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Abstract 

Background  Seed vigor identification is critical to guaranteeing the quality and yield of maize. Although seeds 
with impaired vigor may germinate under normal conditions, planting under unfavorable conditions makes it difficult 
to produce healthy plants. Therefore, non-destructive and rapid detection of seed vigor using hyperspectral imag-
ing (HSI) technology is crucial for improving crop production efficiency.

Methods  Hyperspectral images of maize seeds were acquired employing the HSI system, the original spectra were 
preprocessed using Savitzky–Golay smoothing and multiplicative scatter correction, and the feature wavelengths 
were extracted using the successive projections algorithm (SPA). Discriminant models were constructed based 
on support vector machine (SVM), random forest, artificial neural network (ANN), and convolutional neural network 
(CNN-DC).

Results  The results showed that SVM, ANN, and CNN-DC could discriminate well between maize seeds with different 
vigor levels, and their accuracy rate was over 70%. The SPA algorithm showed that the RMSE value achieved a mini-
mum of 0.3406, while the number of variables was 49. The CNN-DC model outperformed the other models, which 
reached the highest accuracy of 92.06%. This study demonstrates that DL combined with HSI has excellent potential 
for identifying seed vigor.

Conclusions  This study shows that the proposed method has excellent results for hyperspectral image data process-
ing and can accurately identify maize seed vigor.

Keywords  Hyperspectral imaging, Maize seeds, Wavelength selection, Convolutional neural network, Vigor 
identification

Background
Maize (Zea mays L.), one of the top three global food 
crops, has more vital environmental adaptability than 
conventional crops such as wheat and rice. Furthermore, 

corn is rich in nutrients and has a wide range of appli-
cations, such as production and industrial product 
manufacturing (Klopfenstein et al. 2013). Seed vigor is a 
seedling’s ability to achieve robust and tenacious growth 
based on germination, and it has an essential impact on 
factors such as the plant’s germination rate, neatness, and 
disease resistance, making it a key indicator for assessing 
the quality of maize seed (Wang et al. 2020). Moreover, 
accurate identification of seed vigor before planting can 
productively select high-quality seeds for cultivation, 
thereby dramatically improving the production and qual-
ity of corn and contributing to agricultural development 
and economic stability (Hao et  al. 2020). It is difficult 
to accurately determine seed vigor using human senses 
(color, texture, and shape) (Qiu et  al. 2018). Despite 
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their reliability, traditional physiological and biochemi-
cal methods and germination tests require dedicated 
reagents, cause significant damage to the sample, and 
restrict the number of trials (Xu et al. 2018; Wang et al. 
2021a). Emerging biotechnological approaches, such 
as protein electrophoresis and DNA molecular marker 
techniques, are costly and operationally demanding 
(Wang et al. 2022). Hence, developing a non-destructive 
and high-efficiency approach for seed viability identifica-
tion has emerged as a popular research topic. Numerous 
academics have worked on non-destructive inspection 
techniques for seeds, such as laser light scattering, hyper-
spectral, machine vision, and nuclear magnetic resonance 
imaging. In contrast, hyperspectral imaging (HSI) can 
acquire seeds’ spectral and image information and reflect 
their internal tissue structure and nutrient content.

Deep learning (DL) has become a popular research 
topic in data analysis in recent years, with successful 
applications in hyperspectral image processing (Ma et al. 
2020). As a representative of DL, convolutional neural 
networks (CNNs) have found widespread application in 
the analysis of crop seed quality (Xia et  al. 2019). Pang 
et al. (2020) evaluated the potential of the HSI technique 
(370.2–1042.3 nm) to identify and predict the viability of 
maize seeds, and a one-dimensional convolutional neural 
network (1D-CNN) achieved the best accurate identifi-
cation rate of 90.11%. Jin et  al. (2022) utilized the near-
infrared hyperspectral imaging (NIR-HSI) technique 
(900–1700 nm) to detect the viability and vigor of natu-
rally aged seeds of three rice seed cultivars, and the CNN 
achieved the best classification result (more than 85%). 
Pang et al. (2021) used the HSI technique (370–1042 nm) 
to identify acacia seed vigor rapidly, and the CNN 
achieved an accuracy of more than 90%. Ma et al. (2020) 
effectively classified the viability of Japanese mustard 
seeds using the NIR-HSI technique (913–2519 nm), and 
CNN’s classification accuracy could attain around 90%. 
In summary, research by many scholars has proved the 
potential of CNN to provide a useful reference for seed 
vigor detection.

This paper is an excellent attempt to use HSI combined 
with CNN to recognize maize seed viability as a research 
object. This study builds upon existing research and aims 
to delve deeper into the use of DL methods for recog-
nizing the vitality of maize seeds (Xu et al. 2022). It will 
also compare and analyze the recognition abilities of DL 
models and traditional machine learning models when 
processing large-scale, high-dimensional spectral fea-
ture information. The primary purpose of this research 
is to investigate the combination of HSI techniques and 
DL methods to identify the vigor of maize seeds. Its par-
ticular goals include the following: (1) Collect HSI data 
on corn seeds with different vigor levels and analyze 

their differential characteristics. (2) Select a suitable pre-
processing algorithm to decrease noise interference and 
enhance the validity of spectral data. (3) Decrease the 
data dimension of spectral features by utilizing the fea-
ture wavelength selection method and developing the 
seed vigor identification model. (4) Assess the perfor-
mance of various models by contrasting the results and 
determining the best discriminative model.

Methods
Maize seed samples
The maize cultivar selected for this trial was Zhengdan 
958, and the test seeds were procured from the seed 
market (Haikou, Hainan). Agronomy experts carefully 
selected the seeds, separated them into seven groups, 
and then subjected them to artificial aging. One set was 
left without any treatment (healthy seeds), and the rest 
six sets were subjected to thermal treatment in an artifi-
cial climate chamber at 50 °C and 80% relative humidity. 
After 1.5, 3, 4.5, 6, 7.5, and 9-h treatments, the samples 
were withdrawn and placed back at room temperature 
(26 °C). Next, 340 seeds of consistent size were randomly 
chosen from each of the seven sets for follow-up experi-
ments (1680 samples in total).

Standard germination test
Research conducted a germination test on 40 randomly 
selected seeds based on International Seed Testing Asso-
ciation (ISTA) standards to verify the variations in the 
viability of different groups (Dadlani and Yadava 2023). It 
placed them on sterilized filter paper and kept them in a 
thermostatic incubator at 26 °C and 60% relative humid-
ity. Throughout the seven days of germination, the exper-
imenters inspected and recorded the seeds daily. Seeds 
with root lengths greater than 5  mm are considered 
vigorous and capable of normal germination (Qiu et  al. 
2018). Table 1 shows the germination test results for all 
seeds.

Table 1  Results of seed germination tests

AT0, AT1, AT2, AT3, AT4, AT5, and AT6 represent Untreated, 50 °C/1.5h, 50 °C/3h, 
50 °C/4.5h, 50 °C/6h, 50 °C/7.5h, and 50 °C/9h, respectively

Seed type Number of 
seeds

Number of 
germination

Germination 
rate (%)

AT0 40 38 95

AT1 40 32 80

AT2 40 24 60

AT3 40 19 47.5

AT4 40 16 40

AT5 40 6 15

AT6 40 4 10
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Hyperspectral imaging system
This study applied the "GaiaSorter" hyperspectral imag-
ing system to capture spectral image data from maize 
seed samples (Xu et al. 2022). The system consists of five 
units (Fig.  1). The "Image-λ" series hyperspectral cam-
era (Imspector, SPECIM, Finland) includes an imaging 
spectrometer and CCD camera. The image resolution 
is 1392 × 1040, and the spectral resolution is 5  nm with 
254 spectral bands from 900 to 1700 nm. The light source 
consisted of four 150 W halogen lamps (2900-ER + 9596-
E, Illumination, USA) placed at a 45° vertical angle. When 
collecting hyperspectral images of the sample seeds, they 
were deposited endosperm side up, and the instrument 
was preheated by starting it 30 min in advance.

Hyperspectral image data acquisition
The obtained hyperspectral data include random noise 
and require black-and-white correction to reduce the 
effects of light source variations and dark currents 
(Esquerre et  al. 2012). The camera lens was blocked 
entirely to acquire a reflectivity close to 0 black references 
( Id ), and a white plastic plate with a reflectivity near 100% 
was used as a white reference ( Iw ). The raw image ( Ir ) can 
be obtained as a corrected image ( Rc ) according to Eq. 1 
(Wang et al. 2021b).

To determine the region of interest (ROI), identify and 
extract individual maize seeds from the original images. 
This research selected 226 bands in the wavelength range 
of 959.3  nm to 1697.9  nm for analysis to minimize the 
impact of noise at both ends of the spectrum on viability 
identification. During spectral acquisition, the samples 
were susceptible to disturbances caused by factors such 
as stray light and seed structure. Therefore, this paper 
preprocessed the spectral data using Savitzky–Golay 
(SG) smoothing and multiplicative scattering correction 
(MSC). SG smoothing reduces random noise, and MSC 
improves the signal-to-noise ratio of the spectral data 
(Gerretzen et al. 2015).

Multivariate data analysis
Traditional machine learning model
Support vector machine (SVM) is a supervised learning 
algorithm that purports to find an optimal hyperplane 
to classify data points into different categories (Zhang 
et al. 2021). This study determines that the SVM’s kernel 
function is a radial basis function (RBF) with a gamma of 
12 and a penalty factor of 100. The random forest (RF) 
is an integrated learning algorithm that constructs each 
decision tree by randomly selecting features and sam-
ples to mitigate the risk of overfitting (You et  al. 2020). 
This paper determines that the maximum number of 
iterations for RF should be 10, and the maximum depth 
should be 6. An artificial neural network (ANN) is an 
algorithm that mimics the neural network of the human 
brain. It consists of multiple neurons that can learn 
to determine how much each input affects the output 
(Azarmdel et al. 2020). The proposed ANN architecture 
is 226-18-12-7 (Xu et al. 2022).

Convolutional neural network model proposed
A convolutional neural network (CNN) is a deep learn-
ing algorithm that extracts features from images through 
convolutional and pooling layers and classifies them 
through fully connected layers, becoming a novel tool for 
solving complex modeling tasks (Wang and Song 2023). 
This paper proposes a one-dimensional CNN architec-
ture (CNN-DC) based on deformable convolutional 
structures for identifying corn seed vigor (Dai et al. 2017), 
as shown in Fig. 2. It contains several convolutional lay-
ers, pooling layers, batch normalization layers, dropout 
layers, and fully connected layers, in which a deformable 
convolution (DC) layer is also used. It introduces off-
sets in the convolution operation to achieve the deform-
ability of the convolution kernels. After using the DC 
layer to extract features, the model uses convolutional, 

(1)Rc =

Ir − Id

Iw − Id

Fig. 1  Hyperspectral imaging system
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max-pooling, batch normalization, dropout, and other 
layers for further processing and optimization. Finally, 
the fully connected layer outputs the classification 
results. The model uses the "ELU" activation function 
and "He" initialization method and introduces the L2 
regularization method to prevent overfitting. The train-
ing process uses cross-entropy as the loss function and 
Adam’s algorithm for parameter updating.

Software tools
Spectral extraction, preprocessing, and image segmen-
tation of seed samples were implemented using ENVI 
5.3 (NV5 Geospatial, Broomfield, USA) and MATLAB 
R2020a (MathWorks, Natick, USA). SVM, RF, ANN, and 
CNN-DC models were constructed in Python 3.8, run-
ning the Tensorflow framework on an NVIDIA GeForce 
RTX 3060 (GPU). Accuracy was utilized as the assess-
ment metric for the models in this study (Wang et  al. 
2021b).

Results
Spectral characterization of seed vigor
There are raw and averaged spectra of maize seeds with 
different viability  levels in the 900–1700 nm wavelength 
range, as shown in Fig. 3. While the raw spectra showed 
plenty of superimposition, the spectral profiles’ global 
trend was similar. The spectral reflectance decreases 
sharply in the wavelength range of 1000–1500  nm, 
accompanied by the appearance of several distinct peaks 
and troughs. The spectral reflectance keeps increasing in 

the range of 1500–1700  nm. According to the available 
studies, the hyperspectral in the 900–1700  nm wave-
length range reveals chemical information about com-
ponents with oxygen, hydrogen, carbon, and nitrogen 
functional groups (Zhang et  al. 2022). In particular, the 
absorption peaks around 1000  nm are associated with 
the O–H functional groups in water, those near 1200 nm 
with the hydrocarbon functional groups in carbohy-
drates, and those around 1500  nm with the N–H func-
tional groups in proteins (Yang et  al. 2017; Alhamdan 
and Atia 2017; Xu et al. 2020). In conclusion, maize seeds 
have discrepancies in spectral reflectance in various 
characteristic bands, which can be applied to discrimi-
nate seed viability.

Feature selection using successive projection algorithm
This study uses the successive projection algorithm (SPA) 
to select the characteristic wavelengths to reduce the 
spectral dimensionality. Select the combination of vari-
ables corresponding to the minimum value of the root 
mean square error of cross-validation (RMSECV) as a 
characteristic wavelength. Figure  4 demonstrates the 
selection results of the SPA algorithm. The RMSE value 
achieves a minimum value of 0.3406, while the number of 
variables is 49.

This study utilized the SPA method to obtain 49 char-
acteristic wavelengths from the preprocessed spectral 
data (226 variables), which accounted for 21.68% of the 
total wavelengths, respectively. They are 959, 973, 983, 
987, 990, 993, 1014, 1038, 1068, 1072, 1075, 1078, 1082, 

Input
49 1

Conv
49 32

Maxpol
24 32

BatchNorm
24 32

DC
24 128
Maxpol
12 128

BatchNorm
12 128
Dropout
12 128

Conv
12 64

Maxpol
6 64

BatchNorm
6 64

Dropout
6 64

Flatten
384

Dense
16

Outpt
7

Input
feature map

Conv Output
feature map

Offsets

Offset 
field

Deformable convolution

Fig. 2  Architecture of CNN-DC model
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1092, 1105, 1115, 1119, 1126, 1136, 1139, 1142, 1156, 
1166, 1169, 1173, 1183, 1199, 1206, 1269, 1272, 1282, 
1286, 1292, 1309, 1328, 1335, 1341, 1374, 1407, 1417, 
1423, 1452, 1459, 1468, 1523, 1542, 1571, 1574, 1698 nm.

Vigor identification results of the spectral‑based model
This study builds SVM, RF, ANN, and CNN-DC models 
based on feature wavelengths to evaluate the accuracy of 
the algorithms. It randomly partitions the dataset into a 
calibration set (1260) and a prediction set (420) in a 6:4 
ratio and then uses a tenfold cross-validation approach to 
determine the mean accuracy as the final result. Figure 5 
compares the accuracy and loss of the CNN-DC net-
work on both the calibration and prediction sets. When 
the epoch is only 50, the accuracy and loss reach 87.10% 

and 0.344, respectively, which indicates that HSI com-
bined with DL can obtain better results for identifying 
maize seed vigor. In addition, the CNN-MFF model only 
needs to process one-dimensional data, which are simple 
to train and perform satisfactorily. As a result, the model 
can balance performance and hardware resource require-
ments, and it has promising prospects for practical pro-
duction application and promotion.

The results of the discrimination of maize seeds with 
various vigors are shown in Table  2. SVM, ANN, and 
CNN-DC achieved relatively good results with accuracy 
rates above 70%. Among them, CNN-DC achieved the 
best accuracy of 92.06%, which is excellent for the rest of 
the models. This indicates that CNN is more conducive 
to modeling spectral data and effectively utilizing feature 

Fig. 3  Maize seed spectra: a original, b average

Fig. 4  SPA algorithm to select feature wavelengths: a RMSE, b selected variables
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information than traditional machine learning methods. 
The CNN-DC is effective in processing original high-
dimensional data and reflects deformable convolutional 
structures’ powerful abilities. The results show that the 
proposed network employs deformable convolutional 
operations on top of CNN to accurately accommodate 
more complex feature shapes for identifying maize seed 
vigor.

Discussion
In the CNN-DC model, the DC layer automatically learns 
spatial offsets by introducing offsets in the convolution 
operation, which makes the convolution kernel deform 
the input feature map, thus enhancing the model’s ability 
to perceive local structures and represent input data. It is 
worth mentioning that seed aging is a sophisticated phys-
iological process. Existing studies have pointed out that 
in hot and humid environments, the activity of antioxi-
dant enzymes within seeds decreases, resulting in a con-
tinuous accumulation of reactive oxygen species (ROS). 
This accumulation triggers lipid peroxidation, damage to 
protein synthesis, and DNA degradation, leading to seed 
inactivation (Wu et  al. 2022). Seeds with low vigor will 
not be able to grow into robust seedlings when planted 

in the field, with consequences for yield. As a result, the 
rapid and non-destructive characterization of corn seed 
vitality is significant for agricultural production.

The results for identifying spectral data based on char-
acteristic wavelengths are satisfactory. The proposed 
method not only ensures the model’s computational 
speed, but it also does not damage the samples. There-
fore, it can be considered to extend the method to seeds 
of different crops and combine phenotypic and spectral 
feature information for identification. Furthermore, stud-
ies have shown that high temperature and high humid-
ity climatic characteristics may have sharp effects on seed 
vigor (Hao et  al. 2020). Thus, it is essential to consider 
the influence of local climate on maize seed vigor when 
planning breeding in tropical regions. In future stud-
ies, it is necessary to establish the relationship between 
seed ROS content and non-destructive testing, which will 
more effectively help researchers clarify the physiological 
changes in seed vigor (Xing et al. 2023). In addition, fur-
ther improvement in the reliability of the spectral-based 
analysis is required, as is the development of hand-held 
seed quality inspection instruments suitable for portable 
and low-cost applications.

Conclusions
This study used HSI technology and deep learning tech-
nology to identify the vigor of maize seeds, constructed 
maize seeds with different vigor levels by artificial aging, 
and then collected the respective hyperspectral image 
data. The samples showed similar trends in spectral 
reflectance but differed at specific characteristic wave-
lengths. When comparing the recognition performances 
of SVM, RF, ANN, and CNN-DC on the spectral data-
set, CNN-DC has the best discrimination rate (92.06%), 

Fig. 5  CNN-DC training process: a accuracy, b loss

Table 2  Results of maize seed vigor identification

Model Accuracy (%) Time (s)

Calibration set Prediction set

SVM 80.71 73.81 1.71

RF 70.24 41.43 1.54

ANN 90.16 88.57 1.68

CNN-DC 97.56 92.06 89.75
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which is superior to the other models. The findings 
demonstrated that the proposed approach has excel-
lent results in hyperspectral image data processing and 
can accurately identify maize seed vigor. Future studies 
will distinguish maize seed vigor from various varieties, 
years, and geographies, establishing a comprehensive 
seed spectral image database.
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