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Abstract 

Background Water contamination has become one of the most challenging problems to clean water supply 
and infrastructure in the twenty-first century. Accordingly, access to clean water is limited by negative impacts 
of climate change and pollutants of varying health risks. Overtime, global population has experienced an exponential 
growth, which has put pressure on the limited water resources. At least 3 billion people globally rely on water whose 
quality is largely unknown.

Main body of the abstract The Nile water basin, found in East and Central Africa, covers 11 countries including DRC, 
Tanzania, South Sudan, Kenya, Uganda, Burundi, Egypt, Ethiopia, Eritrea, Sudan, and Rwanda. The Nile River flows 
through it before draining its water into the Mediterranean Sea in Egypt. Nile River water was pivotal for the ancient 
civilization in the Sudan and Egypt through provision of fertile soil and water for irrigation, drinking, fishing, animal 
husbandry, and channel of transport and in modern times, on top of the historical utilization, for generation of hydro-
electric power leading to conflict and cooperation over the shared water resources. Literature on water quality 
in the Nile water basin is summarized, using the traditional review method to point out gaps, compare the water 
quality with other areas and suggest recommendations based on the findings of this study. The Nile water basin 
has been contaminated by numerous pollutants such as toxic heavy metals and organic contaminants, therefore 
pushing the resident water quality above the World health organization (WHO) acceptable guidelines for drinking 
water, agricultural irrigation, and aquatic life support. Cases of contamination outside the recommended limits of cad-
mium in little Akaki River in Ethiopia, aldrin and dieldrin in the Tanzanian side of L. Victoria and other areas clearly 
show contamination above the WHO limits in the Nile water basin.

Short conclusion The effect of fish cages, micro-plastics, heavy metals, organic contaminants and suspended sedi-
ment load primarily from human activities like agriculture, industries and municipal wastes is continuously contami-
nating the Nile basin water toward poor quality water status. Consequently, interventions like transboundary laws 
and regulations to mitigate the risks must be enforced.

Keywords Water, Transboundary laws, Acceptable guidelines, Nile basin water, Micro-plastics

Background
Water is a critical resource with regard to life and 
human socioeconomic development, but access to it 
is limited by freshwater scarcity, climate change, and 

population growth. Remarkably, over 70% of the earth’s 
surface is covered by water; however, only 2.5% of earth’s 
water is fresh, with majority of the freshwater frozen or 
submerged. For the purpose of hydration, food digest-
ing, and nutritional provision, the majority of plants 
and animals require fresh water to survive. For the 
various uses of water such as irrigation and household 
consumption, periodic water quality monitoring is nec-
essary. Due to lack of monitoring and evaluation strat-
egies,  the  quality  of  water  that  at  least  3  billion  peo-
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ple  depend  on  is  largely unknown or unregulated. 
Climate change has limited access to fresh water 
already affected by pollution through high tempera-
tures, frequent floods, and droughts (Dixit et  al. 2022; 
Yildiz et al. 2022). The Nile water basin—a water basin 
found in East and Central Africa, comprise 11 coun-
tries—DRC, Tanzania, South Sudan, Kenya, Uganda, 
Burundi, Egypt, Ethiopia, Eritrea, Sudan, and Rwanda 
with the Nile River flowing through it before it empties 
its water into the Mediterranean Sea (Abtew et al. 2019; 
Pemunta et  al. 2021). The main tributaries of the Nile 
River are the Blue Nile whose source is L. Tana in Ethi-
opia, White Nile from L. Victoria, and the Atbara from 
northwest Ethiopia. The Nile water basin is divided into 
two major sub-systems, the Eastern Nile sub-system 
and the equatorial Nile sub-system. The Eastern sub-
system comprise the main Nile sub-basin, Blue Nile 
sub-basin, Baro-Akobo-Sobat sub-basin, and Tekeze-
Atbara Sub-basin (Yihdego et al. 2016). The equatorial 
Nile sub-system comprise of the White Nile sub-basin, 
Bahr El Jebel sub-basin, Bahr El Ghazal sub-basin, 
Victoria Nile sub-basin, L. Victoria sub-basin, and L. 
Albert sub-basin (Degefu 2003).

The significance of the Nile water basin in the 11 coun-
tries dates back to the pre-colonial times where the water 
of the Nile River was critical in the rise of one of the earli-
est civilization in the Sudan and early Egypt. The waters 
of the Nile River provided the ancient Egyptians with 
fertile soil and water for irrigation, drinking water, fish-
ing, raising livestock and a channel of transport (Halawa 
2023). The significance of the Nile River has continued 
over the years with the construction of hydroelectric 
power generation in the modern times which has some-
times led to conflict and cooperation over shared water 
resources including the recent conflict over the construc-
tion of the Grand Ethiopian Renaissance dam (GERD) by 
Ethiopia where Egypt did not consent to its construction, 
and the on and off conflict between Kenya and Uganda 
over L. Victoria maritime resources (Allam and Eltahir 
2019; Mwinyi et al. 2022).

The motivation behind this study is based on the cur-
rent trends in industrialization, agriculture, and human 
settlement which have posed serious challenges to water 
quality, health concerns, environmental, and the general 
economic and social development in the Nile basin. The 
study aims at coalescing  previous water quality stud-
ies in the Nile basin with a view to defining the current 
water quality standing of the basin. This perspective will 
help identify the pollutants affecting the water status in 
the Nile basin. Because the general water quality sta-
tus is associated with human activities such as fishing, 
agricultural practices, and information on the choice of 
water infrastructure development, clean water supply 

and transboundary policy formulation to protect the Nile 
basin water quality has become necessary.

Main text
Methodology
The review methodology adopted in this study is the tra-
ditional review which summarizes literature on water 
quality in the Nile water basin, identifying gaps, com-
paring the area of study with other areas and provides 
recommendations based on the findings. The impact of 
inherent pollutants assessed, permissible levels based on 
various international standards, and remediation strate-
gies in decontamination of polluted water is presented.

Gaps in previous studies
Previous studies to ascertain the status of the water qual-
ity in the Nile basin has been extensively examined based 
on individual categories of contaminants such as toxic 
heavy metals or organic contaminants in specific parts 
of the Nile basin. With this approach, the general water  
health of the water basin cannot be predicted clearly. 
Therefore, this review examines in detail the water qual-
ity studies conducted in the Nile basin with the aim of 
providing a clear picture of the current water quality 
standing of the Nile basin.

The study area
The Nile basin is defined by the Nile River—which is the 
longest river in Africa, flowing through the basin from its 
source in the equator of  Eastern Africa in the L. Victoria 
and Lake Tana in Ethiopia through a length of 6,695 km 
and emptying its waters into the Mediterranean Sea in 
Egypt. The major tributaries of the Nile River are Kag-
era in Rwanda, Victoria Nile, Baro-Akobo-Sobat, Bahr 
el Jebel, Bahrel Ghazal, Tekeze-Atbara, Blue Nile, White 
Nile, and the main Nile River which originates from L. 
Victoria in the East Africa (McCartney and Rebelo 2018). 
The basin comprises natural Lakes including Victoria, 
Albert, Kyoga, Edward, and the Tana as shown in Fig. 1.

The Nile River is a special source of fresh water in 
Egypt, primarily for drinking and irrigation. The River 
has its origin in the East Africa and the Ethiopian high-
lands, and drains its water in the Mediterranean Sea in 
Northern Egypt (Abdel-Satar et  al. 2017). Ascertaining 
the pollution nature of the Nile River is essential because 
it influences the quality of life in the basin (Abdel-Satar 
et  al. 2017; El-Sheekh 2017). The Nile River in Egypt is 
considered the primary artery of life in Egypt. None-
theless, the basin is under serious pollution risk stem-
ming from significant levels of fertilizer based nutrients, 
silicates, organic contaminants, heavy metals and 
micro-plastics largely associated with anthropogenic 
activities such as farming, fishing, oil spillage, recreation 
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and industrial waste discharge (El-Sheekh 2017). These 
activities have been known to significantly compromise 
water quality not only in the basin, but also in various 
parts of the world.

Water quality status
Life on earth requires optimal quantity and quality of 
water to thrive; however, population growth and its 
associated factors such as industrialization, mecha-
nized agriculture, and climate change are putting 
significant pressure on water quantity and quality (Cos-
grove and Loucks 2015; Mishra 2023). Water quality 
expresses how appropriate the water is to sustain the 
various uses and applications—this quality varies sea-
sonally from place to place (Ram et al. 2021). Physical, 
chemical, and biological properties  define the quality 
status of water which further indicates the suitabil-
ity for a specific use. The physical properties of water 
include turbidity, temperature, total dissolved solids 
(TDS), color, odor, conductivity, salinity, and dissolved 
oxygen (DO), while chemical characteristics include 
pH, chlorides, fluorides, organic contaminants and 
heavy metals among other pollutants whereas biologi-
cal parameters include bacteria, algae, virus load and 
fecal matter (Jasim 2020). Ambitious strategies for 

hydroelectric power generation, agricultural irrigation, 
rapid population growth and climate change have exac-
erbated challenges in sustainable management of water 
resources and climate adaptation in the Nile basin 
(McCartney and Rebelo 2018).

Chemical compounds applied to deter pests and weeds 
in order to improve crop and animal production are 
defined by various negative environmental and health 
impacts. Pesticides, for instance, are deposited in the soil 
compartment because of their high soil affinity; however, 
through surface runoff, these pesticides may drain into 
the water bodies where they are reported in low concen-
trations. Because of bio-accumulation and bio-magni-
fication, their concentration increases to the apex of the 
food chain mimicking important hormones once in the 
human body which ultimately compromise body immu-
nity, damaging hormone balance, impacting reproductive 
health, impairing growth, and are precursors for  car-
cinogenicity among other etiological risks (Syafrudin 
et al. 2021). There is a significantly low awareness about 
risk and safe handling of agrochemicals among farmers, 
an observation supported by Abong’o et al. (2014), with 
many farmers missing critical information on safety and 
the recommended dose, further exacerbating the risk 
of agrochemicals which usually find their way to water 

Fig. 1 A map showing the countries covered by the Nile River basin a Abd Ellah (2020) and b the Nile water basin map—adopted from Madani 
et al. (2011)
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bodies and ultimately affecting human health, and the 
general environment.

Chemical, microbial, photo-oxidative, thermal, and 
mechanical forces lead to slow degradation of large plas-
tic materials resulting in minute plastic particles of sizes 
below 5 mm (Yang et al. 2021). The surface of these min-
ute micro-plastics adsorb organic pollutants such as pes-
ticides and polycyclic aromatic hydrocarbons (PAHs) 
which expose organisms to combined toxicity (Yu et  al. 
2021). The exponential growth in human population 
around the Nile water basin exposes the water bodies to 
pollution by micro-plastics and other contaminants of 
serious concern. There are also numerous threats to the 
wetlands in the basin resulting from inappropriate agri-
cultural practices like overfishing, invasive plant species 
such as hyacinth, mining activities and oil exploration 
events (McCartney and Rebelo 2018).

Various water uses and applications have quality 
requirements for physical, chemical and/or biological 
characteristics which are dictated by a range of natural 
and anthropogenic activities such as mining, agricul-
ture, water transport, fishing and climatic dynamics. 
Cumulatively, the levels of dissolved oxygen (DO), bacte-
rial load, salinity, suspended mater denoted as turbidity, 
algae, organic contaminants and toxic trace metals pre-
sent in the water systems characterize the status of water 
(Ewaid et  al. 2020; Simeon et  al. 2019). Regular quality 
monitoring of  water resources is essential for a healthy 
ecosystem, industrial and domestic use, and agricultural 
activities, which are critical towards a healthy nation 
(Grafton et al. 2013).

Factors affecting water quality
Effect of fish cages on water quality
The fishing industry has enormous significance rang-
ing from beneficial health effects on the human body 
through the nutritional impact, balance in aquatic eco-
system, and the economic contribution from the fish 
supply chain (Mauli et al. 2023). The practice of the cage 
culture which targets to reduce predation, improved effi-
ciency in feeding, fish  husbandry, health management, 
and in fish harvesting is a common practice in the Nile 
water basin (Mwamburi et  al. 2021; Njiru et  al. 2019; 
Obiero et al. 2022). Consequently, on top of cage culture 
benefits, there has been concern on its potential pollu-
tion impact from feed residues and fish fecal matter, fish 
metabolic by-products, and residual biocides (Nyakeya 
et al. 2022). The pollution potential can be exacerbated by 
cage aquaculture enterprises established with total dis-
regard to the cage culture best management practices as 
demonstrated by Musinguzi et al. (2019). Mawundu et al. 
(2023), explored the effects of net cages on water qual-
ity and nutrient levels of L. Victoria at Kadimu Bay which 

lies on the Kenyan side of L. Victoria, and reported phys-
icochemical factors and eutrophic state for aquatic life 
processes which were within the standard of the WHO 
limits. These findings showed that the fish cage cul-
ture did not pose any significant threat to water quality. 
The findings were in agreement with studies conducted 
by Mwebaza-Ndawula et  al. (2013), Ngodhe (2019) in 
Winam Gulf of L. Victoria, Kenya, and Egessa et  al. 
(2017) who monitored the environment surrounding the 
cage area for possible pollution impacts. Nonetheless, 
the findings of Khaled et al. (2010) in their study on the 
effects of fish cages on the Nile water status at Damietta 
branch indicated a significant water quality improvement 
after the removal of fish cages which can be considered 
a minimal negative impact on water quality by cage fish 
farming. This assertion is supported by El-Kholy (2012), 
although their sampling did not target the cage locations 
only. Musa et al. (2022), reported significant impacts on 
nutrients, planktons and macro-invertebrates restricted 
within the neighborhood of cage culture for rearing Nile 
Tilapia on the quality of the water and bottom sediment 
in Anyanga beach in Kadimu Bay, L. Victoria, Kenya. 
These findings is an indication of the possibility of mini-
mal effects of the cage culture which if not managed well 
can result in detrimental effects on water quality. In the 
short run, the water system may be able to create a bal-
ance from the cage culture; however, there is a high risk if 
it is not practiced in total compliance to cage fish farming 
best practices (Ragasa et al. 2022).

Effect of human activities
Anthropogenic activities such as farming and disposal of 
waste contribute immensely to a given status in a given 
water body. Njiru et  al. (2018) noted that eutrophica-
tion in L. Victoria resulting from increased nutrient load  
dominated shallow bays near large human settlements 
practicing agriculture and other potentially polluting 
activities. Investigations by Ongom et  al. (2017) con-
cluded that the pollution of L. Kyoga by anthropogenic 
activities was evidenced by the high concentration of 
nitrites and phosphates. The influence of human activi-
ties was further confirmed by the impact of wastewater 
discharge and agriculture on water quality and nutri-
ent retention of Namatala wetland, Eastern Uganda, 
where they reported sediment and nutrient loads were 
strongly correlated with seasonal variations in rainfall 
and river discharge, and to the corresponding enhanced 
activities in agricultural practice; however, it was noted 
that the wetland was able to performs its sediment and 
nutrient regulating ecosystems, although the wetland 
could be compromised by intense agricultural practices 
which further puts this function into the risk of heavy 
pollution and possible extinction. However, a study by 
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Saturday et al. (2021) showing spatial and temporal varia-
tions in physicochemical qualities of water of L. Bunyonyi 
showed significant variation with seasons in the physico-
chemical parameters.

Omran and Elawah (2023) investigated the L. Nasser 
water for physical and chemical properties and found 
that the water was suitable for aquatic life; however, some 
areas had high turbidity values in excess of five nephelo-
metric turbidity units (NTU) which is unacceptable for 
drinking, and also lowers the effectiveness of disinfec-
tion. This study agrees with Goher et  al. (2021) in their 
in-depth study of the L. Nasser regarding water quality 
and biotic life before the operationalization of the GERD, 
which showed high variations in spatial and temporal 
distribution on the physicochemical parameters to be 
within the acceptable standards for drinking water as 
reported by the Egyptian drinking water quality stand-
ards (EWQS), the USEPA and the WHO. The findings 
further reported compliance with the criteria for irriga-
tion, according to the Food and Agriculture Organiza-
tion (FAO), and for the thriving of aquatic communities 
against the allowable limits of the Canadian council of 
ministers of environment (CCME), reflecting the  ability 
of the L. water to sustain the different purposes without 
negative effects. A study done by Korium (2021) to ascer-
tain the effects of nutrients and water quality in some 
Khors of L. Nasser, Egypt, found L. water suitable for 
different purposes based on the physicochemical param-
eters reported to be within the recommended levels by 
USEPA, FAO and the WHO, for irrigation and for the life 
of aquatic communities.

Rice farming, which is widespread in the Nile River 
basin from Ahero region (Yamane 2023) and Nyando 
Wetlands (Adunde et  al. 2023) in Kenya, in Uganda 
(Hong et  al. 2021), in Sudan (Abdalla et  al. 2022), and 
Egypt (Bakr and Afifi 2019), indicated that a semi-aquatic 
farming is a possible anthropogenic source for water con-
tamination. Research conducted on rice fields such as by 
Gosetti et al. (2019) in Italy at the Padana plain for rice 
cultivation and Bouman et  al. (2007) reported that rice 
fields contaminate through methane and minimal nitrous 
oxide,  nitrate and use relatively little to no herbicides 
with all the other water quality indicator parameters 
such as total suspended solids, biological oxygen demand 

(BOD) after 5 days, total hardness, total amount of phos-
phorus, nitrogen, and heavy metal concentrations were 
under the limits set by European regulation commis-
sion. At the time of this review, there was no documented 
information on the possible negative effects of rice farm-
ing on the suitability of the Nile basin water.

Heavy metals
Because of the expansion and increased industrialization, 
pollution by substances known to be carcinogens and 
toxic such as heavy metals, which are capable of affecting 
the entire food chain and the environment have increased 
significantly (Mao et  al. 2019). In the water column, 
heavy metals settle down  along with sediments. Selected 
concentrations of toxic trace metals in sediments in parts 
of the Nile water are reported in Table 1. Following expo-
sure of toxic heavy metals in water, air, and food organ-
isms can develop either acute or chronic toxicities, where 
further bio-accumulation and bio-magnification may 
cause a range of tissue aberrations in various organisms 
(Balali-Mood et al. 2021b). Heavy metal toxicity can have 
serious impacts on normal cell processes such as growth, 
proliferation, differentiation, cell repair, and apoptosis 
(Balali-Mood et al. 2021b; Oyugi et al. 2021).

Mekuria et  al. (2020) conducted a study on the little 
Akaki River in Ethiopia to evaluate heavy metal enrich-
ment in the river sediment and found out that the river 
sediments were highly loaded with Cd and Pb which 
exceeded US EPA and the Interim marine sediment qual-
ity guidelines (ISQGs), which could occasionally cause 
potential hazards on exposure to the sediments and the 
water system which is the major habitat for aquatic life. 
The researchers associated the origin of the heavy metals 
to industries and agrochemicals which can be mitigated 
by domestic and industrial effluent treatment to meet the 
national discharge standards before release into the river 
system. The data in Table  2 clearly show a high heavy 
metal load way above the limit set by WHO, an indica-
tion that the Nile basin has been extremely contaminated 
by potentially toxic heavy metals.

With regard to living organisms, metal elements are 
either essential or non-essential depending on their role 
to living organisms (Mao et  al. 2019). Essential metal 
elements which include iron, copper, zinc, cobalt and 

Table 1 Heavy metal load summary in sediments of the Nile River water basin

Site Cu Cd Pb Cr Zn Reference

1. Port Bell, L. Victoria(g/kg) 6.467 3.283 42.184 0.456 Baguma et al. (2022)

2. L. Nasser (mg.kg−1) 17.32 0.2546 1.99 – 31.4 Rizk et al. (2022)

3. Little Akaki River sediment, Ethio-
pia (mg/kg

– 3.14 129.68 109.51 148.28 Mekuria et al. (2020)
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chromium among others are important for living organ-
isms at low concentrations for physiological and biologi-
cal functions; however, in excessive levels, they are toxic 
to the body and can cause adverse health effects. On the 
other hand, non-essential metals are those metal ele-
ments with no known physiological or biological func-
tion in living organisms (Rilwanu 2021). Elements known 
to be toxic include cadmium, beryllium, lead, mercury, 
aluminum, barium, bismuth,  and thallium, which on 
exposure to organisms  may result in the occurrence of 
toxicities which are dependent on dose and duration of 
exposure (Skalnaya and Skalny 2018).

Organic contaminants
Organic contaminants have the ability to bio-accumulate, 
bio-magnify and are not only recalcitrant in the envi-
ronment, but also resist degradation. With the applica-
tion of pesticides and other human activities around the 
catchment area of L. Victoria, there have been significant 
identification of these pollutants in the L. water and sedi-
ments (Kandie et al. 2020; Twesigye et al. 2011). A num-
ber of studies point to low concentrations of organic 
contaminants in the water phase as compared to the sed-
iment, demonstrating that sediments are a sink to vari-
ous organic pollutants. The Tanzanian side of L. Victoria 
was investigated by Wenaty et  al. (2019b) and reported 
higher levels of the organic contaminants in sediments 
as compared to in the water phase, with organochlorine 
in the lake water and sediments reported being the sub- 
threshold residue limits set by European Union and FAO. 
However, based on the threshold effect level for fresh 
water ecosystems, aldrin and dieldrin levels constituted 
harm to aquatic communities and humans. Aldrin and 
dieldrin as a threat to aquatic life was further reported 
by Wasswa et al. (2011) where they identified and quanti-
fied endosulfan sulfate aldrin, dieldrin, dichlorodiphenyl-
trichloroethane (DDT) and its metabolites, which were a 
threat to the lake water quality on the basis of threshold 
effect concentration (TEC) normally applied to ecosys-
tems of fresh water. Aura et  al. (2023) reported higher 
mean for hexachlorocyclohexane (HCH) isomer residues 
in Winam Gulf compared to open waters, therefore rais-
ing concern over the possibility of organic contaminants 
in the lake water. Nonetheless, organochlorine residues 
in the water were reported to be below the WHO allow-
able limits, but sediment samples exceeded these limits, 
indicating the need for regular monitoring of water qual-
ity to assure safe and health human and environmental, 
and implementation of appropriate mitigation measures 
for clean water supply and infrastructure.

Dalahmeh et  al. (2020) reported a number of phar-
maceutically active substances in Kampala, Nakivubo, 
and demonstrating contamination of water resources by 

wastewater. The findings agree with Kimosop et al. (2016) 
who reported significant levels of the selected antibiotics 
in effluent treatment plants, hospital lagoons, and rivers 
within the L. Victoria basin in Kenya. Sludge contained 
the highest levels indicating that antibiotics are prefer-
entially partitioned onto the solid phase. These findings 
suggest the need for proper waste handling and treat-
ment before discharge to avoid possible contamination 
of water resources. The substantial margin of exposure 
and margin of safety with respect to concentrations that 
can occur in pharmacological effect and the concentra-
tions in water bodies of pharmaceutical compounds low-
ers the possibility of public health risks (Bruce et al. 2010; 
Kumari and Kumar 2020).

Agriculture including sugarcane farming which prac-
tices sugarcane burning every other harvesting season, 
rice farming, chemical industrial effluent, municipal 
solid waste incineration, and shipping industry are major 
contributors of polychlorinated biphenyls (PCBs) to the 
environment (Sadañoski et al. 2023). A study by Wenaty 
et al. (2019b) reported the presence of PCBs and organ-
ochlorine pesticides (OCPs) at higher sediment con-
centrations compared to the water compartment in the 
Tanzanian side of L. Victoria. The mean residue concen-
trations of most of these pollutants were below European 
Union and FAO threshold effect concentration and maxi-
mum residue limits for fresh water ecosystems; however, 
aldrin and dieldrin concentrations constituted a threat to 
aquatic life and humans depending on the water. Lower 
levels of PCBs were also reported in Napoleon Gulf of L. 
Victoria in Uganda, by Ssebugere et al. (2014); however, 
the levels in the two studies were much higher than levels 
reported by Afful et  al. (2013). The detection of pollut-
ants in water and sediments, although at allowable limits 
indicates a risk of bio-accumulation and bio-magnifica-
tion, which may put humans who feed on products from 
such water bodies at risk. PCBs were detected below the 
maximum recommended limits known to be of low risks 
with respect to cancer, and insignificant in regard to non-
cancer associated risks for fish and fishery products by 
Wenaty et  al. (2019a), Wenaty and Chove (2022), when 
they evaluated fish products from L. Victoria with sam-
pling in Tanzania, alluded to the safety of fish products 
with respect to human health risks.

Concentrations of organic pollutants in most water 
bodies outside the Nile water basin has been reported 
to be within the allowable limits. Montuori et al. (2020) 
reported levels of PCBs and OCPs in the Volturno River 
and its estuary in Italy to be within the acceptable WHO 
limits in sediments, and therefore not a threat to imme-
diate aquatic communities on the sedimentary environ-
ment. However, a study by Nthunya et al. (2019) in in the 
Nandoni dam found in Limpopo province of South Africa 
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detected a range of phenolic compounds higher than the 
limits allowed by the South African standard, WHO and 
US EPA in drinking water, with concentrations of PAHs 
falling within the threshold limits.

Micro‑plastics
Micro-plastics comprise minute particles of sizes less 
than 5  mm from disintegration of larger materials  in 
the environment which may be precursors for adverse 
health effects such as malnutrition from blockages of the 
gut, inflammation, infertility, and mortality, on human 
and organisms living in aquatic environments (Guzzetti 
et al. 2018; Lee et al. 2023). Various compartments of the 
environment have shown levels of micro-plastics includ-
ing air, soil and water bodies (Hale et  al. 2020). Khan 
et al. (2020) reported a high level of micro-plastics which 
included micro-plastics made of polyethylene, poly-
propylene, and polyethylene terephthalate ingestion in 
fish sampled from the Nile River in Cairo. Polyethylene/
polypropylene co-polymer, polyethylene, polyurethane, 
polyester, and silicone rubber polymers were recovered 
by Biginagwa et al. (2016) from the gastrointestinal tracts 
of sampled fish from L. Victoria Nile perch and Nile 
Tilapia. Similarly, Egessa et  al. (2020) reported a  simi-
lar  composition of polyethylene and polypropylene in 
micro-plastics found on the surface water of L. Victo-
ria indicating that most of the micro-plastics originated 
from secondary sources, from degradation of larger plas-
tics, and are less than 1  mm in size, which is in agree-
ment with a review conducted  by Dusaucy et  al. (2021) 
in which they reported that the common micro-plastic 
size class studied was 300–1 mm. Aragaw (2021a) iden-
tified polyethylene terephthalate, polyethylene, and high 
density polyethylene in the shorelines of L. Tana, a simi-
lar composition of what was reported in L. Victoria with 
the addition of high density polyethylene. Hydrophobic 
pollutants are usually sorbed onto the surfaces of these 
small sized plastic particles thus influencing mobility and 
bio-availability of these hydrophobic pollutants, which 
are precursors for serious health problems (Gateuille and 
Naffrechoux 2022; Prajapati et al. 2022).

Sorption of organic contaminants onto the surface of 
micro-plastics results to synergistic effects of pollution 
from the sorbed organic contaminants on aquatic biota 
including on important aquatic microbes (Chang et  al. 
2022). Remarkably, even with the known potentially neg-
ative effects of micro-plastics in the environment, there is 
no standard method for sampling, analyzing, and report-
ing on micro-plastics to ease information sharing and 
comparison from different sources and various regions 
(Enfrin et  al. 2021). The micro-plastic threat calls for 
regulations on prevention of micro-plastic wastes which 
some African countries have rarely adopted, despite 

challenges in implementation. Most of the African coun-
tries have not yet established these regulations, further 
advancing the threat from micro-plastics in the environ-
ment (Aragaw 2021b). Fishing nets also serve as a source 
of micro-plastics since their material is made of plastic. 
Jeevanandam et al. (2022) reported polyester (82%), poly-
ethylene (15%) and polystyrene (3%) in Hawassa Lake in 
Ethiopia, which the researchers attributed to fishing nets, 
fishing lines and plastics bags. Polyethylene, polypropyl-
ene, polyethylene terephthalate, polyethylene vinyl ace-
tate, and polytetrafluoroethylene were further reported 
by Shabaka et al. (2022) in the Nile delta estuaries. These 
findings underscore the extent of micro-plastic pollution 
which is solely from anthropogenic activities of the Nile 
water basin and the need to institute regulations to miti-
gate the micro-plastic environmental threat.

Suspended sediment load
Suspended sediments load (SSL) comprise of fine inor-
ganic particles of clay and silt below 0.063  mm in size, 
fine sand of 0.63–0.250 mm size, and particulate organic 
matter (AlDahoul et  al. 2021). Gravity assists in settling 
suspended particles through sedimentation; however, 
suspended sediments are fine to the extent that turbulent 
eddies outweigh sedimentation, causing them to be sus-
pended in the water phase (Doychev and Uhlmann 2014). 
The suspended matter reduces light penetration in the 
water column consequently affecting aquatic plant life 
and the entire food chain (AlDahoul et al. 2021; Doychev 
and Uhlmann 2014). The reduction in penetration of light 
into the water column causes a drop in water tempera-
ture and a shift in ion concentration. Suspended solids 
damage fish gills leading to respiratory distress; none-
theless, suspended matter acts as habitats for microbes 
(Walch et al. 2022). As rivers flow, they carry suspended 
sediments along and deposits them at different places; 
however, the deposition of these matter erodes the health 
of the environment, lowers agricultural production, and 
reduces the suitability of portable water resources (AlDa-
houl et al. 2021).

Suspended sediment load has been used as one of the 
measures and benchmarks of soil erosion and some-
times sediment transport rates (Bannatyne et  al. 2022). 
Transported sediment is largely from agricultural areas 
through erosion  as reported by James et al. (2023) in the 
Simiyu River. The Nile sediment load is dictated by the 
constructed dams upstream before the basin drains its 
water into the Mediterranean Sea with additions from 
wind-blown particles mixed with fluvial and deltaic 
deposits in Egypt—a process that has been extensively 
modifying the river course in the last century (Garzanti 
et al. 2015).



Page 9 of 20Kipsang et al. Bulletin of the National Research Centre           (2024) 48:30  

The biological implications of contaminated water
The health impacts of the different heavy metals vary 
from one element to another, and also from organ to 
organ with lead, cadmium, chromium, arsenic and 
mercury posing significant human etiological risks 
(Balali-Mood et  al. 2021a; Rahman and Singh 2019). 
Heavy metal toxicity occurs through various mecha-
nisms such as generation of free radicals leading to 
metal-induced oxidative stress destabilizing oxidant-
antioxidant balance and  consequently causing dam-
age to biological molecules such as proteins and lipids 
through radical oxidation (Fu and Xi 2020; Manoj and 
Padhy 2013). In oxidative stress conditions, transcrip-
tion factors which are sensitive to redox conditions 
like STAT3, NFκB, AP1, and Nrf2 are activated giving 
out signals that results in cell proliferation or cell fatal-
ity (Valko et al. 2006). Also, most heavy metals have a 
strong affinity for sulfur atoms in biological molecules 
thus weakening sulfur bonds in enzymes and proteins, 
and consequently affecting cellular regulatory proteins 
and or signaling proteins that regulate cell sequence, 
apoptosis, cell repair and methylation of DNA, growth 
and cell division which is a precursor for carcinogenesis 
(Briffa et al. 2020; Permyakov 2021). Other mechanisms 
of heavy metal toxicity can include heavy metal inhibi-
tion of protein folding and protein aggregation (Jacob-
son et  al. 2017). The details of oxidative processes are 
presented in Fig. 2.

A study conducted by Ssanyu et al. (2023) which inves-
tigated the factor that shapes community risk perception 
with regard to pollution by heavy metal in the L. Victo-
ria wetlands reported findings showing age category, 
level of education and the type of occupation being the 
major factors that determine community risk percep-
tion. The same study indicated that less than a quarter 
of those interviewed attributed the effect of heavy metal 
pollution with respect to human health to shallow aware-
ness among the wetland dwellers. The researchers rec-
ommended synchronizing education curriculum with 
pollution concepts that are essential to communication 
risk challenges in the exploitation of wetlands resources. 
Therefore, involving the communities on wetland adap-
tion strategies is very important to sustainable use of 
wetland resources especially in the Nile water basin.

In surface water, undissolved pollutants are sorbed 
to suspended matter and in cases where the sorption is 
strong enough, the suspended particles with the sorbed 
pollutants settle as sediments therefore removing the 
pollutants out of the water phase and concentrating the 
pollutants in the sediments (Zhu et  al. 2017). Being a 
pollutant sink, sediments equally act as a source of pol-
lutants when the right conditions of pollutant desorp-
tion are provided, ultimately impeding or allowing free 
movement of the pollutants between the water phase 
and sediment phase (Chiaia-Hernandez et al. 2022; Rizk 
et  al. 2022). Baguma et  al. (2022) evaluated the spatial 

Fig. 2 Representation of the pathways activated by the oxidative stress on biological macromolecules (Chaitanya et al. 2016)
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distribution and metabolic functions of bacteria in sedi-
ment of Kisat and Auji rivers that pass through Kisumu 
City in Kenya, reported sediment of the highly urban-
ized stream catchment zones that had noticeably elevated 
levels of organic matter and nutrients and very high Pb, 
Cd, and Cu content. Baguma et al. (2022) reported that 
contamination levels raised no serious concerns, in Port 
Bell L. Victoria in Uganda however the potentially eco-
logical risk indices showed considerable pollution with 
Cd which can be associated with human activities like 
industrial effluent disposal, oil exploration activities and 
water transport. The anthropogenic association of heavy 
metals was further reported by Al-Afify and Abdel-Satar 
(2022) where they established that the sediments down-
stream at the Rosetta branch of the Nile was polluted by 
Cd, Ni, and Pb, with no seasonal variation thus posing 
low to moderate overall etiological risks.

A study on heavy metal behavior in sediments sam-
pled from the Ugandan side of L. Victoria by Ribbe et al. 
(2021) reported no significant heavy metal pollution in 
the sediments. However, the investigation showed that 
heavy metal concentration variation like high levels of 
copper, titanium and vanadium near shore sediments 
in urban surroundings could be associated with indus-
trial waste waters. Wilbera et  al. (2020) reported high 
Pb, levels which were above WHO permissible guideline 
of 0.01 mg/L, high pH and turbidity in Ugandan Kasese 
district. Further studies by Abdalla et al. (2019) showed a 
higher than US EPA limits for Zn and Cd concentrations 
for the Nile River sediments from the banks approxi-
mately a kilometer away from both localities of Dongola 
and Morowe in the Northern state of Sudan. Compared 
with the main lake site, the inlets contained higher con-
centrations of pollutants. A study by Outa et  al. (2020) 
in Winam Gulf reported significantly elevated levels for 
conductivity, organic matter, bound nitrogen, and trace 
elements such as Cr, Zn, As, Ag, Cd and Pb in shore 
water and surface sediments, indicating increased pollu-
tion potentially from anthropogenic activities in the gulf. 
The surroundings of Winam Gulf are home to indus-
trial activities which discharge effluents into L. Victoria 
potentially polluting the lake with toxic trace metals and 
other  pollutants of grave concern. The influence of these 
events to the lake water and fish pollution has not been 
fully determined. Evaluation on the impact of the activi-
ties around the lake and seasonal variation on the metal 
levels in water and fish from Winam Gulf is described by 
Kiema et al. (2017) who conducted water and fish sample 
analysis in areas with high anthropogenic activities from 
the shoreline into the lake, and the lake near Kisumu 
city, and reported heavy metal concentrations above 
the WHO limits in lake water and fish. Also, of signifi-
cance as a source of toxic trace metal contaminants in the 

water basin is the natural occurrences as evidenced by 
the high heavy metal concentrations in Coco yam which 
was above the optimal allowable limits recommended by 
FAO, WHO, and EU in a study conducted by Mongi and 
Chove (2020) in Kenya, Uganda, and Tanzania. In this 
study, the soils recorded higher heavy metal content than 
in Coco yam samples in all the three countries. Through 
erosion and surface runoff, these heavy metals find their 
way to the surface water bodies including the L. Victo-
ria basin and ultimately serving as a source of trace heavy 
metal contamination in the entire Nile water basin.

Temesgen and Shewamolto (2022a) reported heavy 
metal—Cd, Ni, Cr, Fe, Pb and Mn concentration in 
Holeta and Golli Rivers which were above the WHO 
limits for drinking and irrigation water. Flower farms 
discharging wastewater into rivers without treatment 
exposes the water users to grave health and socioeco-
nomic risks emanating from direct and repetitive expo-
sure to river pollution by the flower farming activities 
(Temesgen and Shewamolto 2022b). The discharge of 
untreated water into water systems is supported a study 
by Dessie et al. (2022) which reported that all of the fac-
tories investigated violated the regulatory recommenda-
tions of one or more pollutants set by the environmental 
protection agency of Ethiopia, US EPA and the United 
Nations FAO, with respect to release of wastewater con-
sidered high in pollutants.

It has been noted that there is a regular built up in 
heavy metals in Nile River as reported by Hassan and 
Elhassan (2016) in White Nile and Blue Nile with respect 
to Cd and Cr, although the concentrations were within 
the WHO permissible limits but higher than for drink-
ing water, except for lead which was in the marginal 
level. Bio-accumulation and bio-magnification further 
worsens the pollution effects through their contributions 
to pollutants up the food chain. This perspective points 
out to the need for regular monitoring and evaluation of 
sea food products including fish for possible presents of 
pollutants as reported by Rizk et al. (2022) whose study, 
indicated excellent quality of water and safe fish for 
human consumption, where the sediment was believed 
to have played a critical role as a sink for heavy metals. 
These finding share similar observations with findings in 
a study conducted by Haile et  al. (2015) in L. Hawassa, 
Ethiopia whose water was excellent for drinking, had 
good quality edible fish, and pristine bottom sediment.

Tools used to monitor and assess water quality
Traditionally, water suitability for a given purpose 
is evaluated through comparison of experimentally 
obtained values of a given parameter against the exist-
ing guidelines (Poonam et  al. 2013). In most cases, 
many parameters are tested per sample, and in a given 



Page 11 of 20Kipsang et al. Bulletin of the National Research Centre           (2024) 48:30  

study, one samples more than one sample thus making 
the data generated big and hard to evaluate in order 
to present a conclusive position of the water usabil-
ity status. Water quality index, originally developed 
by Horton (1965), is the most appropriate method for 
determining water quality based on the selected water 
parameters; however, it has undergone modifications 
by different experts over time (Tyagi et  al. 2013) so 
that any slight change in the value of a given param-
eter affects the overall water quality index (Chidiac 
et  al. 2023). Water quality indices are broadly classi-
fied into four categories based on area of application 
and the mode of determination. The first classification 
is the public indices which includes the National sani-
tation foundation water quality index (NSFWQI) used 
for general water quality evaluation which disregards 
the intended use of the water in the evaluation process 
(Poonam et  al. 2013). NSFWQI is based on the analy-
sis of nine variables, such as biological oxygen demand 
(BOD), dissolved oxygen (DO), nitrate  (NO3

−), total 
phosphate  (PO4

3−), temperature, turbidity, total solids 
(TS), pH, and fecal coliforms (FC) (Gradilla-Hernandez 
et  al. 2020). The second category of indices, specific 
consumption indices, comprises the British Colombia, 
Canadian Council of Ministers of Environment Water 
Quality Index (CCMEWQI) and Oregon Water Quality 
Index (OWQI) indices which assess the water quality by 
taking into consideration the intended use of the water 
such as for drinking or industrial use. CCMEWQI 
delivers a water quality evaluation for the suitability 
of water bodies, to support aquatic communities, and 
has been used in all states in Canada and many other 
parts of the world (Aljanabi et al. 2021). Moreover, this 
measure provides data about the water quality for both 
those in authority and the public. Accordingly, this 
index can be used by various water agencies in many 
countries with minor modifications (Alexakis 2022). 
OWQI, a variant of the NSFWQI, evaluates swimming 
and fishing water quality for managing major streams 
with the determination of sub-indices by investigative 
procedures (Chidiac et  al. 2023). The third classifica-
tion, planning indices, includes indices that are used 
for planning and decision making in quality manage-
ment projects. The fourth classification of water quality 
indices is the weighted arithmetic water quality index 
(WAWQI) which uses statistical methods to monitor 
water quality (Ahmed et  al. 2021; Akhtar et  al. 2021; 
García-Ávila et  al. 2022). Public indices, specific con-
sumption indices, and planning indices use expert 
judgment in allocating weight to the various variables 
resulting in same variable allocated different weights by 
various panels of experts therefore making them sub-
jective (Tripathi and Singal 2019). For the statistical 

category, personal opinions are not considered thus 
removing the subjectivity affecting the first three and 
hence making it more objective.

The water quality indices simplify complex water qual-
ity data sets into a single dimensionless quantity which 
represents overall water quality at a certain location and 
time, and allowing for comparisons between different 
sources or same source from different seasons or sam-
pling points (Lkr et al. 2020; Teshome 2020). This quan-
tity gives the combined effect of the different parameters 
that analyze water quality and predicts if a water body 
poses a potential harm to the various uses of the water 
from a given source (Akter et  al. 2016). Because water 
quality index is a measure that expresses water qual-
ity state as a single dimensionless number, classification 
of the water quality status is summarized as shown in 
Table 3.

A study by Abdel-Satar et  al. (2017) investigated 24 
sampling sites on the water quality in the Egyptian seg-
ment of the Nile River reported remarkable results based 
on seasonal patterns and the influence by the GERD on 
the Nile River water quality. The sampling points are pre-
sented in Fig. 3.

Pollutants are either directly or indirectly discharged 
into the basin through surface runoff, and these pollut-
ants remain low during the rainy season when river flow 
is high (Abdel-Satar et  al. 2017). Anthropogenic activi-
ties contribute in magnifying the risk of pollution, with 
total metal concentrations and the environmental indi-
ces showing that the Nile water samples are significantly 
contaminated with potentially toxic metals (Abdel-Satar 
et al. 2017; El-Sheekh 2017). From the findings of Abdel-
Satar et al. (2017), it was concluded that the water quality 
situation in the Nile basin could get worse by the opera-
tionalization of GERD which could lead to a decrease 
in water volumes in the Nile basin to Egypt. From this 
study, the pattern of WQI was not clear because of fluc-
tuating nature of water quality caused mainly by seasonal 
patterns variations and the commissioning of GERD.

Moreover, the discharge of used irrigation water, efflu-
ents from industries and municipal waste into the Nile 
river, containing high levels of pollutants may deteriorate 
the water quality of the Nile, and subsequently causing 

Table 3 Water quality index classification (Poonam et al. 2013)

Water quality index range Water quality status

> 80–100 Excellent

> 60–80 Good

> 40–60 Moderate

> 20–60 Bad

> 0–20 Very bad
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the river water to become unsuitable for the intended 
various purposes (Abdel-Satar et  al. 2017; El-Sheekh 
2017).

Hazard quotient
Non-carcinogen associated risk factor is expressed as the 
hazard quotient (HQ) relating the dose delivered (ADD) 
in form of average daily dose at the point of exposure to 
a toxicological result on a given organ represented by the 
reference dose (Rfd) as shown in Eq.  1 (Rahman et  al. 
2021).

Nonetheless, pollutants in the environment do not 
exist in isolation but as a mixture. The cumulative risk of 
simultaneous exposure of an organ to several non-car-
cinogens in the environment is found by adding the HQ 

(1)HQ =

ADD

RfD

values of the individual pollutants in existence in the spe-
cific environment to obtain an Hazard Index (HI) with 
HI and HQ < 1 being the acceptable values where adverse 
effects are not likely to occur (Billionnet et al. 2012; Gen-
the et al. 2013).

AquaChem
AquaChem is a numerical software for data manage-
ment, data analysis and reporting with the ability of con-
verting units, calculating charge balance errors, plotting, 
modeling, and statistical data manipulations (Kumar 
2012). The software has also been used to evaluate trends 
for tens or hundreds of samples and parameters within 
a short period of time and assesses aqueous geochemical 
interactions during acid mine drainage (Said et al. 2022). 
AquaChem was used by El Kashouty (2013) in modeling 
the limestone aquifer in the western Nile River between 
Beni Suef and El Minia in Egypt.

Fig. 3 A map of sampled points in the Egyptian section of the Nile River (Abdel-Satar et al. 2017)
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Artificial neural network
Artificial neural network (ANN) is an intelligent system 
constructed through biological neural network moti-
vation for solving numerous problems through a set of 
stages such as recognition of pattern, prediction, opti-
mization, associative memory, and control developed 
with an intention of mimicking intelligent behavior (Lin 
et al. 2020; Thakur and Konde 2021). Six environmental 
parameters that included pH, TDS, DO, COD, BOD, and 
ammonia were used by Sulaiman et al. (2019) in Malaysia 
to classify water quality using ANN, which gave a water 
quality classification of 80% accuracy. The numerical tool 
helps reduce the water quality sampling site parameters, 
and ultimately cutting down on costs and reveals the 
patterns of water quality for decision making by govern-
ments and stakeholders (Isiyaka et al. 2019).

Adaptive neuro‑fuzzy inference system
Adaptive neuro-fuzzy inference system (ANFIS) is a an 
artificial intelligence program which combines fuzzy 
inference system (FIS) and ANN to approximate highly 
complex and nonlinear systems by taking advantage of its 
accuracy and interpretability (Santoni et al. 2019). ANN 
numerical code has been adopted recently for statistical 
models because is able to capture complex nonlinearities 
in a system against linear regression methods to mimick-
ing how the human brain operates by processing infor-
mation available to the input layers in order to achieve 
a desirable output (Ahmed et  al. 2019). It takes advan-
tage of neural network merits and theories of fuzzy logic 
systems in its operation to learn the features of a given 
data and alter the system parameters to suit the required 
error criterion of the system in order to generate an out-
put by translating the information to experts in a set of 
rules, where ANN automates the process thus reduc-
ing the searching time. Ahmed and Shah (2017) devel-
oped ANFIS model which accurately predicted BOD. 
Mohadesi and Aghel (2020) used ANFIS/genetic algo-
rithm and neural network to predict inorganic indicators 
of water quality, while Yan et al. (2010) employed ANFIS 
model that used a number of water quality param-
eters to classify the water quality of major river basins 
in China, including Songhua River, Liaohe River, Haihe 
River,Huaihe River, Yellow River, Yangtze River, Pearl 
River,Taihu Lake, Chaohu Lake, Dianchi Lake, Qiantang 
River, and Minjiang River, with the model predicting 
approximately 90% of the river quality status.

The benefits of water monitoring and assessment
Water covers 71% of the earth surface; however, a small 
percentage of water is fresh and accessible for use as 
drinking water and other activities including irrigation. 
The quality of water for drinking, and use by aquatic 

communities, irrigation, and industry are under constant 
threat from pollutants which are constantly becoming a 
risk to both human and the natural environment (Qadri 
and Faiq 2020). Monitoring and evaluation of water sta-
tus is essential in determining specific contaminants and 
their source in order to identify existing and emerging 
problems, analysis of trends to identify short and long-
term water quality patterns, managing and preventing 
water contamination, design appropriate water pollution 
mitigation measures, for compliance with water qual-
ity standards, determining whether pollution control 
programs are working, inform plans and policy frame-
works that improve water quality to meet designated use 
of water and for managing emergencies (Dansharif et al. 
2023; Keiser et al. 2019).

WHO and European commission limits and their 
implication on the Nile water basin
Exposure to pollutants in the environment over extended 
period of time stretching to many decades precipitate 
health concerns that lead to adverse health effects on 
the exposed organisms. The WHO, EC, and the US EPA 
established internationally accepted guideline values for 
chemical substances based on possible health problems 
(Garnick et al. 2021; Tsaridou and Karabelas 2021; WHO 
2011). Physical parameters like taste, odor and appear-
ance, even at very low concentration of the contaminants 
of health concern may sometimes make the water unpal-
atable leading to rejection of water, although no guide-
line value has been set (Brusseau and Artiola 2019; Omer 
2019). A guideline value represents the concentration of 
a particular contaminant below which the contaminant 
does not cause any significant risk to health over a life-
time of consumption. Pesticide metabolites are regarded 
as relevant to drinking water guidelines if it has inherent 
characteristics similar to those of the parent pollutant in 
terms of its pesticide target action or that either it or its 
transformation products cause a health problem to the 
general public (Villaverde et  al. 2016). From the limits 
presented in Table 4, it is evident that the WHO has pro-
vided guideline values for most of the selected pollutants. 
Some guideline values have also been provided by the US 
EPA and the European Commission.

Remediation strategies in water supply 
and infrastructure
The presence of a pollutant substance in significant con-
centrations that can cause adverse effect on public health 
and or the environment necessitates remediation to be 
taken by the respective authorities in order to return the 
water quality from being polluted to the desired qual-
ity level (Zamora-Ledezma et  al. 2021). Remediation 
removes contaminants, treats the affected site to convert 
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pollutants into less toxic substances and or contain the 
pollutants in the state they are in order to prevent them 
from spreading into other compartments of the environ-
ment. Water remediation strategies are either incident-
specific or site-specific, taking hours to months or years 
and are divided into three phases that include charac-
terization, decontamination, and clearance phases which 
may overlap or occur simultaneously (Kumar et al. 2019). 
The remediation methods include filtration, evaporation, 
reverse osmosis, ion exchange, redox reactions, precipi-
tation, and electrochemical removal strategies.

Characterization phase determines the extent of con-
tamination through the identification of contaminants, 
their concentration, their interaction, and mobility in the 
water system. Location of contaminants and the extent of 
contamination is determined through chemical analysis 
with an objective of determining the extent of remedia-
tion to be applied (Debnath et al. 2021). Once the extent 
of contamination and the risks are defined, appropri-
ate water treatment methods are selected, appropriate 
infrastructure chosen and implementation of preferred 
water treatment decontamination  method. Sometimes 
the whole infrastructure decontamination can be neces-
sitated by contaminant properties and in  situations 
where a large portion of the system is contaminated 

(Khan et  al. 2021). Decontamination process extents to 
management and disposal of any contaminated wastes 
including contaminated water, infrastructure unable to 
be decontaminated, and or by-products generated during 
decontamination.

Decontamination strategies can be biological, chemi-
cal or physical. Biological approaches, commonly 
referred to as bio-remediation, involve the use of 
organisms such as plants, bacteria, and fungi to remove 
or neutralize pollutants from a contaminated site (Pant 
et  al. 2021; Sharma 2020). The organisms break down 
hazardous substances, usually organic substances and 
in some cases in reducing or oxidizing inorganic sub-
stances such as nitrate into less toxic or non-toxic 
substances. Bacteria species such as  Pseudomonas 
aeruginosa can convert mercury  (Hg2+)  by bio-trans-
forming it to the neutral non-toxic form (Hg) (Ma et al. 
2019). Prokaryote bio-remediation of oil spills by add-
ing inorganic nutrients to help bacteria already present 
in the environment to grow and multiply, consequently 
feeding on the hydrocarbons in the oil droplet by break-
ing them into inorganic compounds such as water and 
carbon dioxide (Baniasadi and Mousavi 2018). Some 
species, such as  Alcanivorax borkumensis, are known 
to produce surfactants that break oil into droplets 

Table 4 Selected water quality guidelines (Baran et al. 2022; Brusseau and Artiola 2019; Dettori et al. 2022; WHO 2021)

Element WHO limits (mg/L) EC limits (mg/L) US EPA limits(mg/L)

Arsenic 0.01 0.01 0.01

Fluoride 1.5 1.5 4.0

Chromium 0.05 0.025 0.1

Copper 2.0 2.0 1.3

Lead 0.01 0.005 0.015

Nickel 0.07 0.02 –

Manganese 0.08 0.05 –

Cadmium 0.003 0.005 0.005

Mercury 0.006 0.001 0.002

Nitrate (as  NO3) 50 50 10

Nitrite (as  NO2) 3 0.5 1

Aldrin and dieldrin 0.00003 – unregulated

2,4-D 0.03 – 0.07

Eldrin – – 0.002

Chlorpyrifos 0.03 – –

Lindane 0.002 – 0.0002

Methoxychlor 0.02 – 0.04

Metolachlor 0.01 – unregulated

Benzo[a]pyrene 0.0007 0.00001 0.0002

DDT and metabolites 0.001 – –

pH 6.5–8.5 – –

Dioxin – – 0.00000003

Glyphosate – – 0.7
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accessed by bacteria that degrade the oil (Panchal et al. 
2018). Oil-consuming bacteria present naturally in 
water bodies before oil spills naturally bio-remediate 
with reports of up to 80% non-volatile components of 
oil degraded within the first year of spill (Bacosa et al. 
2022). This form of remediation strategy has attracted 
significant interest with researchers genetically engi-
neering other bacteria to consume petroleum products. 
Engineering of catabolic enzymes to enhance degrada-
tion rate or broaden the substrate specificity constructs 
organisms that accomplish numerous related or unre-
lated metabolic events by enhancing the likelihood and 
optimal performance of the process (Das et  al. 2023). 
Similarly, genetic engineering provides genes at dis-
posal that encode the biosynthetic pathways of bio-
surfactants, thus improving efficiency of the biological 
degradation process through enhanced contaminant 
bio-availability in the natural environment or through 
incorporation of genes on the used organism that 
give them resistance to critical stress factors thereby 
increasing survival under extreme conditions and 
operational efficiency of the catalyst (Imam et al. 2022; 
Sokal et  al. 2022). Phytoremediation is a cost-effective 
variant of bio-remediation using plants that absorb the 
contaminants over time over a very large volume of 
contaminated environment, which therefore provides 
in-situ remediation without excavation (Garbisu and 
Alkorta 2001; Mani and Kumar 2014).

Chemical remediation such as reactive barriers intro-
duces chemicals to remove the pollutant or make it less 
detrimental, which can be achieved through chemi-
cal precipitation, oxidation, ion exchange, and carbon 
absorption (Saravanan et  al. 2021). Reactive barriers 
contain a permeable wall in the ground or at a dis-
charge point with the ability of chemically reacting with 
contaminants in the water, some such as those made 
of limestone can increase the pH of acid mine drain-
age which is capable of removing dissolved contami-
nants by precipitation into a solid form (Budania and 
Dangayach 2023). On the other hand,  physical reme-
diation involves removal of the contaminated water and 
either treating with filtration or disposing of it (Sara-
vanan et al. 2021).

Nano-remediation applies a reactive materials of vari-
ous sizes ranging from 1.0 to 100 nm size which have a 
huge potential to decontaminate affected sites (Fei et al. 
2022). This process utilizes both catalysis and chemical 
reduction of the pollutants of concern, ultimately result-
ing in detoxification and transformation of pollutants 
into eco-friendly forms (Fei et al. 2022). The minute size 
and surface coatings in nanoparticles provides a large 
surface area for optimal degradation efficiency in com-
parison to larg-sized particles, therefore making them 

good candidates for in-situ applications (Saravanan et al. 
2021).

Conclusions
The Nile water basin has greatly influenced human set-
tlement since the prehistoric times of human civilization. 
The human activities from this settlement in the Nile 
basin have significantly contributed towards the deterio-
ration of water quality over time. Discharge of munici-
pal wastes has negatively impacted on water quality as 
determined by the presence of pharmaceutically active 
compounds, high conductivity, and biochemical oxygen 
demand. Agriculture such as sugarcane, rice and fish 
farming has also contributed to pesticides, OCPs, and 
PCBs, in the Nile  water basin. Heavy metal, one of the 
major contaminants of the water basin has been largely 
attributed to industrial activities, mining and munici-
pal waste, with little contribution from the soil. Most of 
the water quality parameters in the basin are still within 
the recommended levels; however, caution must be paid 
to the high levels of cadmium, aldrin and dieldrin as 
reported in literature. Sediments of the water basin have 
acted as  sinks for pollutants from their relatively high 
concentration  as compared to the pollutants in the water 
column. This is an important process that limits the 
transport of pollutants downstream thus reducing the 
transportation risks. Micro-plastics, an emerging pol-
lutant component which in entirety comes from anthro-
pogenic activities, have also been reported in the water 
basin. Aquatic animals from the basin have been severely 
exposed to pollutants to levels that pose risks to their sur-
vival or affecting those who feed on them. These findings 
point to the need of instituting policies, laws and regu-
lations to govern the management of the transboundary 
water resources with an aim of mitigating the already out 
of limits pollutants and prevent the within limits pollut-
ants from crossing the limits. There is need to embrace 
water remediation strategies, and also to conduct public 
sensitization on the consequences of human activities on 
water quality.
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