
REVIEW Open Access

Micronutrients and many important factors
that affect the physiological functions of
toll-like receptors
Salwa Refat El-Zayat* , Hiba Sibaii and Fathia A. Mannaa

Abstract

Background: Toll-like receptors (TLRs) are type I integral transmembrane receptors involved in recognition and
conveying of pathogens to the immune system. These receptors are located either on cell surfaces or within
endosomes. They are activated by specific ligand leading to the release of cytokines via signal transduction
pathway. The excess production of these cytokines leads to disrupt the immune homeostasis. There are several
factors regulating TLR expression and consequently affecting their functions. Among these are inflammation,
cytokines, some cellular process, air pollution, depression, stress, some drugs, genetic polymorphism, nutrition, and
micronutrients. Some micronutrients (vitamins and trace elements) may be considered as important TLR regulators,
as they have immunomodulatory functions. Vitamins D, B12, and A; zinc; copper; and iron have important role on
innate immune responses.

Aim of work: This review gives a brief idea on TLR family and attempts to cover the factors affecting the
physiological functions of them.

Conclusion: Of many factors affecting TLRs functions are micronutrients. There is a shortage of researches
concerning the effect of micronutrients deficiency on the function of TLRs, all of which focused on vitamin D but
other vitamins have not got the same importance that they deserve. This orients our efforts to work at this point in
the future.
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Background
Toll-like receptors (TLRs) is a family of pattern recogni-
tion receptors (PRRs) and the main components of in-
nate immunity (Kawai and Akira 2010). They can
protect the host against a vast array of microbial infec-
tions (Zhang and Liang 2016). TLR activation stimulates
signaling cascades by the host as a defense mechanism
against invaders and to repair the damaged tissue (Wang
et al. 2015). The binding of ligand to TLR resulted in the
recruitment of several adaptor proteins and led to acti-
vation of many transcriptional factors which drive the
expression of cytokine genes (Kawasaki and Kawai
2014). The released cytokines promote inflammatory re-
sponses, affect the physiological processes of the host

body, and represent as the master contributors of many
diseases (Bresnahan and Tanumihardjo 2014). There are
many factors regulating TLR function; some of these fac-
tors include inflammation (Schroeder 2009), cytokine
(Miettinen et al. 2001), cellular processes such as cell
migration and apoptosis (Herrera et al. 2011), air pollu-
tion (Zhang and Gallo 2016), neuropsychiatric disorders
(García Bueno et al. 2016), drugs (Bode et al. 2014a),
genetic polymorphism (Tsujimoto et al. 2008), physical
exercise (Cavalcante et al. 2018), aging (Shaw et al.
2011a), and nutritional status (Vidya et al. 2017). Good
nutrition is required for the immune system to function
properly (Mora et al. 2010). Micronutrients are needed
in small amounts, but are essential for good health
(Fuhrman 2014). Their deficiencies could impair innate
immunity and increase susceptibility to infections
(Chandra 2002). Vitamin D, B12, and A were evaluated
for their importance as they are modulators of the
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immune system (Todorova et al. 2017) as well as some
minerals such as zinc, copper, and iron that are essential
for efficient immune function (Djoko et al. 2015). This
review gives an overview of the TLR family and discusses
the different factors affecting the physiological functions
of TLRs.

Overview of Toll-like receptors
TLRs belong to type I transmembrane glycoproteins
with 20-27 leucine-rich repeat motifs for ligand recogni-
tion at N-terminus, a single transmembrane helix and a
conserved cytoplasmic Toll/Interleukin-1 (IL-1) receptor
(TIR) domain at C-terminus for intracellular signaling
transduction (Bryant et al. 2015). They can functionally
recognize external pathogen-associated molecular pat-
terns (PAMPs) and internal damage-associated molecu-
lar patterns (DAMPs) (Yu and Feng 2018). While
external ligands include lipopeptides, lipopolysccharides
(LPS), and bacterial flagellin (Ayres and Schneider 2012),
internal ligands include hyaluronan, fibrinogen, heat
shock proteins, and elements of damaged/fragmented
DNA and RNA (Fig. 1) (Murad 2014). Currently, a total
of 13 TLRs have been identified; TLRs 1–10 are
expressed in humans despite the function of TLR10 be-
ing still unclear, in addition to TLR11 and 12 that are
expressed in mouse (Moresco et al. 2011). TLRs are
expressed in a variety of immune cells including den-
dritic cells, monocytes, macrophages, and B lymphocytes
and non-immune cells such as epithelial cells, endothe-
lial cells, and fibroblasts (Delneste et al. 2007). TLR1, 2,
4, 5, 6, and 10 are expressed largely on the cell surface
while TLR3, 7, 8, and 9 are primarily expressed in the
endosomes (Fig. 2) (Gay et al. 2014). The main charac-
teristics that distinguish different TLRs are ligand speci-
ficity, signal transduction pathways, and subcellular
localization (Singh et al. 2014). The molecular pathways
of TLR signal transduction require two main adaptor
proteins: myeloid differentiation factor 88 (MyD88) that

is utilized by all TLRs except TLR3 and TIR-domain-
containing adaptor-inducing interferon-β (TRIF) that is
utilized by TLR3 and 4 (Kawasaki and Kawai 2014),
resulting in the generation of pro-inflammatory and type
1 interferon through the activation of nuclear factor
kappa-B (NF-κB) and interferon regulatory factors (IRFs)
(Zhang and Liang 2016).

Factors affecting the physiological functions of
TLRs
Expression of TLRs by the host immune system is a cru-
cial step in detection of infection (Hug et al. 2018).
However, various factors control the extent of their ex-
pression according to the prevalence and regulation of
these factors (Vidya et al. 2017; Singh et al. 2014), of
these factors are inflammation, cytokines, some cellular
processes, air pollution, depression, stress, glucocorti-
coids and other drugs, genetic polymorphism, physical
exercise, aging, and nutritional status.

Inflammation
Inflammation is the biological response to harmful stim-
uli that can be a double-edged sword, although it plays a
protective role in eliminating pathogenic factors, but un-
controlled inflammation is associated with several
chronic diseases (Dong et al. 2016). It is an integral part
of immune response (Schroeder 2009). Whatever the
stimulus is, TLRs play a main role in the initiation and
propagation of inflammation through the production of
the pro-inflammatory cytokines (Zhang and Gallo 2016).

Cytokines
Cytokines have been shown to modulate the expression
and activation of TLRs (Noppert et al. 2007). While
TNF-α induces pro-inflammatory activity in TLR signal-
ing, mainly in TLR2, and is involved in many illness
(Gambhir et al. 2012; Schnetzke et al. 2015), IFN-α and
IFN-β have immunomodulatory anti-inflammatory activ-
ities that are involved in some disease treatment (Rathi-
nam et al. 2012). Viral infection of human macrophages
induces TLR1, 2, 3, and 7 mRNA expression in type 1
interferon-dependent process (Miettinen et al. 2001).

Cellular processes
Some cellular processes have been found drastically to
alter the gene expression of the cell thus affecting TLRs
expression (Vidya et al. 2017). These processes include
epithelial-mesenchymal transition (EMT) process, where
the epithelial cells loss their cell polarity and cell-cell ad-
hesion and the damaged cells alter their physical and
chemical properties during tissue repair and wound
healing (Polyak and Weinberg 2009); migration process,
where the cells that do not undergo EMT migrate to the
injury site (Lauffenburger et al. 1996); apoptosis that is

Fig. 1 Exogenous and endogenous ligand of TLRs
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induced by cellular or environmental stimuli where
every apoptotic pathway involves the transcription of
various genes (Brachat et al. 2000); and cell cycle where
it regulates the gene associated with the shutdown of cell
division (Herrera et al. 2011).

Air pollution
Exposure to air pollutants is found to modify innate TLR
signalling (Bauer and Diaz-SD 2012). Air pollutants in-
clude particulate matter (PM)-associated biological com-
ponents (bacteria, fungal spores, viruses, pollen and
endotoxin), cigarette smoke (CS), and ozone (Fig. 3),
which can work to stimulate a pro-inflammatory re-
sponse in the respiratory air way mediated by TLR

activation through either direct interaction with the re-
ceptor (Plummer et al. 2012) or via production of
DAMPs (Lafferty et al. 2010). In respiratory tract infec-
tion, TLR2 and TLR4 signaling is upregulated in neutro-
phils of the air way (Bauer and Diaz-SD 2012) and
alveolar macrophage (Cottey et al. 2010) with altered
cytokine profile (TNF-α, IL-6) and type 1 interferon
(IFN-α,β).

Depression
Several studies revealed the effect of neuropsychiatric
diseases in the expression/activity of TLRs (García
Bueno et al. 2016). TLR3 and 4 expression was signifi-
cantly increased in the brain of depressed subjects, and

Fig. 2 Members and location of TLRs

Fig. 3 Effect of air pollutants on TLRs signalling
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their overexpression caused the abnormalities in cyto-
kine levels in the brain and peripheral samples of sui-
cidal victims (Pandey et al. 2014). Furthermore, TLR4
was highly expressed in PBMC of patients with major
depressive disorder (MDD), and this heightened expres-
sion was reduced following treatment and paralleled
amelioration in depressive symptoms (Kéri et al. 2014).
The responsiveness toward depressive status indicates
that TLR4 activity could directly be involved in the
pathophysiology of MDD (Liu et al. 2014). It was also re-
vealed that the expression of TLR3, 4, 5, and 7 was high
in animal model with MDD (Hung et al. 2014). TLR2
and 4 activation was associated with IL-1, IL-6, and
TNF-α production in irritable bowel syndrome patients
with depression (Jizhong et al. 2016). Enhanced periph-
eral TLR4 expression/activity has been described in sub-
jects with neuropsychiatric diseases and in autistic
children (García Bueno et al. 2016).

Glucocorticoids (GC) and other drugs
Natural and synthetic GC have immunosuppressive and
anti-inflammatory activity for the majority of autoimmune
and inflammatory diseases, despite dangerous side effects
associated with GC therapy (Flammer and Rogatsky
2011). TLR expression is influenced by GC (Imasato et al.
2002). The activation of NF-κB is also inhibited by GC
(Lancaster et al. 2005). TLR signaling is modulated by GC
in liver cell line resulting in downregulation of TLR1 and
9 expression, suppression of pro-inflammatory cytokines,
and upregulation of anti-inflammatory cytokines (Broering
et al. 2011). Other drugs include antibiotics found to regu-
late the immune response in different degrees by modulat-
ing TLR1, 2, 4, and 6, and cytokine expression (IL-1β and
IL-6) such as in sepsis inflammatory condition (Bode et al.
2014b). Antidepressants normalize the increased TLR3, 5,
7, 8, and 9 profile in MDD patients (Hung et al. 2016).
Semapimod, an anti-inflammatory drug, is found to in-
hibit TLR4 and 9 signaling in an experimental model
(Wang et al. 2016). Estradiol and progesterone is found to
modulate TLR1, 2, 3, 4, 5, and 6 gene expression in human
fallopian tube cell line (Zandieh et al. 2016).

Stress
TLR4 mRNA in the rat brain has been shown to upregu-
late in response to different protocols of stress exposure
such as repeated social defeat, restraint stress, and
chronic mild stress. NF-kB activation and cellular oxida-
tive/nitrosative damage are reduced when TLR4 pathway
was disturbed (Gárate et al. 2013; Gárate et al. 2014).
TLR4 is involved in immune changes as a result of en-
dogenous stress signals (Liu et al. 2014). Activation of
peripheral and brain TLR4 triggers sickness behavior,
and its expression is a risk factor of depression (Hines et
al. 2013). Stress exposure elicits a NF-kB pro-

inflammatory response in brain driven by a prior activa-
tion of TLR4 (Trotta et al. 2014).

Genetic polymorphisms
Genetic polymorphisms in TLR4 gene affect sensitivity
to allergens (Zhang et al. 2011). The reduced asthma risk
may be correlated with TLR4 gene as indicated by the
association between TLR4 polymorphisms and the de-
velopment of asthma (Tizaoui et al. 2015). The polymor-
phisms of both TLR4 and TNF-α may increase the risk
of developing tuberculosis after exposure to mycobacter-
ium (Jafari et al. 2018). In addition to TLR4, variants of
TLR2 gene affect lung function in children with asthma
(Klaassen et al. 2013). Polymorphisms of TLR2 and 4
affect the risk of infectious complications in patients
with acute myeloid leukemia subjected to chemotherapy
(Schnetzke et al. 2015).

Physical exercise
The effects of physical exercise on TLR expression and
on inflammatory cytokines production have been dem-
onstrated in few studies, till now it is still an area of con-
troversy. Furthermore, the effect of acute exercise on
TLR expression has received even less attention (Caval-
cante et al. 2018). Early studies state that prolonged
strenuous exercise causes suppression of both TLR ex-
pression and function. Individuals who participated in
intensive exercise training have an increased susceptibil-
ity to upper respiratory tract infections (Peters et al.
1993). It is possible that the exercise-induced suppres-
sion in TLR expression and function was involved in
TLR signaling (Lancaster et al. 2005). Both acute aerobic
and chronic resistance exercise have been reported to
decrease monocyte cell surface expression of TLR4
(Stewart et al. 2005), while (McFarlin et al. 2004) found
no effect of an acute resistance exercise on monocyte
cell surface TLR4 expression. The difference in these
findings might be related to the age of the subject and
severity/duration of the exercise stimulus (Gleeson et al.
2006). Exercise may act as an anti-inflammatory modula-
tor through different processes including cytokines and
TLR signaling (Mikkelsen et al. 2017). While animal
studies globally showed a marked downregulation of
TLR2 and 4 after endurance exercise accompanied with a
reduction in the activation of NF-κB signaling and cyto-
kine production, evidences in human were not strong
enough to conclude the same effect (Rada et al. 2018).

Aging and immunosenescence
Aging is a complex phenomenon that leads to many
changes in the physiological systems of the body. Immu-
nosenescence is one of the most important changes that
occur in all elements of the immune system (Montgomery
2016). It is associated with a low-grade inflammation,
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inflammaging (Fulop et al. 2017). Aging is also associated
with the emergence of many diseases via inflammaging,
for example, innate immune response in elderly people is
impaired and the susceptibility to infection increased as in
pulmonary infection (Boe et al. n.d.). The function of hu-
man TLRs is impaired with aging. Age-associated alter-
ation in innate cells appeared to have reduced TLR
signaling through NF-κB resulting in decreased produc-
tion of inflammatory cytokine and altered chemotaxis re-
sponses as well as decreased phagocytosis and antigen
presentation capacity (Shaw et al. 2011b).

Nutrition
Nutrition, (Fig. 4) (https://foodandhealth.com/make-a-
nutrition-poster/) is one of the various factors that gov-
ern TLR expression (Vidya et al. 2017). Some diets were
found to be important sources of increased TLRs inflam-
matory stimulants (So and Ouchi 2010).

Processed food containing microbial stimulants
Food containing inflammatory stimuli was the main
interest of scientist Clett Erridge. He assessed the pres-
ence of TLR2 and 4 microbial stimulants bacterial lipo-
peptides and LPS, respectively, in a variety of common
foodstuffs. He detected the highest levels of TLR-stimu-
lants in processed foods, minimally processed vegetables
(MPV), and dairy products while fresh fruits and vegeta-
bles contained minimal or undetectable amounts
(Erridge 2010). The amount of TLR2 and 4 stimulants in
food extracts is found to promote insulin resistance and
atherosclerosis in an animal model and correlated with
their capacity to induce TNF-α (Erridge 2011). In a more
recent study, he demonstrated that the pro-inflammatory
stimulants of TLR2 and 4 in some processed foods were
associated with the risk of cardiometabolic diseases
(Erridge et al. 2016). In addition, bacterial polysaccharides
identified in eatable plants such as apple or ginseng were
found to interact also with TLR4 (Zhang et al. 2016).

High-fat diet
TLR2 and TLR4 have been involved in inflammatory re-
sponses to high-fat diet (HFD)-induced obesity in rats
(Wan et al. 2014; Lee et al. 2015). HFD resulted in de-
creased TLR2 and 4 expression on CD14 monocytes and

impaired their function which was detected by the in-
creased secretion of IL-1β, IL-6, and TNF-α from
PBMCs in human (Wan et al. 2014). HFD induced
TLR4-dependent macrophage cell activation with signifi-
cant increase in NF-κB and IL-6 (Lee et al. 2015). The
expression of TLR2 and 4 were upregulated, and the
translocation of NFκB into the nucleus was activated in
high cholesterol/HFD fed mice lung. In vitro, oxidized
low-density lipoprotein (oxLDL) could directly upregu-
late the expression of TLR2 and 4 in lung epithelial cell
lines (Fang et al. 2017).

Non-microbial stimulants
Plant polyphenols from cranberries, tea, and grapes
are non-microbial activators that inhibit LPS-induced
NF-kB activation in TLR4 signaling (Delehanty et al.
2007). W-3 polyunsaturated fatty acids (PUFA) were
found to suppress the excessive inflammatory re-
sponse by decreasing the expression of TLR2 and 4
and some related inflammatory factors in PBMCs of
patients with severe multiple trauma (Yi et al. 2011).
Saturated fatty acids (SFAs) are also non-microbial ac-
tivators of the TLR-signalling pathways (Lee et al.
2015; Erridge and Samani 2009). Lauric acid of coco-
nut oil activates the TLR4 and regulates the expres-
sion of several pro-inflammatory genes (Wong et al.
2009; Calder 2013; Rocha et al. 2016). A similar effect
was also described for the palmitic and stearic acids
of palm oil and Shea butter, respectively, whose regu-
lation of pro-inflammatory genes occurs primarily via
the TLR4/NF-κB signalling pathway (Choi et al. 2012;
Eguchi et al. 2013). Non-bacterial polysaccharides
have also been discovered in fungi and algae, includ-
ing glucans isolated from oat, barley, and wheat
which were found to stimulate TLR4 to prevent dis-
eases (Ina et al. 2013; Zhang et al. 2014). As glucans,
Β-fructans were also found to activate TLR2/NF-κB in
human immune cells (Ende 2013; Vogt et al. 2013).
In a cell culture, β-fructans protected the integrity of
intestinal epithelial monolayers (Vogt et al. 2014).
Pectins, such as lemon pectin, activate TLR2 and
TLR4 and increase intestinal epithelial function in
cellular cultures via activation of MyD88/NF-κB path-
way (Vogt et al. 2016).

Fig. 4 Nutrition; an important factor affecting TLRs
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Selected micronutrients
Some micronutrients (vitamins and trace elements) can
influence several components of innate immunity in
addition to their various physiological roles (Chandra
2002), “they may be considered as important TLRs regu-
lators,” as they have immunomodulatory functions
(Erickson et al. 2000). Of micronutrients; vitamins D,
B12, and A; zinc; copper;and iron (Mora et al. 2010;
Vázquez et al. 2014; Kogan et al. 2017) have important
role on innate immune responses (Fig. 5) (https://www.
thaqafnafsak.com/2015/10/htmI/).

Vitamins

Vitamin D Vitamin D is found to influence both innate
and adaptive immunity (Wei and Christakos 2015). The
discovery of vitamin D receptors (VDR) (Kamen and
Tangpricha 2010) and its activating enzyme 1-α-hydrox-
ylase (Prietl et al. 2013) attracted researchers’ attention
to focus on its importance. VDR are expressed in many
cells of immune system including macrophage, dendritic
cells, T cells, and B cell (Korf et al. 2014). Vitamin D re-
ceived its importance as it is well involved in promoting
innate immune response, stimulating cell proliferation
and differentiation (Myszka and Klinger 2014) and
downregulating dendritic cell responses (Chen et al.
2007; Jeffery et al. 2009). The immunomodulation of
vitamin D includes attenuation and stimulation of Th1
and Th2 cell proliferation (Battault et al. 2013). Vitamin
D was reported to suppress the Th1 cells by inhibition
of pro-inflammatory (IL-1, TNF-α, IFN-γ) secretion (Pet-
tengill et al. 2014). Regarding Th2, vitamin D enhances
the synthesis, secretion, and release of anti-inflammatory
cytokines (IL-4 and IL-10) (Bivona et al. 2017). Defi-
ciency in vitamin D causes pro-inflammatory stress
(Barker et al. 2013), which increased risk of infections,
chronic inflammation, and autoimmune diseases
(Slusher et al. 2015; Vanherwegen et al. 2017).

� The source of vitamin D

The source of vitamin D can be either synthesized in
the human skin after exposure to ultraviolet sunlight
(Bendik et al. 2014) or obtained from very few foods
such as fatty fish, cod liver oils, beef liver, and eggs
(Smith et al. 2017).

� Regulatory role of vitamin D on TLRs

The link between TLRs and vitamin D-mediated in-
nate immunity has been reported (Fig. 6) (Arababadi et
al. 2018). In an early study, the accurate signal system by
which TLR activation induces expression of VDR and 1-
α-hydroxylase remains obscure (Liu et al. 2006). Re-
cently, it was revealed that vitamin D effects on innate
immunity were predominantly linked to Toll-like recep-
tors (Sadeghi et al. 2016). The innate immune response
includes an obvious inflammatory component, and vita-
min D opposed these events by promoting over response
to PAMPs through downregulation of TLRs on mono-
cytes. CD14, a co-receptor of TLR4 that recognizes LPS,
is vigorously stimulated by vitamin D (Wang 2004). The
upregulation of VDR by LPS may further enhance vita-
min D (Tang et al. 2012). It was proved that vitamin D
influence on TLR4 in response to ligand leads to antigen
presenting cell activation (Gambhir et al. 2012), and it
was observed that vitamin D enhances innate antiviral
immune response by upregulating IFN-β expression in
human hepatocytes with hepatitis C virus (HCV) (Gal-
Tanamy et al. 2011). The activation of vitamin D de-
creased the inflammatory status in innate immune
response (Calton et al. 2015). Vitamin D has been found
to regulate IL-10 secretion from Tregs where TLR9 was
highly expressed. In vitro study has shown that vitamin
D was found to downregulate INF-γ gene expression
through the adjustment of gene activity (Urry et al.
2009), leading to the decrease of pro-inflammatory INF-
γ release (Ragab et al. 2016). Regarding bacteria fighting,
activation of TLRs triggers antimicrobial activity against
intercellular bacteria, by upregulating VDR expression
and the 1-α-hydroxylase genes, leading to the induction
of antimicrobial peptide cathelicidin that is responsible
for killing bacteria, while deficiency of vitamin D nega-
tively impacts that mechanism (Liu et al. 2006), besides
it induces autophagy and phagocytosis in human mono-
cytes/macrophages (Yuk et al. 2011). Vitamin D can in-
hibit the NF-κB signaling pathway after TLR2 and TLR4
stimulation in patients with tuberculosis and HIV co-in-
fection (Coussens et al. 2014). In autoimmune diseases,
monocyte exposure to vitamin D causes downregulation
of TLR2, 4, and 9 expression and reduces IL-6 secretion
(Sadeghi et al. 2016). The expressions of TLR2 and 4 on
monocytes of active Behcet’s disease and type 1 diabetes

Fig. 5 Selected micronutrient that influence TLRs
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patients were negatively associated with their vitamin D
levels, and TNF-α synthesis was also decreased upon
TLR stimulation in vitamin D-treated monocytes (Do et
al. 2008; Devaraj et al. 2011).
A marked increase in IL-6, TNF-α, and IFN-α cytokine

profile was shown in vitamin D-deficient participants
after TLR2 stimulation, and this response was reversed
after supplementation with vitamin D (Ojaimi et al.
2013). Adding of vitamin D to the cell culture of PBMNs
isolated from healthy adults after stimulation with the
bacterial ligands showed a significant reduction in in-
flammatory cytokines TNF-α, IFN-γ, and IL-1β as well
as the chemokine IL-8 production while the anti-inflam-
matory response was promoted through the upregula-
tion of IL-10 (Hoe et al. 2016). Vitamin D was found to
downregulate mRNA overexpression of TLR2 and 4 and
pro-inflammatory cytokines; TNF-α in cultured human
keratinocytes lead to the activation of these cells for fur-
ther innate immune responses to pathogens (Schauber
et al. 2007). It was revealed that vitamin D deficiency
and TLR activation were the contributing factors in the
pathogenesis of cardiovascular diseases (Adamczak
2007).

Vitamin B12 Vitamin B12 is an essential micronutrient
that improves overall function of the immune system
(Vázquez et al. 2014). It has been known as anti-inflam-
matory immunomodulator (Todorova et al. 2017; Hos-
seinzadeh et al. 2012). It prevents excessive expression
and synthesis of inflammatory cytokines in human
(Badawi et al. 2013). Deficiency in B12 resulted in re-
duced white blood cells (Ghatpande et al. 2016) and in-
creased susceptibility to infection and diseases (Maggini
et al. 2007). B12 deficiency increased the level of TNF-α
in anemic adults (Killen and Brenninger 2013) and in
children (Ghatpande et al. 2016).

� Dietary sources of vitamin B12

Vitamin B12 cannot be obtained from plants or sun-
light (Boran et al. 2016), but it should be ingested from
animal proteins such as meat, poultry, fish, eggs, milk,
and most other dairy products (Kwak et al. 2010); there-
fore, vegans are at risk for B12 deficiency (Pawlak et al.
2013).

Vitamin A Since early time, vitamin A has been known
as anti-infective vitamin as it is crucial for immune sys-
tem to function properly (Langan et al. 2014). It helps to
maintain the structural and functional integrity of the
skin (Green and Mellanby 1928) and mucosal cells of
eye and respiratory, gastrointestinal, and genitourinary
tracts (Mora et al. 2008). It is also important to the nor-
mal function of several types of innate immune system,
including NK cells, macrophages, and neutrophils (Sun
et al. 2007). In severe inflammation, the body cells in-
creased their abilities to convert retinol form into retin-
oic acid (RA), the active form (Combs 2008). The
inability to make this conversion is considered as a risk
factor for increased susceptibility to infection (Spinas et
al. 2015). During immune responses, enzymes metabol-
izing vitamin A are induced in dendritic cells (DCs) and
in cells of intestinal mucosa to induce RA production.
As a result, the induced RA regulates gene expression, dif-
ferentiation, and function of immune cells including neu-
trophils, macrophages, and DCs (Harrison 2005;
Hammerschmidt et al. 2011). Vitamin A deficiency (VAD)
impaired the components and the inflammatory responses
of innate immunity (Kim 2011; Czarnewski et al. 2018). It
reduced mucosal epithelial regeneration and killing activ-
ity and number of NK cells, as well as the function of neu-
trophils and macrophages (McDowell et al. 1984). In
addition, VAD results in altered cytokine signaling which
would affect inflammatory responses of innate immunity
(Blomhoff et al. 1992). The risks of VAD can be reversed
by supplementation (Semba et al. 2004).

� Dietary sources of vitamin A

Fig. 6 The relation between vitamin D and TLRs
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Retinoid forms of vitamin A are provided by animal
source of foods, including milk, cheese, yogurt, eggs,
livers, shrimp, salmon, sardines, tuna, and chicken,
while carotenoid forms are provided by most colored
fruits as apricot, papaya, and mango (Semba 2012)
and vegetables as sweet potato, tomatoes, spinach,
pumpkin, carrots, broccoli, peppers, Kale, and pea
(Imdad et al. 2017; Fennema 2008). Fish oil, cod liver
oil, and butter contain also high concentration of
vitamin A (Tang et al. 2055). Red palm oil (RPO) has
been investigated for preventing VAD where low level
of PRO intake (≤ 8 g RPO) could increase serum ret-
inol concentrations (Solomons 2006). Sweet potato is
a rich source of β-carotene, which the body converts
into vitamin A and can treat VAD (Roos et al. 2010).

� Regulatory role of vitamin A on TLRs

Many clinical trials revealed that vitamin A supplemen-
tation downregulate the secretion of pro-inflammatory cy-
tokines (TNF-α, IL-6) by macrophages in response to
particular pathogen infections (Blomhoff et al. 1992; Dong
et al. 2017). Although VAD resulted in altered cytokine
signaling which would affect TLRs response, the exact
mechanism by which vitamin A can regulate TLRs is still
unknown, and this may be attributed to the fact that vita-
min A was tightly to be linked in maintaining the struc-
tural and functional integrity of mucosal cells, and for the
normal functioning of immune cells including macro-
phages, NK cells, and neutrophils (McDowell et al. 1984;
Low et al. 2017).

Trace elements
Zinc, copper, and iron are essential trace elements for
optimal innate immune function, and their nutritional
deficiency leads to increased susceptibility to bacterial
infection (Djoko et al. 2015).

Zinc Zinc is an essential micronutrient that is important
for maintaining normal physiological functions (Kogan
et al. 2017). Zinc has received the most attention for its
ability to support immune function (Long et al. 2004). It
is needed for basic cell activities such as cell growth, dif-
ferentiation, and survival (Bhaskaram 2011). Appropriate
levels of zinc are required for the proper functioning of
the immune system while excessive zinc intake has
shown negative effects on it (Wessels et al. 2017). In in-
nate immunity, zinc keeps the epithelial membrane of
natural barrier structure and function (Hojyo and
Fukada 2016). Acute zinc deficiency causes a decrease in
innate immunity (Gruber and Rink 2013; Rink and Gabriel
2000), while chronic deficiency increases inflammation
(Maares and Haase 2016; Barnett et al. 2016).

Zinc deficiency received the most important impact on
children’s resistance to infectious diseases including the
risk, the recurrence, and the severity of infection leading
to diarrhea (Bonaventura et al. 2015). Deficiency in zinc
impaired the complement system; reduced cytotoxicity
of natural killer cells, phagocytic activity of neutrophils,
chemotactic responses of both macrophages and mono-
cytes (Gammoh and Rink 2017); and reduced the ability
of immune cell to generate oxidants that kill invading
pathogens (Krebs 2013; Ibs and Rink 2003). These ef-
fects were readily reversible by zinc supplementation
(Krebs 2013; Prasad et al. 2011). The main sources of
zinc are red meat, poultry, and sea food (Prasad 2013).
Nuts, legumes, and wholegrain cereals (Buracco et al.
2018) and dairy products are rich in zinc (Solomons
2001).

� Regulatory role of zinc on TLRs

There is growing evidence that zinc acts as a signaling
molecule, involved in a variety of signaling cascades such
as TLR signaling of innate immunity (Bhaskaram 2011).
Zinc can modulate inflammation through TLR signaling
at different levels and pathways (Maret and Sandstead
2006). The stimulation of TLR4 by LPS changed the ex-
pression of zinc transporters in DCs and thereby de-
creasing intracellular free zinc (Mocchegiani et al. 2013).
Zinc is known to inhibit NF-κB activation which in turn
decreased the production of pro-inflammatory cytokines,
TNF-α, IL-1β, and IL-6 (Brieger et al. 2013; Kitamura et
al. 2006). It may contribute to the numbers and function
of monocyte, macrophage, and NK-mediated host
defense through promoting and regulating TLR re-
sponses (Haase and Rink 2009; Liu et al. 2013). In
monocytes, it has been observed that TLR4 activation
initiates zinc-mediated signaling in a MyD88- and TRIF-
independent manner (Liu et al. 2013).

Copper Copper is required for different metabolic pro-
cesses (Stafford et al. 2013), but can be toxic when
present in excess (Djoko et al. 2015). It is central to
maintain immune system (Haase and Rink 2014). Like
zinc, copper is a co-factor for Cu-Zn-superoxide dismut-
ase (SOD) enzyme that is required to maintain immune
function (Petris et al. 2003), by catalyzing the production
of H2O2 from superoxide in neutrophils and monocytes
(Badawi et al. 2013). In addition, copper has been found to
modulate macrophage response (Veldhuis et al. 2009). The
regulatory effect of copper on macrophages antimicrobial
pathways was demonstrated by in vitro studies (Steiger et
al. 2010). The elemental analysis of macrophage phago-
somes showed that the macrophage-activating cytokines
such as TNF-α and IFN-γ promoted the accumulation of
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copper within the phagosomes of Mycobacterium avium-
infected macrophages (Halfdanarson et al. 2008).
Copper deficiency is associated with impaired develop-

ment of immune cells such as phagocytic cells (Babu
and Failla 1990). Early studies recorded that mild copper
deficiency in humans and animals resulted in (Wagner
et al. 2005; White et al. 2009; Xin et al. 1991). Copper
deficiency also resulted in a reduction in the ability of
leukocytes to kill ingested microbes that may increase
the susceptibility to infection (Percival 1995). The num-
bers of myeloid precursors in the bone marrow were de-
creased in copper-deficient patients, as well as
vacuolization of these cells (Veldhuis et al. 2009). The best
dietary sources of copper include seafood, livers, legumes,
whole grain, nuts (including peanuts, hazelnut, and pe-
cans), grains such as wheat and rye, sesame seeds, and
fruits including lemon, oranges and raisins (Percival
1998). Cereals, potatoes, peas, red meat, mushrooms, veg-
etables (like kale, parsley, and turnip), and fruits such as
coconuts, papaya and apples were found to contain high
quantities of copper (Lazarchick 2012).

� Regulatory role of copper on TLRs

The direct contribution of copper in macrophage anti-
microbial responses was found through regulating innate
TLR responses (Haase and Rink 2009). Recently, it was
found that Cu/Zn-Mt supplementation decreased the
mRNA levels of TLR4 and its downstream signals in
MyD88 signaling pathways upon Escherichia coli LPS-
induced intestinal injury in weaned piglets, and these
finding lead the author to suggest that dietary Cu/Zn-Mt
attenuated this injury by alleviating intestinal inflamma-
tion, influencing TLR4-MyD88 signaling pathway
(Mason 2016).

Iron Iron is crucial for main cellular functions. It is es-
sential for proper functioning of the immune system
(Jiao et al. 2017). It is required to build effective immune
responses against invading pathogens such as the differ-
entiation and proliferation of T lymphocytes and pro-
duction of reactive oxygen species (ROS) to kill
pathogens (Beard et al. 2007). Deficiency in iron in-
creases infection susceptibility and causes the reduction
in number and action of neutrophils (Doherty 2007), but
excessive iron is highly toxic as it increases the severity
of some pathogens (Katona and Katona-Apte 2008). Iron
is essential for both host and pathogen, and complex
systems of acquisition and utilization have evolved in a
competition or a battle in between, indicating that iron
is a key regulator of host-pathogen interactions, the con-
cept of “nutritional immunity” (de Pontual 2017). Iron
sequestration is a vintage host defense against invading
pathogens in animal (Johnson and Wessling-Resnick

2012; Weinberg and Weinberg 1995) and in human in-
nate immunity to limit their pathogenicity, where serum
iron decrease while iron-storage ferritin increase, keep-
ing iron away from pathogens however available it is to
the host (Ong et al. 2006; Cassat and Skaar 2013). Well-
adapted microbes have in turn developed techniques to
abstract iron from host storage proteins or to interfere
with host iron sequestration (Zackular et al. 2017; Ganz
and Nemeth 2015). Food rich in iron include spinach,
fresh parsley, lettuce, broccoli, cabbage, and spices such
as thyme, cumin, turmeric, or cinnamon. Beef, lamb,
chicken, turkey, and seafood as oysters and octopus are
rich in iron. Soybeans, lentils, and beans are considered
also to be food high in iron (Verbon et al. n.d.)

� Regulatory role of iron on TLRs

Iron was recognized as an extracellular signalling
molecule that affects innate immune response via TLR-
mediated mechanism (http://wiki-fitness.com/iron-rich-
foods/). Macrophages are essential for cellular iron
recycling via TLR2 and 4/MyD88-dependent pathway
(Figueiredo et al. 2007). TLR signaling mediates hypofer-
remia-induced activation of innate response by marked
iron reduction coupled with iron sequestration within
macrophages (Balounová et al. 2014). A strong correl-
ation between enhanced bacterial colonization of the
upper respiratory tract of MyD88-deficient mice and the
inability to lower serum iron was early described
(Layoun et al. 2012). Increased TNF-α and IFN-β is as-
sociated with the impaired TLR4 signaling in mice-defi-
cient iron upon LPS stimulation (Albiger et al. 2005).
TLR4 plays a role in patients with hereditary
hemochromatosis (Wang et al. 2009). TLR2 and 4 up-
regulated the hepcidin (a key regulator for iron absorbed
from diet and iron recycling by macrophages) expression
in macrophages via MyD88 and TRIF signaling pathway
(Balounová et al. 2014). The regulation of iron accumu-
lation in macrophages by hepcidin may affect the levels
of pro-inflammatory cytokine production (Krayenbuehl
et al. 2010). Mice lacking MyD88 accumulate iron in
their livers in response to dietary iron loading as they
are unable to control hepcidin levels (Layoun and Santos
2012; Layoun et al. 2018). Iron potentiated the inflam-
matory response to LPS by damaging mitochondrial
homeostasis and increasing the mitochondrial ROS
levels upon incubation with macrophage or injection to
mice (Hoeft et al. 2017).

Conclusion
There are several factors affecting the physiological func-
tions of TLRs. Among these are inflammation, cytokines,
air pollution, stress, depression, some drugs, genetic
polymorphism, nutrition, and micronutrients. Vitamins
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and trace elements may be considered as important TLR
regulators; however, the area concerning the effect of
their deficiencies on the function of TLRs is still with
less progress. Unlike vitamin D, other vitamins have not
yet received the attention that they deserve regarding
their effect on the physiological function of TLRs despite
their modulatory role to maintain the immune system,
and this area remains a point of research in the future.

Recommendation

� Our main concern should be focused on
maintaining TLRs functioning and keeping the
integrity of innate immune system, and this could be
achieved by avoiding all negative factors including
stress, depression, and pollution.

� Eating healthy food, doing regular exercise, and
supplementation with essential micronutrients are
recommended to support innate proper immune
response.

� Submitting projects on a wide scale for all
governorates to study the effect of micronutrient
deficiency on innate immunity, especially in
childhood.

� Producing an awareness program to orient people’s
attention to the importance of vitamins and
minerals and their impacts on immune system and if
it is possible to get the media involved.

� Nutrition education is a concept that has been
taught in many countries as in UK. In schools, there
have nutrition classes to teach the importance of
healthy food, food pyramid, vitamins, minerals, and
physical activity and why processed food, high
calories, and malnutrition should be avoided (Lean
2015). The hopeful success is to apply a program
such that in Egypt.
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