and
R-503 amino acids of human topoI (Wu 2011) which is an
isoform of topoII. The drug prevents cell cycle progression
in late S and G2 phase, and when exists in sufficient concen-
tration trigger apoptosis (Loike and Horwttz 1976; Felix
1998; Kaufmann 1998; Kaufmann et al. 1998; Rowley 1998;
Wilstermann and Osheroff 2003).
Isolation and characterization of topoII in higher plants

are rather meager maize embryos (Carballo et al. 1991),
cauliflower (Fukata and Fukasawa 1982, 1983), pea leaves
(Rudenko 1992), and Arabidopsis inflorescence (Xie and
Lam 1994). Furthermore, from available literature, it seems
that there is no report about the effect of etoposide on
plant topoII. The present article describes the effect of eto-
poside on plant system using Lathyrus sativus L., Family:
Fabaceae in vivo and in vitro. In silico study from available
gene database is performed to assess the structural and
functional similarities between human and plant topoII.
The objective of the work is to foresee the effectivity of eto-
poside on plant system which can open up the possibility
of using plant system for screening of topoisomerase-
targeted anti-cancerous drugs. The plant system as a model
is convenient to use and is cost-effective.

Materials and methods
Plant material
Grass pea (Lathyrus sativus L., Family: Fabaceae) seeds
obtained from plants grown in the experimental garden
of the Haldia Institute of Technology (22.03° N and
88.06° E) during mid-April.

Treatments
Seeds collected from mature plants were air-dried sur-
face sterilized (0.1% HgCl2) for 5 min, washed by dis-
tilled water (3 times, 10 min each), and finally soaked in
triple distilled water (12 h). The seeds were then kept on
Petri plates lined with cotton-soaked etoposide (GLS
Pharma Ltd., India; MW 588.557) solution (25, 50, 75,
100, 125, and 150 μM) for 72 h and for time-dependent
assay solution with drug (50, 100, and 150 μM) treated
for 24, 48, and 72 h and then on distilled water (25 ±
2 °C). Colchicine (aqueous solution − 0.5 %, 8 h; prior
treatment)-treated seeds were also kept in different con-
centrations of etoposide for 72 h.
The seeds soaked in distilled water (12 h) have been

marked as control A while colchicine (0.5 %, 8 h)-treated
seeds considered as control B.

In silico study
Amino acid sequence of human and plant topoIIβ was
retrieved from NCBI database (http://www.ncbi.nlm.nih.
gov/). The sequences that share 95% or higher identity
were considered as likely alleles (Zang et al. 2001; Wang

et al. 2004) and aligned in CLUSTALW multiple sequence
alignment tool (Thompson et al. 1997). From this align-
ment, the cleavage core of drug interacting residues (40
aa) was analyzed using WebLogo (http://weblogo.berkely.
edu/logo.cgi) software for visualizing the similarities of
drug interacting amino acid residues among plant species
and human beings.

Assessment of radicle length and determination of
mitotic index (MI)
Radicle length (mm) was measured from germinating
seedlings (randomly 25 seedlings from each set) on the
3rd day of treatment (72 h). Seedling morphology was
also studied. Experiment was performed with 3 replicas
including control A and control B.
Mitotic study was performed from root tips (2mm) col-

lected from the control and treated material, fixed in acetic
alcohol (1:3) for 3 h, preserved in 70% alcohol, and kept
under refrigeration. The tips were stained in 2% orcein-HCl
(1N) mixture and squashed in 45% acetic acid. Mitotic
index (MI) was determined using the formula: MI = (divid-
ing cells/total number of cells) × 100. Frequency of poly-
ploid cells was estimated from dividing cells.

Callus growth kinetics in response to etoposide
treatments
Grass pea callus line was initiated in accordance with
protocol reported earlier (Samanta et al. 2014). Callus
growth was initiated using hypocotyls as explant on MS
media (Murashige and Skoog 1962) supplemented with
16.11 μM NAA (α-naphthalene acetic acid) and 2.32 μM
KIN (Kinetin). Different concentrations of etoposide (25,
50, 75, 100, 125, and 150 μM) solution were sterilized
(using 0.2 μm membrane filter) and added to the different
sets of medium. For each experiment (10 sets), 0.1 g of
callus was transferred to fresh medium (control and treat-
ments). The fresh weight of the callus was measured, and
the morphology of the calli was also observed at an inter-
val of 5 days up to 35 days to calculate its growth kinetics
followed by the equation of Hunt and Loomis 1976.

Isolation of DNA topoII from young grass pea leaf
Freshly collected grass pea leaves (100 g) were homoge-
nized with 250 ml TEM buffer (50 mM Tris-HCl at pH
8, 1 mM EDTA, and 5mM β-mercaptoethanol) and cen-
trifuged at 12,000 g for 45 min at 10 °C. PEG-6000 (10%)
and 2M NaCl were added in the supernatant to remove
the nucleic acids. Supernatant was collected and precipi-
tation was done by solid ammonium sulphate (55%
saturation). Following centrifugation at 12,000 g for 30
min at 10 °C, a protein cake was accumulated at the
middle phase between PEG and ammonium sulphate.
The protein cake was collected and dissolved in 250ml
TGD buffer (50ml Tris-HCl at pH 8, 20% glycerol, 0.05
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mM dithiothreitol) and again centrifuged to get the clear
supernatant. The supernatant was loaded on CM-Sephadex
column (C-25) pre-equilibrated with TGD buffer. The
column was extensively washed with the TGD buffer. The
bound topoII enzyme was eluted with KCl with five-step
gradients (100mM, 120mM, 140mM, 160mM, and 180
mM) in TGD buffer. The elution was collected by fraction
collector and protein-containing fractions were stored by
measuring their optical density (OD) at 280 nm.

Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE)
SDS-PAGE was performed according to Laemmli (1970) to
identify the topoII in different samples using a mini gel ap-
paratus (Bio-Rad): crude (before ion-exchange) and different
fraction from CM-Sephadex column (C-25). Samples (0.1 μg
of protein) were diluted in SDS-containing sample buffer
with β-mercaptoethanol (under reducing condition) prior to
loading. Electrophoresis was performed at room temperature
at 16mA during stacking and 18mA per plate during resolv-
ing. Protein-containing bands were visualized by silver stain-
ing method (Oakley et al. 1980). The protein bands were
analyzed by comparing with standard MWmarker.

Time-dependent plasmid linearization assay by isolated
plant topoII to confirm its activity
The DNA topoisomerase activity assay was performed
on relaxation of negatively supercoiled duplex plasmid

DNA (pBluecript SK+; pBS) as was described earlier by
Nitiss et al. (2012) and visualized by agarose gel electro-
phoresis. The standard reaction mixture (25 μl) com-
posed of 50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 0.5
mM ATP, 1 mM dithiothreitol, 160 μg/ml bovine serum
albumin (BSA), 0.5 μl plasmid DNA, and 5 μl enzyme so-
lution. The reaction mixtures were incubated at 35 °C
and reactions were stopped after different time interval
(0, 10, 20, 30, and 60min) by adding either of 3 μl of 5%
sodium dodecyl sulphate (SDS) or 3 μl of etoposide
(5 μM). A second reaction mixture comprising of 10 X
EcoR1 buffer, 0.5 mm3 plasmid DNA and 2 μl EcoR1 to
prepare fully relaxed DNA. Agarose gel electrophoresis,
ethidium bromide staining, and gel documentation were
done as described previously (Datta et al. 2008).

Plasmid linearization assay by isolated plant topoII at
different concentration of etoposide
The plasmid linearization assay in the presence of in-
creased etoposide concentration was performed using
the same reaction mixture (25 μl) as described previ-
ously, 0.5 μl plasmid DNA, and 5 μl enzyme solution
with etoposide (10, 20, 30, and 40 μM). The final reac-
tion mixtures were incubated at 35 °C for 60 min. A sec-
ond reaction mixture of 10X EcoR1 buffer, 0.5 μl
plasmid DNA, and 2 μl EcoR1 was also incubated for 60
min at 35 °C to prepare fully relaxed DNA.

Fig. 1 The etoposide-binding region inside the cleavage core of topoisomerase II is shown with WebLogo result. Conserve amino acid
sequences of 38 different plant species and human are represented in this cleavage core. The data for this logo consists of 40 amino
acids. The chemical structure of the drug and its interacting sites (G-478, D-479, L-502, R-503) (above) and topoII domain structure
(below) are shown in the figure
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Results
Structural similarities of DNA-binding cleavage core
domain of plants topoII and human topoIIβ
The length of human topoIIβ polypeptide is about 1621
amino acids long (Wu et al. 2011), and it contains N-
terminal domain, cleavage core, and C-terminal domain
(Mirski and Cole 1995; Adachi et al. 1997; McClendon and
Osheroff 2007). The phylogenetic tree (Additional file 1:
Figure S1) and multiple alignment of the amino acid
sequence among plant and human (Additional file 2: Figure
S2) indicate that the cleavage core domain of topoII is
conserved. The WebLogo represents that the cleavage core
domain of topoII and the specific etoposide interacting resi-
dues with topoII G-478, D-479, L-502, and R-503 are well
conserved among plants and humans (Fig. 1).

Assessment of radicle length and mitotic index
Radicle length (control A, 19.7 mm ± 1.2; treatments,
11.8 mm ± 1.1 to 3.9 mm ± 0.7) and mitotic index (con-
trol A, 12.11%; treatments, 5.48 to 0.05%) are found to
decrease with an increase concentration of etoposide
(Fig. 2a and Fig. 3a). Radicle length and mitotic index

also decrease with time (24, 48, and 72 h) when treated
with etoposide (Table 1). All the attributes significantly
correlate (p ≤ 0.05) between themselves suggesting that
etoposide possesses the potential effect on cell division.

Effect of colchicine and its reversal
Colchicine treatments (control B) induce bulging of
radicle tips (Fig. 3b) of grass pea seedlings. The fre-
quency of dividing polyploid cells is found to be 5.60%
along with an enhancement in cell size and nuclear vol-
ume. Bulging of radicle tips shows diminishing tendency
with the increase concentration of etoposide, and it is
observed phenotypically normal from 75 μM concentra-
tion onwards. Frequency of polyploid cells is found to
reduce from 2.98% (25 μM) to 0.66% (75 μM) and finally
to 0.0% from 100 μM etoposide concentration onwards
(Fig. 2b) indicating that etoposide could inhibit polyploid
cell formation in grass pea. In relation to control B, mi-
totic index (control, 8.90%; treatments, 3.25 to 0.00 %)
and radicle length (control, 8.01 mm ± 1.57; treatments,
6.59 mm ± 1.11 to 4.16 mm ± 0.89) also reduce with the
increased concentration of etoposide.

Fig. 2 Effect of different concentrations of etoposide in grass pea seedlings for 72 h. a Radicle length and mitotic index in the presence of
etoposide (72 h). b Assessment of radicle length, mitotic index, and frequency of polyploid cells with the treatment of colchicine (8 h) followed
by different concentrations of etoposide (72 h)
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Effect of etoposide on callus growth kinetics
Etoposide shows dose-dependent inhibition in callus growth
(Fig. 4a). The effect of etoposide on callus growth rate has
been presented in Fig. 4b, a good estimation of maximum
specific growth rate of callus. Browning and necrosis of
callus tissues are also observed from 75 μM concentration
onwards (Fig. 3c).

Isolation and purification profile of DNA topoII
Sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) has been performed for identification of the
topoII in different samples. SDS gel electrophoresis of the
active fractions of isolated topoII after ion-exchange chro-
matography on CM-Sephadex column (C-25) shows pro-
tein bands near 100 kDa (Fig. 5; lanes 1, 2, and 3).

Time-dependent plasmid linearization assay by isolated
grass pea topoII to confirm its activity
DNA relaxing activity of enzyme converts supercoiled pBS
DNA into nicked and linear forms (Fig. 6a, b) exhibiting

relatively low electrophoretic mobility. When the reactions
were stopped at different time intervals (T0–T60) by add-
ing the SDS or etoposide, there has been a decrease in
amount of supercoiled plasmid with concomitant increase
of nicked and linear DNA (Fig. 6a, b).

Degradation of supercoiled plasmid DNA in the presence
of topoII with increased concentration of etoposide
The purified plant topoII converts supercoiled pBS DNA
into nicked and linear forms. Treatment of supercoiled
plasmid by the topoII shows supercoiled, nicked, and some
linear DNA (Fig. 7). When the same experiment is done in
the presence of increased concentrations of etoposide (10
to 40 μM), initially there has been a decrease in the amount
of nicked DNA with an increase in amount of linear DNA.
On the other hand, increasing concentration of etoposide
(≥ 20 μM) has been a concomitant decrease in band inten-
sity and smearing of DNA, which signifies the cleaving of
DNA at multiple sites. It seems that like human topoII, eto-
poside acts in a similar fashion on plant topoII as well.

Fig. 3 Effect of different concentrations of etoposide in grass pea for 72 h. a Treatments showing reduced radicle length with increasing concentration of
the etoposide (i to vii: 0, 25, 50, 75, 100, 125, and μM) treated for 72 h. b Assessment of radicle length, with the treatment of colchicine (8 h) followed by
different concentrations of etoposide for 72 h. i, control A; ii, control B showing distinct bulging of root tips; iii to viii, significant decrease in bulging
tendency of root tips with lower to higher concentrations of drugs added. c Callus growth inhibition with increased concentration of etoposide (i to vii: 0,
25, 50, 75, 100, 125, and 150 μM). The callus picture representing the 30th day’s morphology. i, control; ii to vii, showing a decrease in callus size with lower
to higher concentrations of etoposide added in the medium. Scale bar = 10mm (Fig. 3a,b); 5mm (Fig. 3c)

Table 1 Time-dependent effect of etoposide on radicle length and mitotic cell division

Treatment of drug (etoposide) for time dependent manner

Etoposide
concentration
(μM)

24 h 48 h 72 h

Radicle length (mm) Mitotic index % Radicle length (mm) Mitotic index % Radicle length (mm) Mitotic index %

Control 19.70 ± 1.2 9.02 19.70 ± 1.2 9.02 19.7 ± 1.2 9.02

50 16.21 ± 1.3 5.40 12.44 ± 1.6 4.90 10.4 ± 0.9 3.66

100 12.84 ± 1.2 5.00 10.60 ± 0.8 3.00 8.3 ± 0.7 1.01

150 10.36 ± 0.9 3.40 6.32 ± 0.9 1.30 3.9 ± 0.7 0.05

LSD (P ≤ 0.05) 1.22 0.67 0.52 0.39 0.75 0.35
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Discussion
The structural relationship between plants and human
topoIIβ
The present investigation reveals that the basic structure
of etoposide-binding domain is similar in both plants and

humans. Therefore, it is expected that etoposide can bind
with plant topoII and inhibits its function. The etoposide-
binding domain is present inside the cleavage core. The
specific etoposide interacting residues (G-478, D-479, L-
502, and R-503) of topoII are conserved between plants
and human (Wu et al. 2011). The overall structural con-
formation of topoIIs are similar in bacteria and yeast as
well (Dong and Berger 2007; Bax et al. 2010; Laponogov
et al. 2010). Etoposide inhibits the topoII activity by stabil-
izing cleavage complex created by enzyme during DNA
replication (McClendon and Osheroff 2007). Plant cell
also possesses topoII with similar function as that of ani-
mals (Fukata and Fukasawa 1982; Xie and Lam 1994).
The drug etoposide contains five rings namely A, B, C,

D, and E (McClendon and Osheroff 2007). The E ring
interacts with glycine (G) 478, aspartate (D) 479, and
leucine (L) 502 of topoIIβ protein. A Van der Waals
interaction is also observed with the glycosidic group of
etoposide and glutamine (Q) 778 and methionine (M)
782 of topoI (Wu et al. 2011). Wu et al. (2011) also de-
termined the high-resolution crystal structure of the
DNA-binding and cleavage core domain of the human
topoIIβ isoform (residues 445 to 1201; here-in-after

Fig. 4 Effect of increasing concentrations of etoposide on callus growth kinetics. a Callus growth inhibition rate with time (in days) when the media contain
increased concentration of etoposide. b The maximum-specific growth rate of callus with increased concentration of etoposide during in vitro culture

Fig. 5 Purification profile of topoII isolated from L. sativus by 7.5%
SDS-PAGE. MW: molecular weight standard in kDa; lane 1, 55%
ammonium sulfate precipitate suspension; lanes 2 to 4, fraction of
CM-cephadex chromatography eluted by 100mM, 120 mM, and 160
mM of KCl respectively in TGD buffer of pH 8
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abbreviated human topoIIβ core) in complex with DNA
and the anti-cancer drug etoposide. The overall struc-
ture of the human topoIIβ core dimer adopts a more
open quaternary conformation than in other DNA-
bound structures as previously reported for bacterial and
yeast topoIIs (Dong and Berger 2007; Bax et al. 2010;
Laponogov et al. 2010) with significant changes in the
relative orientations between the main DNA-contacting
domains of the two etoposide monomers. The topoII
activity has been partially purified and biochemically

characterized from cauliflower inflorescence (Fukata et al.
1986) and pea (Pisum sativum) leaves (Rudenko 1992).
Their biochemical properties of topoII are similar to those
of the other eukaryotic topoIIs. The enzyme topoII has
also been found in higher plant chloroplasts (Lam and
Chua 1987) and also evident by immunological analyses
(Pyke et al. 1989). The chloroplast enzyme may be similar
to bacterial gyrase, since both can relax supercoiled DNA
substrates in the presence of ATP (Lam and Chua 1987)
and has an apparent molecular weight of about 100 kDa
(estimated by Western blot with a heterologous anti-
topoII antiserum) (Pyke et al. 1989). Thus, it apparently
appears that etoposide which is a potent inhibitor of
human topoII also binds with plant topoII and possibly in-
hibits the enzyme action in a similar way.

The functional relationship between plants and human
topoIIβ
Time-dependent activity study of isolated plant topoII using
supercoiled pBS shows that concentration of relaxed and
nicked DNA increases with concomitant decrease of super-
coiled DNA (Fig. 6a, b) with respect to the time of incuba-
tion. Results of plasmid linearization assay support that
etoposide can also inhibits the functional activity of plant
topoII, thereby suggesting that etoposide acts in the similar
way in plant and human topoII. In the present study, grass
pea topoII shows a protein band near 100 kDa as identical
to that reported (Pyke et al. 1989) in Arabidopsis thaliana.
The plasmid linearization assay with increasing con-

centration of etoposide indicates that pBS is present in
supercoiled form in the first two lanes where no topoII
is present (Fig. 7). In 3rd lane, topoII causes nicking of
plasmid and create relaxed and nicked form of plasmid.
With the increasing concentrations of etoposide (≥
20 μM), smearing of DNA appears suggesting cleavage
of DNA at multiple sites in lanes (4th to 7th). Higher
concentrations of etoposide prevent the relegation activ-
ity of topoII (Pommier et al. 2010).

In vivo and in vitro studies
The reduction of radicle length, mitotic index, and inhib-
ition of polyploid cells are observed from 25 μM concen-
tration of etoposide onwards in a dose-dependent manner
signifying the effect of etoposide on cell division. The re-
sult of drug treatment with time-dependent manner
shows that the removal of drug also has the similar effect
like dose-dependent manner. The attributes are signifi-
cantly correlated (p ≤ 0.05) between themselves. All the
result signifies the effectivity of the drug on plant system
as an animal model. Higher concentration of etoposide
has been found to reduce the callus growth. Such findings
highlight the potentiality of the drug etoposide in the in-
hibition of cell division and growth in plant system.

Fig. 7 Plasmid linearize assay by purified plant topoII with increasing
concentration of etoposide. C1, pBS plasmid; C2, plasmid and
etoposide; Lanes 3 to 7, plasmid DNA incubated with purified plant
topoII and etoposide (0, 10, 20, 30, and 40 μM); C3, EcoR1 digested
plasmid. With the increasing concentrations of etoposide (≥ 20 μM)
smearing of DNA are appeared due to the cleavage of DNA at
multiple sites

Fig. 6 Time-dependent plasmid linearize assay with purified plant topoII.
Sc, supercoiled; L, linearized; N, nicked plasmid. a Inhibition of plant
topoII activity by 5% SDS. M, molecular weight marker (step up 1 kb
DNA ladder); C1, pBS plasmid; T0 to T60, plasmid DNA incubated with
topoII for 0min, 10min, 20min, 30min, and 60min followed by the
addition of 5% SDS to stop the reaction; C2, EcoR1 digested plasmid. b
Inhibition of plant topoII activity by etoposide. M, molecular weight
marker (step up 1 kb DNA ladder); C1, pBS plasmid; T0 to T60, plasmid
DNA incubated with topoII for 0min, 10min, 20min, 30min, and 60min
and followed by the treatment of 5 μM etoposide; C2, EcoR1 digested
plasmid. The linear DNA is not visible well in control (C1) but clearly
visible with the increased of intensities in treatments (T10 to T60)
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Conclusion
Present investigation evidently elucidates that etoposide,
which is a potent anti-cancerous drug, having discernible
anti-topoisomerase activity is also effective towards the
inhibition of plant topoisomerase. The results establish a
new possibility to screen out the anti-topoisomerase
drugs using grass pea in vitro and in vivo system for pre-
liminary screening of anti-cancerous lead molecule(s).
Therefore, it may give an excellent opportunity to de-
velop the anti-cancerous drugs using an easy and eco-
nomical approach. This integrated approach would lead
to save cost and time.
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