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Abstract

Background: Diabetic nephropathy is the leading cause of kidney failure worldwide. NADPH oxidase 4 (NOX4) is
an obvious cause for reactive oxygen species production in the kidney mainly via renin-angiotensin system. High
reactive oxygen species results in kidney damage through direct effect or through activation of other pathways
such as the extracellular regulated kinase (ERK) signaling pathway.

Aim: The present study was constructed to investigate the effect of angiotensin Il receptor blocker, valsartan, on NOX4,
ERK1/2expression, and malondialdehyde level as well as their effects on the progression of diabetic nephropathy in
type 1 diabetic rat model.

Methods: The experimental rats were divided into three groups: group | control healthy untreated rats, group
Il streptozotocin-induced diabetic rats, and group Il valsartan treated streptozotocin-induced diabetic rats.

Results: Valsartan showed significantly decreased NOX4 and ERK1/2 mRNA, NOX4 and pERK1/2 protein concentration,
and oxidative stress as evidenced by low malondialdehyde concentration in treated diabetic rats. Valsartan attenuates
albuminuria, improve overall kidney function parameters, and pathological changes compared to diabetic non-treated
rats.

Conclusion: Valsartan treatment impedes renal damage and improve kidney function in treated diabetic nephropathy
rats. The beneficial effect of valsartan was mediated through decrease oxidative stress via downregulation of NOX4 and

ERK1/2 and decreased reactive oxygen species production.
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Background
Diabetic nephropathy (DN), a major micro-vascular com-
plication of diabetes, is the leading cause of end-stage renal
disease worldwide (Collins et al., 2012; Gnudi et al., 2016).
Chronic hyperglycemia, the most prominent feature of
diabetes, direct the activation of intrarenal renin—angioten-
sin system (RAS), and increase production of reactive oxy-
gen species (ROS), which leads to renal tissue injury and
fibrosis (Urushihara and Kagami 2017; Murphy et al., 2015;
Zhang et al., 1999; Singh et al., 1999) .

Angiotensin II (Ang II), a component of renin angioten-
sin system (RAS), mediate the development of diabetic ne-
phropathy through various mechanisms (Ni et al., 2015;
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Onozato et al, 2002; Yadav et al., 2010). Ang II could
increase ROS production through activating reduced nico-
tinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOXs) enzyme (Ushio-Fukai 2009), resulting in
a state of oxidative stress and altered redox signaling,
manifested by damage to macromolecules, eventually
lead to inflammation, fibrosis, and vascular dysfunc-
tion (Wei et al., 2009; Weidinger and Kozlov 2015).
Of the seven NOXs isoform, NOX4 is abundantly
expressed in mesangial and tubular cells and is con-
sidered the major source of ROS production in renal
cells in diabetes (Sedeek et al., 2013).

Previous studies had shown that Ang II, ROS, and hyper-
glycemia could activate the extracellular regulated kinase
(ERK) pathway in different types of renal cells, including
podocytes and mesangial cells (MCs) (Gorin et al.,, 2004;
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Lakshmanan et al,, 2012; Teng et al.,, 2014). ERK plays a key
role in the intracellular signaling pathway that integrates
the transcription of genes involved in numerous cellular re-
sponses in DN (Ni et al.,, 2015; Cheng et al., 2013). It act as
an upstream regulator of TGF-B and SMAD pathways
which are involved in renal fibrosis, ECM deposition, in-
flammation, and proliferation, resulting in hypertrophic re-
sponse in kidney tissue (Ni et al,, 2015; Lakshmanan et al,,
2012; Cheng et al,, 2013; He et al,, 2016).

Recent studies pointed out to the role of modulating
RAS activity through blocking the generation and action
of Ang II using angiotensin-converting enzyme inhibitors
(ACEIs) or Ang II receptor blockers (ARBs), in the man-
agement of diabetic nephropathy (Seferovic et al., 2017).

Valsartan, a non-peptide triazole derivative antagonist of
Ang 11, selectively and competitively blocks the binding of
angiotensin II to the AT1 subtype receptor in vascular
smooth muscle and the adrenal gland (S-i et al., 2011). In
type 2 diabetes rat model, administration of high doses of
valsartan reduces podocyte injury and renal oxidative
stress, which results in not only reduced albuminuria but
also arrest the progression of associated glomerulosclero-
sis (Zhou et al.,, 2014; Wang et al., 2014).

The role of valsartan in the prognosis of type 1 associ-
ated diabetic nephropathy has been less studied.
Therefore, the present study was conducted to investi-
gate the effect of valsartan on NOX4-mediated ROS
production and ERK signaling pathway in type 1 dia-
betes rat model.

Methods

Experimental animals and treatment

Sixty adult male white albino rats (weight 200-300 g),
obtained from the National research center animal
house (Cairo, Egypt), were included in this study. The
rats were housed in pathogen-free conditions (five rats/
cage), with 12:12 h’s light-dark cycles with a stable ambi-
ent temperature of 18-22 °C in the animal house of
Medicine faculty (Suez Canal University). Animals were
provided with normal standard diet of known compos-
ition and free access to water. Animals were left to
acclimatize for 7 days before the experiment. Animal
care before and during the experimental procedures was
done in accordance with the guidelines of the Animal
Ethics Committee, Faculty of Medicine, Suez Canal Uni-
versity (license number: 2586).

Rats were divided into three groups (20 rats/group):
group [ (Gpl) control healthy untreated rats, group II
(Gpll) streptozotocin (STZ)-induced diabetic rats as dis-
eased control, and group III (Gplll) valsartan-treated
STZ-induced diabetic rats.

Forty rats (comprising Gpll and Gplll) were fasted
overnight and rendered diabetic by a single intra-peri-
toneal injection of STZ purchased from Sigma-Aldrich
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Chemical Company (St. Louis, MO, USA) in a dose of
65 mg/kg/body weight (BW) (Zhang et al., 2015). Rats
had received 5% glucose instead of water for the first
24 h after diabetes induction in order to reduce death
due to hypoglycemic shock, resulting from sudden
hyperinsulinemia caused by massive beta cell destruction
(Saeed et al.,, 2012). Tail vein blood glucose level were
measured 3 days after STZ injection, rats with a fast-
ing blood glucose level =250 mg/dl for three
consecutive determinations were considered as dia-
betics (Zhang et al., 2015; Hartner et al., 2014). Two
weeks later, 20 animals were presented with microal-
buminuria, an early sign of DN; GplII received intra-
gastric valsartan (purchased from the market) at a
daily dose of 30 mg/kg/BW for 4 weeks.

Samples collection and preparation

At the end of the experiment, all rats were kept in meta-
bolic cage for 24-h urine collection that is stored at -
80 °C after centrifugation. Rats were fasted overnight
and sacrificed under anesthesia. Blood samples were col-
lected, kept on ice for 1 h, and centrifuged to separate
serum. Serum samples were stored at —80 °C until
analysis.

Rats’ kidney tissues were dissected, rinsed in ice-cold
PBS, and weighted. Left kidneys were fixed in 4% para-
formaldehyde for histological studies. The right kidneys
were excised into two parts: one part (30 mg) was frozen
instantly in - 80 °C for RNA extraction, the second part
was rinsed in ice-cold phosphate-buffered saline (PBS)
to remove excess blood, minced to small pieces, and ho-
mogenized in 5-10 mL of cold PBS according to weight
with a homogenizer (SR30 model ps 80) on ice. The
resulting suspension was subjected to two freeze-thaw
cycles, and the homogenates were centrifuged in a cool-
ing centrifuge for 5 min at 5000xg. Supernatant was
removed, aliquoted, and stored at — 80 °C for biochem-
ical and molecular analysis.

Determination of serum glucose level and kidney
function markers

Glucose, creatinine, and urea in serum and urinary cre-
atinine concentration were assayed using automated
analyzer (Hitachi, Japan, model7020) with specific com-
mercial kits (Cobas 6000, cobas c¢501, Roche). Urinary
microalbuminuria (UAlb) was assayed using immune-
turibidemtric assay, urine albumin/urine creatinine (Ua/
Ucr) ratio, and creatinine clearance was calculated.

Renal histopathological examination

Sections (4-pm-thick) cut from 10% formalin-fixed, par-
affin-embedded kidney samples were stained with
Hematoxylin and Eosin (H&E) and Masson Trichrome
staining, for evaluation of renal glomerular damage,
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tubulo-interstitial damage (Cao et al.,, 2000) and degree
of fibrosis (Sarhan et al., 2014).

RNA extraction and quantitative RT-PCR detection of
renal NOX4 and ERK1/2 genes

Thirty milligrams of renal tissues were used for total
RNA extraction using RNeasy Mini Kit (cat no 74104,
Qiagen, Germany). RNA was quantified using Nano-
drop 8000 (Thermo Scientific USA) and cDNA was
done using 10 ng RNA by reverse transcription using
(QuantiTect Reverse Transcription Kit cat no205311,
Qiagen) in a mastercycler gradient thermocycler
[Eppendorf, Hamburg, Germany]. Then, 1 pl of cDNA
(50 ng/pl) was subjected to PCR amplification per-
formed with an ABI PRISM 7000 Sequence Detector
System (Applied Bio system). The assay reactions
were performed in 25 pl reaction volume including
125 pl SYBR Green PCR mastermix (QuantiTect
SYBR Green PCR Kit cat no.204141, Qiagen,
Germany) according to the manufacturers’ instruc-
tions, using specific sequence primers: Primers for
ERK1/2 (QuantiTect primer assay, Qiagen, Cat no:
QT00176330), NOX4 (QuantiTect primer assay, Qia-
gen, Cat no: QT00186550), and B-actin (QuantiTect
primer assay, Qiagen, Cat no: QT00193473) under the
following conditions: initial denaturation at 95 °C for
15 min, followed by 45 cycles of denaturation at
95 °C for 15 s, annealing at 56 °C for 30 s, and ex-
tension at 72 °C for 40 s. The results were analyzed
using the 272" method of analysis as described by
Livak and Schmittgen (2001).

Determination of pERK and NOX4 proteins concentration
and malondialdehyde level in kidney tissue homogenate
Quantitative measurement of NOX4 and phosphorylated
ERK1/2 (pERK1/2) in kidney tissue homogenate were
carried out using NOX4 ELISA kits (cat.no. SEB924Ra
cloude-clone corp. USA) and pERK ELISA kits (Instant
one™ ELISA, cat.no. 85-86012 eBioSience, Germany) re-
spectively according to manufacturer’s instructions.
Level of malondialdehyde (marker for lipid per-oxida-
tion, and reflect the level of oxidative stress), was mea-
sured using a colorimetric assay with malondialdehyde
(MDA) kit (cat no MD 2529) according to
manufacturer’s instructions.

Statistical analysis

All statistical comparisons were made by means of the
one-way ANOVA test followed by Bonferroni post-hoc
test. Data were expressed as the mean * standard error
of the mean (SEM) and were analyzed with SPSS statis-
tical software version 20. Chi-square was used to
compare histopathological scoring and to find signifi-
cance between groups. A p value of <0.05 was
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considered as statistically significant. Tables and figures
were produced using Microsoft Excel 2013 software.

Results

Effect of valsartan treatment on general and metabolic
parameters

The effect of valsartan on general and metabolic
parameters was shown in Table 1. There was no sta-
tistically significant difference in body weight between
the three groups at the start point or at the end point
of the experiment, although the diabetic group Gpll
lose weight and treated GplIl group gain weight but
the difference was not significant. Fluid and food intake
were highly significantly increased in Gpll (p =0.001)
while fluid and food intake in GpIIl was highly signifi-
cantly reduced (p = 0.001).

Rats in GplI showed increased kidney weight that was
significantly higher compared to Gpl (p =0.001), while
kidney weight in GpllIl was significantly lowered than
Gpll (p=0.001). Regarding kidney weight/body weight
(KW/BW) ratio, the highest ratio was in Gpll, that was
significantly higher than Gpl (p =0.001). GpIII showed
statistically significant lowered KW/BW ratio compared
to GplI (p = 0.001).

At the end point of the experiment, GplI rats showed
significantly elevated blood glucose level (hyperglycemia)
(p=0.001) compared to GI and valsartan treated group
GplII which showed significantly reduced blood glucose
level (p =0.001) compared to GplI in Fig. 1b.

Effect of valsartan treatment on kidney function

Urine volume/24 h in Gpll diabetic rats was signifi-
cantly increased compared to Gpl (p=0.002), while
valsartan-treated GplIl showed decreased urine output
compared to Gpll which was statistically significant
(p=0.001), and urine volume of GplII was slightly el-
evated than Gpl with statistically non-significant
difference (p =0.735), Table 2.

Valsartan-treated GplIl rats showed significant im-
provement of kidney function parameters compared to
diabetic non-treated rats Gpll, significant low levels of
serum creatinine and urea compared to Gpll almost ap-
proach normal value with a statistically non-significant
difference compared to Gpl (p = 1). Creatinine clearance
was significantly elevated in GplIll compared to GPII
(p=0.001) and statistically non-significant compared to
GI (p = 0.140), Fig. 2.

On the other hand, GpllI diabetic rats exhibited sig-
nificant elevated level of kidney function parameters
compared to Gpl Fig. 2. Urinary creatinine level in
Gpll displayed marked reduction compared to Gpl
(p=0.001). GplI creatinine clearance was significantly
decreased compared to Gpl (p =0.001).
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Table 1 General characteristics of the studied groups

Groups variable (mean + SEM) Gpl Gpll Gplll

Body weight (g) (start point) 2764 +10.02 2664+ 9 261+8

Body weight (g) (end point) 268.35+9.88 24805+ 12.21 266.75+10.01
Fluid intake (ml/24 h) 39.66 +0.98 214+1023" 64.7 +1.18%
Food intake (mg/24 h) 294+ 24 52.16+ 188" 37+127"
Kidney weight(g) 049 +0.02 103 +0028" 0.84 +0.038"
KW/BW (g/kg) 175401 43+023" 31+017%

Values are mean + SEM, statistically significant difference, **p, ##p < 0.01, (*) compared to Gpl: normal group, (#) compared to Gpll: DN group. Start point: at the
beginning of the experiment before induction of diabetes. End point: at the end of experiment before scarification of rat. KW kidney weight, BW body weight

Effect of valsartan treatment on histopathological
changes in kidney tissues

Histological studies with H&E stains showed normal
renal tissues in Gpl, with tubular damage score 0, and
glomerular damage score 0 (Fig. 3a).

Gpll showed glomerular hypertrophy, increased
mesangial cells, focal segmental sclerosis in glomerulus,
congested blood vessels, and vacuolar degeneration in
renal tubules. There were also interstitial inflammatory
infiltrate, tubular damage: score 3+, glomerular damage:
score 4+; Fig. 3b—d. GplIIl showed nearly normal renal
tubules, no tubular degeneration, normal Bowman’s
capsule, and 25%mesangial expansion. There is no
interstitial fibrosis, with residual dilatation of few tu-
bules. Tubular damage: score 1+, glomerular damage:
score 1+; Fig. 3e, f.

Histological studies (Masson trichrome stained) for as-
sessment of fibrosis showed no evidence of fibrosis, with
a score for fibrosis: + 1 in Gpl; Fig. 4a. Gpll showed pro-
nounced glomerular sclerosis and interstitial fibrosis
with a score for fibrosis: +4; Fig. 4b, c. GplIl showed
minimal glomerular sclerosis and no interstitial fibrosis,
with a score for fibrosis: + 2; Fig. 4d.

Effect of valsartan treatment on expression level of renal
ERK1/2 and NOX4 genes

The expression of NOX4 and ERKI1/2 genes were both
statistically significantly decreased in valsartan-treated
GplII compared to Gpll (p=0.02, p=0.001) Fig. 5a, b,
while their expression were statistically significantly ele-
vated in GplII compared to Gpl (p = 0.032, p = 0.003).

Effect of valsartan treatment on protein concentration of
NOX4 and pERK1/2

The highest concentration of NOX4 and pERK1/2
proteins were observed in kidneys of Gpll which is sta-
tistically significant compared to Gpl (p = 0.001).

On the other hand, GplII showed statistically significant
decreased NOX4 and pERK1/2 proteins concentration
compared to Gpll (p=0.001, p=0.001) and non-statisti-
cally significant compared to Gpl (p = 1) Fig. 6a, b.

Effect of valsartan on lipid peroxidation

Malondialdehyde was significantly elevated in Gpll
compared to Gpl (p =0.001), while GplII showed a sig-
nificant decrease in MDA concentration compared to

450 ~
400 -
350 o
300
250 A
200 -
150 +
100 -
50 4

Blood glucose (mg/dl)

Blood glucose (start point )

Blood glucose level (start&End point)

a mGpl

Fig. 1 Blood glucose level in the studied groups at the start point {before induction of diabetes} (a) and end point {after 4 weeks of valsartan
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Table 2 Urine volume/24 h in the studied groups at the
endpoint of treatment expressed as (mean + SEM)

Groups Gl Gll GllI
Variable

Urine volume (ml/24 h)

636+067  1393+027"  710+030%

Values are mean + SEM, Statistically significant difference, **p, ##p < 0.01, (¥)
compared to Gpl: normal group, (#) compared to Gpll: DN group
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Gpll (p=0.001), and statistically non-significant differ-
ence from Gpl (p = 0.43) Fig. 7.

Discussion

Diabetic nephropathy is one of the most common dia-
betes mellitus complication, with a heterogeneous and
complex pathogenesis that involves the interaction be-
tween several factors that eventually leads to renal
injury. In the present study, we investigated the effect of
valsartan on the prognosis of diabetic nephropathy in
type 1 diabetes rat model, induced by single STZ
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Fig. 3 Renal tissue stained with H&E (5 mm). a Gpl: normal group. b-d Gpll: diabetic nephropathy group. e, f Gplll: valsartan-treated group
A\

injection (Wu and Yan 2015). The kidneys of diabetic
non-treated rats developed advanced pathological
changes that were implicated on the kidney function pa-
rameters. This diabetic group was characterized by a highly
significant increase in proteinuria which considered as a
major parameter for monitoring progression of DN, and at-
tributed mainly to glomerular filtration barrier damage
(Wang et al,, 2014, 2010, 2011).

On the other hand, after 4 weeks of valsartan adminis-
tration, it was evident that it restored the kidney
function parameters to nearby normal levels compared

to untreated group. In addition, these findings were con-
firmed by the histopathological study; it was noted that
some histopathological changes were comparable to
mild DN (class IIA) (Tervaert et al., 2010), manifested
by minimal glomerular fibrosis, absence of interstitial fi-
brosis, nominal sclerosis, and minimal inflammation in
treated diabetic rats renal tissues compared to advanced
DN (class IV) in non-treated rats. Several studies re-
ported such a beneficial effect of valsartan and other
ARBs with different underlying molecular mechanisms.
Wang et al, (2014) found that valsartan treatment was

valsartan-treated group
A

Fig. 4 Renal tissue stained with Masson trichrome (5 mm) from a Gpl: normal group, b, ¢ Gpll: diabetic nephropathy group, and d Gplll:
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Renal expression of ERK1/2 & NOX4
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Fig. 5 mRNA Expression of £RK1/2 (a) and NOX4 (b) in the studied groups. Presented as mean + SEM, *p, #p < 0.05, **p, ##p < 0.01, (*) compared
to Gpl: normal group, (#) compared to Gpll: DN group
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beneficial in protecting kidney injury in diabetes, includ-
ing improvement of structural and functional changes
and inhibition of fibrosis, inflammation, lipid accumula-
tion, and ER stress in the kidney. Gao et al.,, (2016) re-
ported structural and functional improvement associated
with inhibition of Notch pathway and Zhou et al., (2014)
related improvement to reduction in podocyte injury
and renal NOX-mediated oxidative stress and inflamma-
tion. While Chen et al.,, (2016) relate beneficial ef-
fects of irbesartan in DN to its ability to suppress
RANKL/RANK and the downstream NF- B pathway
and for olmesartan, Lakshmanan et al.,, (2012) reveal
advantageous effect by modulating MAPK cascade
and NOX2 with attenuation of oxidative stress
(Lakshmanan et al., 2012; Zhou et al., 2014; Wang et al.,
2014; Hartner et al, 2014; Chen et al,, 2016; Gao et al,
2016).

In the present study, the molecular mechanisms medi-
ated such effects could be due to the modulation of the
activity of NOX4 and pERK in the renal tissues of
treated rats; diabetic non-treated rats had significantly
elevated NOX4 activity evidenced by a significant
increase in the gene expression and the protein concen-
tration, accompanied by high ROS production and high
MDA level in renal tissues compared to control group.
Surprisingly, valsartan administration maintains NOX4
activity and MDA level within their normal values.

Previous studies confirmed that NOX4 gene ex-
pression has been increased in diabetic rodent model
animal, along with elevated MDA level and increased
H,O, production with subsequent activation of
redox-sensitive signaling pathways were previously
observed in other studies and such effects were an-
tagonized by NOX4 gene knock down by siRNA and
GKT136901 NOX inhibitor (Sedeek et al, 2013;
Zhou et al, 2014; Ding et al, 2007; Etoh et al,

2003; Yaribeygi et al., 2018). In addition, He et al,,
(2016) found that ROS generation induced by high
glucose concentration was mainly derived from
NOX4 but not NOX1 or NOX2 in NRK-49f cells
and animal model which was reversed by resveratol
treatment (He et al., 2016).

Jha et al., (2014) showed that genetic deletion of
NOX4 prevent the development of glomerular injury via
reduction of renal ROS in diabetic mice (Jha et al.,
2014). In addition, in a study on podocyte-specific dele-
tion of NOX4, it was found that NOX4 deletion attenu-
ated  albuminuria,  glomerulosclerosis, = mesangial
expansion, and ECM protein deposition and decreased
ROS production (Jha et al., 2016), illustrating the role of
NOX4 in the development of renal fibrosis.

The ability of valsartan to restraint the expression of
NOX4 in renal tissues of type 1 diabetes rodent model
was reported by Zhang et al,, (2015), in valsartan-treated
group, which points to the role of Ang II receptor
blockers in inhibiting NOX4 expression in diabetic
models. However, Zhou et al.,, (2014) observed that val-
sartan treatment had no effect on the elevated NOX4 ex-
pression in db/db mice and only reduce NOX2
expression and activity. The reason for this discrepancy
may be related to the different animal models used
(Zhou et al.,, 2014; Zhang et al., 2015).

In the present study, valsartan-treated rats develop sig-
nificant reduction in blood glucose level compared to
non-treated DN group. The hypoglycemic effect of valsar-
tan was observed in other studies and could be attributed
to increase glucose utilization in peripheral tissues,
especially muscles, through upregulation of glucose trans-
porter 4 (GLUT4) (Guan et al., 2015; Chan et al., 2003),
along with reduction in both hepatic and renal gluconeo-
genesis via reduce activity of phosphoenolpyruvate
carboxykinase (PEPCK) via the downregulating effect of
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valsartan on NOX4-derived ROS and ERK1/2 (Winiarska
et al, 2011, 2015). Conversely, several studies reported
that valsartan had no effect on blood glucose level in
treated compared to non-treated group; one proposed
explanation for the controversy regarding valsartan effect
on blood glucose may be due to experimental changes to
model used (Zhou et al, 2014; Wang et al, 2014;
Zhang et al,, 2015; Gao et al., 2016; Sun et al.,, 2015).

Previous data declared that hyperglycemia could in-
crease the expression of NOX4 mRNA in both direct
and indirect pathways. The direct effect is through acti-
vation of the NF-kB pathway, mediated by p62/PK(
interaction (Xi et al., 2015). The indirect effect achieved
through induction of Ang II, that affect the mitochon-
drial Ko1p channels thereby simulates the expression of
mitochondrial Nox4, results in abrupt production of
mitochondrial superoxide and H,O, in renal tubular
cells (Kim et al., 2012). Similarly, ERK pathway is consid-
ered as one of the redox signaling sensitive pathways
that could be activated by ROS directly or via
hyperglycemia (He et al, 2016; Robinson and Cobb
1997; Fakhruddin et al., 2017; Manda et al., 2015). H5O,
mediate ligand-independent phosphorylation and activa-
tion of epidermal growth factor receptors, leading to ac-
tivation of mitogen-activated protein 3 kinase (MAP3K),
which results in ERK activation (Meves et al., 2001).

Another possible mechanism for ERK activation by
ROS may comprise the inactivation and degradation of
the mitogen kinase phosphatase (MKPs) that keep the
pathway in an inactive state (Kamata et al., 2005). In
addition, Choi et al, showed that hyperglycemia,
through glutamate-induced oxidative stress, induces sus-
tained activation of ERK pathway through a mechanism
that involves degradation of MKP-1 (Choi et al., 2006).

It was previously reported that ERK1/2 was the
main mediator of renal fibrosis, ECM deposition,
inflammation, and proliferation in high glucose
environment through regulation of TGF-B and
SMAD pathways (Ni et al., 2015; Cheng et al., 2013;
He et al.,, 2016; Abe et al., 2002), and has an import-
ant role in glomerular-endothelial-mesenchymal tran-
sition that characterizes DN (He et al., 2015; Shang
et al,, 2017).

In the present study, the ERK1/2 mRNA expression as
well as pERK1/2 protein concentration were significantly
elevated in diabetic non-treated group compared to con-
trol. A result that was consistent with other previous
studies (Sedeek et al., 2013; Lakshmanan et al., 2012;
Cheng 2013). Moreover, following valsartan administra-
tion, ERK1/2 mRNA expression and pERK1/2 protein
concentration were significantly reduced, and such an
effect was most likely mediated through Ang II blockage,
NOX4-derived oxidative stress reduction, and the
hypoglycemic effect.
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Conclusions

In conclusion, valsartan could protect the kidney from
the deleterious effect of type 1 diabetes-associated ne-
phropathy progression through decreasing oxidative
stress, ERK1/2, and NOX4 activity. Early interventions
by valsartan to decrease the rate of GFR loss could pro-
long the time to development of diabetic nephropathy
and ultimately end-stage renal disease (ESRD).
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