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Abstract 

Background This study explores how nanofluids can be optimised to improve heat transfer in various applications. 
A genetic algorithm that finds the optimal parameter configuration to achieve the best performance is studied 
and applied. The research focuses on the critical factors of heat transfer coefficient and pressure drop, which deter-
mine the efficiency of nanofluid-based systems.

The main body of the abstract The methodology involves artificial intelligence and multi-objective optimisation 
techniques. Results show that pressure drop and heat transfer coefficient have an inverse relationship. The study pro-
vides a range of optimal values for nanofluid temperature, particle size, and volume fraction.

Results The results show that the temperature, particle size, and volume fraction should be high. Another variation 
will be small particle size and small volume fractions with fluid temperature around 80 °C. The analysis yielded the fol-
lowing configuration with the optimal PEC. Temperature (oC), particle size (nm), volume fraction (%), heat transfer 
coefficient (kW/m2K), pressure drop (Pas), and PEC were 82.6 °C, 175.26 nm, 4.75%, 792.49 kW/m2K, 29.94 Pas, and 5.01.

Conclusions The research highlights the potential of  Al2O3–water nanofluids to maintain pressure drop and enhance 
heat transfer. It contributes to understanding nanofluid optimisation and provides practical insights for designing 
and selecting nanofluid systems that enhance heat transfer.

Keywords Nanofluids, Enhancement, Heat transfer, Optimisation, Genetic algorithm, Multi-objective optimisation, 
Al2O3–water nanofluids

Background
Numerous researchers have recognised the enhanced 
thermal characteristics of nanofluids. However, the 
optimal selection of parameters for obtaining the best 
nanofluids remains to be determined. This paper pre-
sents these research queries and endeavours to offer 
feasible solutions (Hojjat 2022). A study was conducted 
to determine the optimal conditions for heat transfer 
in rectangular ducts using nanofluids. The research-
ers found that an optimal geometry, nanofluid, and 
flow conditions are necessary for efficient heat transfer. 
They used numerical simulations and artificial neural 
networks to model heat transfer coefficient and pres-
sure drop. They used the NAGA-11 multi-objective 

optimisation algorithm to find the optimal aspect ratio 
for rectangular ducts with nanofluids. The researchers 
also applied TOPSIS and LINMAP, a linear program-
ming-based method that maps decision criteria and 
preferences to a scale. Overall, they obtained an optimal 
solution at 2.28% volume fraction, a Reynolds number 
of 400, and an aspect ratio of 6 while highlighting the 
effects of concentration and aspect ratio on heat trans-
fer and pressure drop. In their study, they showed the 
Pareto fronts obtained from the multi-objective optimi-
sation of the problem, showing all the non-dominated 
solutions. Property computations were carried out 
using formulas and correlations. The MLP-ANN algo-
rithm was applied with a data split ratio of 70:10:20—
train:validation:test, with inputs as volume fraction 
(%), aspect ratio (AR), and Reynolds number. The algo-
rithm had three hidden layers with five neurons with 
tansig as the activation function, and the output layer 
was the purelin function. The Levenberg–Marquardt 
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algorithm was used to train the algorithm, and 100 data 
points not seen in the training were generated. Sym-
metry was applied, and flow regime was the 400–2200 
Reynolds number range, considering up to 5% volume 
fraction of the  Al2O3/water. A hydraulic diameter of 
0.01 was applied in all ducts (Azmi et  al. 2017). The 
significance and potential of nanofluids in improving 
the efficiency and mechanical performance of refrig-
eration systems were emphasised. A brief history of 
refrigerant phases was also highlighted, particularly 
the introduction of fluorocarbon refrigerants in 1930 
due to safety and durability concerns. These refriger-
ants aim to eliminate toxic compounds and flammable 
properties. Optimising nanofluids performance in heat 
exchangers was found to lead to more energy savings 
and efficient system operation. Adding nanoparticles to 
refrigerant and lubricant oil enhanced the heat trans-
fer coefficient in heat exchangers, resulting in increased 
energy savings. Using a refrigerant and nanolubricant 
mixture was crucial to achieving better performance in 
vapour compression of refrigeration systems for spe-
cific applications. A 21% energy saving was recorded 
with the use of ZnO/R152a refrigerant nanolubricant. 
Due to its potential, there is a drive to use nanorefrig-
erants in various applications (Kamsuwan et  al. 2023). 
The PEC measures the heat transfer coefficient to pres-
sure drop ratio between nanofluid and water. When 
PEC is greater than 1, it indicates that the nanofluid can 
achieve the same heat transfer at a lower pumping cost.

A study was conducted to investigate the behaviour 
of nanofluid flow and convective heat transfer within 
microtubes. The microtubes were subjected to constant 
wall temperature and constant heat flux boundary con-
ditions. The analysis used a multiphase Eulerian–Lagran-
gian method and focused on assessing the effects of three 
key parameters: the Peclet number (ranging from 175 to 
3500), nanoparticle volume fraction (varying from 0.1% 
to 1.0%), and nanoparticle diameter (ranging from 40 to 
130  nm) on the thermal characteristics of  Al2O3–water 
nanofluid flow through a microtube, specifically noting 
the entry region effects (Ma et al. 2023).

The investigation revealed several important insights. 
The entry effects of Reynolds number on the apparent 
friction factor and the axial heat conduction impact on 
the Nusselt number had to be considered. The entrance 
region characteristics had a more dominant role in deter-
mining the pressure drop and thermal performance 
compared to the effects of nanoparticle concentration 
and size. However, as the dimensionless axial distance 
increased, the influence of the entrance region gradually 
diminished, and the impact of nanoparticle concentra-
tion and size became more pronounced in the flow and 
heat transfer results. Nanoparticles had an earlier and 

greater impact on the thermal performance of the nano-
fluids than on flow resistance (Ma et al. 2023).

The performance evaluation demonstrated that nano-
fluids in the entry region showed enhanced heat transfer 
and economic feasibility. For instance, when the Peclet 
number was set at 175,  Al2O3–water nanofluids with par-
ticle concentrations of 0.1%, 0.2%, 0.5%, and 1% showed 
substantial increases in the performance evaluation cri-
terion (PEC) under both constant heat flux and constant 
wall temperature conditions at a dimensionless axial dis-
tance of x* = 0.01, compared to deionised water. Under 
constant heat flux conditions, the PEC improved by 
104.0%, 103.1%, 113.8%, and 128.5%, respectively. Under 
constant wall temperature conditions, the PEC improved 
by 74.6%, 77.2%, 85.6%, and 102.5%, respectively, com-
pared to deionised water (Ma et al. 2023).

The researchers aimed to create a parabolic trough col-
lector (PTC) that had an insulator roof and an off-centre 
absorber tube, using nanofluid. They analysed the nano-
fluid using two different models, single-phase and two-
phase mixture (TPM and SPM), which contained SiC 
nanoparticles with diameters ranging from 16 to 90 nm 
and varying volume fractions (0%–4%), mixed with water 
and EG–water. The study looked at how using TPM and 
SPM affected the fluid dynamics and heat transfer within 
the absorber tube (Arani and Monfaredi 2023).

The investigation showed some significant findings. 
Firstly, using TPM resulted in higher values for param-
eters such as pressure drop (3%), Nusselt number (5%), 
friction factor (3%), energy efficiency (3%), and the per-
formance evaluation criteria (PEC) (3%) for both the 
novel PTC design and the conventional PTC arrange-
ment, compared to SPM. Additionally, the novel PTC 
design, when using TPM, showed significantly improved 
Nusselt numbers (25%), energy efficiency (30%), and PEC 
(50%) (Arani and Monfaredi 2023).

Moreover, when TPM was employed, the temperature 
distribution within the absorber tube and the heat transfer 
fluid region was found to be higher than when using SPM. 
The highest PEC was achieved for SiC/EG–water and EG–
water nanofluids, reaching 1.67 and 1.70, respectively, in 
a sinusoidal-wavy minichannel with a nanoparticle vol-
ume fraction of 4%, nanoparticle diameter of 90 nm, and 
a Reynolds number of 15,001.3. It was also noted that EG–
water, as the base fluid with a nanoparticle diameter of 
90 nm, demonstrated superior energy efficiency compared 
to pure water (Arani and Monfaredi 2023).

In Baro et  al. (2023), the optimisation of a nanofluid-
based direct absorption solar collector (NDASC) was 
explored to achieve maximum thermal efficiency and 
temperature increase. Computational fluid dynamics was 
used to solve equations for mass, momentum, energy 
balance, and wavelength-dependent radiative transport 
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within a three-dimensional NDASC model. The goal 
was to maximise thermal efficiency and temperature rise 
while adhering to a constraint on the maximum tem-
perature rise for low-temperature NDASC. To achieve 
this, various computational intelligence techniques such 
as multi-objective genetic algorithms (MOGA), multi-
objective particle swarm optimisation (MOPSO), and 
multi-objective differential evolution (MODE) were 
employed. The key decision variables that significantly 
impact the NDASC thermal performance include col-
lector geometry (length, width, and height), nanoparticle 
properties (volume fraction), and collector operational 
parameters (mass flow rate and fluid inlet temperature). 
MOPSO was found to be the most effective optimisation 
algorithm in terms of objective function values and solu-
tion convergence. Pareto solutions were obtained, and 
sensitivity analysis was conducted using the corner point 
solutions from the Pareto front determined by MOPSO. 
The results showed that NDASC thermal efficiency 
ranges from 59.9% to 98.4%, while temperature rise varies 
between 7.81 K and 71.93 K, subject to the specified con-
straint. This research contributes to the development of 
compact and efficient NDASC designs capable of achiev-
ing the required thermal efficiency and temperature rise 
for a wide array of low-temperature applications in resi-
dential and industrial settings (Baro et al. 2023).

In their article (Bhatti and Ellahi 2023), the authors 
conducted a numerical investigation of the flow of a non-
Darcian nanofluid over an elastic surface that can stretch. 
They assumed that the fluid is viscous, electrically con-
ductive, and flows through a porous material. The study 
considered various factors such as heat radiation, Brown-
ian motion, and viscous dissipation in this flow configura-
tion. The boundary conditions included slip velocity and 
thermal slip. The mathematical modelling used similarity 
variables, resulting in a set of nonlinearly coupled differ-
ential equations. To solve these equations, the authors 
used the Keller-box approach in combination with a finite 
difference scheme. All numerical simulations were carried 
out using MATLAB software, and the results were pre-
sented, giving insights into key physical parameters such 
as the local Sherwood number, skin friction coefficient, 
and Nusselt number (Bhatti and Ellahi 2023).

In their study (Dehghan et  al. 2023), the researchers 
examined how an inclined step and different obstacle 
arrangements affected heat transfer in a microchannel 
with graphene oxide nanofluid. They used a numerical 
model with ANSYS Fluent 19.0 software and conducted 
simulations to improve forced convection heat transfer. 
The investigation focused on Reynolds numbers (1, 50, 
and 100), nanofluid nanoparticle volume fractions (0, 
0.02, and 0.04), and the presence and location of triangu-
lar obstacles (Dehghan et al. 2023).

The results show that placing triangular obstacles at the 
top of the first step, combined with a nanoparticle volume 
fraction of 4% and Reynolds numbers of 50 and 1, led to sig-
nificant improvements in heat transfer. Compared to pure 
water, there was a maximum increase of 12.7% in the Nus-
selt number and a 12.3% rise in the heat transfer coefficient. 
However, this improvement also resulted in higher pressure 
drop and friction factors, which were affected by the pres-
ence and location of the obstacles (Dehghan et al. 2023).

In Hojjat (2022), it is important to note that only one type 
of flow geometry was considered. The implications of vali-
dating only with cylindrical pipe flow instead of rectangular 
pipe were noted. It was observed that symmetry would not 
work with cylindrical pipe flow, whereas it would be valid 
in rectangular flow. It is important to mention that the 
symmetry assumption is not valid in pipe flow due to the 
elemental differences between flow field in a circular pipe 
and that in a rectangular duct. While the flow in a rectan-
gular duct is symmetrical with respect to the middle plane, 
the velocity profile is symmetric, and the pressure distri-
bution is uniform along the length but not across the cir-
cumference, the flow in a circular pipe is non-symmetric. 
Consequently, the velocity profile is parabolic due to the 
no-slip condition at the pipe wall, and the pressure distri-
bution decreases along the length due to frictionless losses, 
but it is uniform across the circumference. There is also a 
secondary flow component present in a circular pipe due 
to the continuous helical motion of fluid flow around the 
circumference of the pipe, which significantly affects the 
overall flow behaviour and cannot be accounted for assum-
ing symmetry. To simplify the problem, steady states, fully 
developed flow, and constant fluid properties assumptions 
should be applied. The axisymmetric assumptions are also 
useful, assuming that the flow field is symmetric about the 
axis of rotation. However, it is not valid for large variation 
in cross-section and complex geometry.

In Rudyak and Minakov (2018) this study, the authors 
outlined several issues bordering on the thermophysical 
properties of nanofluids. This included how each feature 
affects heat and the heat transfer of nanofluids.

The heat transfer coefficient was also studied in a heat 
stainless steel tube of 6-mm diameter and 1 m. The heat 
transfer coefficient of nanofluids increased with the par-
ticle concentration; for 1%, a 40% increase and, for 2%, 
a 100% increase were noted. It was pointed out that this 
increase was almost proportional to the volume concen-
tration of nanoparticles. At low Reynolds numbers, where 
laminar flow conditions are prevalent, an increase in ther-
mal conductivity leads to an almost linear increase in the 
heat transfer coefficient. It was also noted that there was 
an optimal point for the heat transfer coefficient regard-
ing the particle size. They explained that it was because, 
in turbulent flow conditions, heat transfers of nanofluids 
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depend on two factors; apart from its thermal conductiv-
ity, it also depends on the viscosity, which is the param-
eter that influences the heat transfer negatively, such that 
if the viscosity increases more than the thermal conduc-
tivity for a particular nanoparticle size, the heat transfer 
coefficient will decrease. Therefore, there will be an opti-
mal nanoparticle size for different nanofluids to have any 
increasing gains in heat transfer for nanofluids compared 
to their base fluid. This study attributed this binding effect 
in the heat transfer field to the nanoparticle size, not any 
other parameter, like its concentration or material type. 
They also stated that it was best to avoid similarity crite-
ria, such as the Prandtl number, Pr, as it is not uniquely 
tied to the particular nanofluid of interest but can refer to 
another nanofluid not explicitly considered.

Numerous researchers (Sridhara and Satapathy 2011; 
Nazififard et  al. 2012; Usman et  al. 2022; Fadodun et  al. 
2022) have conducted studies using different approaches to 
achieve optimal heat transfer and pressure drop. However, 
this study distinguishes itself by identifying the potential 
design parameters and design points. Additionally, it pro-
vides insight on the features to consider during the devel-
opment, application, and optimisation of nanofluids, using 
an example of aluminium oxide–water nanofluid.

Methods
For this study, we utilised the following methodology:

We utilised a circular pipe that measured 0.5  m in 
length and had an inner diameter of 4 mm. To maintain 
consistency, we applied a constant wall temperature of 
50 °C and an inlet velocity of 0.1 m/s.

Nanofluids thermal conductivity and viscosity were mod-
elled using machine learning. For thermal conductivity, a 
trilayer neural network was chosen with three fully con-
nected layers. The first, second, and third layers had a size of 
10. The activation used was ReLU (rectified linear unit), and 
there was no regularisation strength applied. The data were 
standardised. The selected variables in the study had distinct 
statistical characteristics and varied values. These variables 
included the temperature of the nanofluid, particle size, vol-
ume fraction, nanoparticle thermal conductivity, nanopar-
ticle melting point, base fluid kinematic viscosity, and base 
fluid viscosity. The models validation results showed an 
RMSE of 1.83, MSE of 3.34, RSQUARED of 0.94, and MAE 
of 1.23. The test results showed an MAE of 0.99, MSE of 2.14, 
RMSE of 1.46, and RSQUARED of 0.97 (Onyiriuka 2023a).

For viscosity, a custom Gaussian process regression 
with signal standard deviation sets to 0.20121 and opti-
mises numeric parameters. The study examined various 
factors that had unique statistical characteristics. These 
variables included the temperature of the nanofluid, par-
ticle size, volume fraction, nanoparticle specific heat, 

nanoparticle dielectric constant, base fluid density, and 
base fluid specific heat capacity. On the validation set, the 
model had the following result an RMSE of 0.0157, MSE 
of 0.0005, RSQUARED of 0.9941, and MAE of 0.0146. 
Furthermore, the test results indicated an MAE of 0.99, 
MSE of 0.0004, RMSE of 0.0211, and RSQUARED of 
0.9924 (Onyiriuka 2023b).

Afterwards, Nusselt’s number was calculated using the 
Sieder–Tate correlation, assuming a constant wall tem-
perature boundary condition of 50  °C where water vis-
cosity is 0.000282 Pas.

Sieder–Tate equation (Eq. 1)

The heat transfer coefficient is calculated using an 
equation based on the Nusselt number (Eq. 2).

The calculation of the Darcy friction factor (Eq. 3) was 
carried out.

To calculate the pressure drop in the pipe, we use the 
Darcy friction factor in Eq. 4.

To calculate the Reynolds number, follow this formula 
(Eq. 5):

The Prandtl number can be determined using Eq. 6.

The genetic algorithm was applied to carry out a multi-
objective optimisation. It maximised the heat transfer 
coefficient and minimised the pressure drop.

A search and optimisation algorithm based on natu-
ral selection and evolution, the genetic algorithm is com-
monly used for solving complex optimisation problems (Li 
et al. 2023; Zhang et al. 2023; Pan et al. 2023; Liu et al. 2023; 
Nguyen et al. 2023). It is a popular optimisation algorithm 
and used by prominent researchers (Li et al. 2023). The algo-
rithm generates a population of potential solutions repre-
sented as individuals or chromosomes. Each chromosome 

(1)
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contains a candidate solution to the problem. The algorithm 
then evolves the population over multiple generations to 
find the best solution. The main steps of a genetic algorithm 
are as follows (Li et al. 2023): 1. Initialisation: A population 
of random solutions is created, with each solution repre-
sented as a chromosome. 2. Fitness evaluation: An objective 
function is used to assess the fitness of each chromosome. 
This function measures how well each chromosome solves 
the problem and determines the criteria for selecting the 
best solutions. 3. Selection: A subset of chromosomes 
with higher fitness values is chosen for reproduction. The 
selection process is often based on a fitness proportion-
ate scheme, where fitter individuals are more likely to be 
selected. 4. Reproduction: The selected chromosomes cre-
ate offspring through genetic operators such as crossover 
and mutation. 5. Replacement: The offspring replaces some 
less-fit individuals, keeping the overall population size con-
stant. This allows the algorithm to explore new areas of 
the solution space. 6. Termination: The algorithm contin-
ues evolving the population through multiple generations 
until a termination criterion is met. This could be a maxi-
mum number of generations, a desired fitness level, or a 
predefined convergence threshold. By applying selection, 
reproduction, and replacement steps, the genetic algorithm 
explores the solution space, gradually improving the quality 
of solutions over generations. The algorithm tends to con-
verge towards an optimal or near-optimal solution.

Genetic algorithms are particularly useful for solving 
complex optimisation problems with large search spaces, 
multiple objectives, or nonlinear constraints. They have 
been successfully applied in various domains, includ-
ing engineering, finance, biology, and artificial intelli-
gence. Genetic algorithms provide a powerful and flexible 
approach for finding approximate solutions to challenging 
optimisation problems. By mimicking the process of natu-
ral evolution, they iteratively improve solutions over time.

This study utilised a genetic algorithm with a popula-
tion of 100 individuals over 50 generations. The Pareto 
plots were computed. The PEC values were computed for 
the local Pareto optimal using Eq. 7 (El-Shafay et al. 2023; 
Said et al. 2021).

Results

Discussion
In Fig.  1, the Pareto plots indicate an inverse relation-
ship between the pressure drop and heat transfer coeffi-
cient. The curve’s steepness demonstrates the strength of 
this correlation. These plots display the optimal trade-off 

(7)PEC =

Nunf
Nubf

(

fd,nf
fd,bf

)1/3

Fig. 1 Pareto fronts
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solutions where objective improvement in heat trans-
fer cannot occur without compromising performance in 
pressure drop function. Table 1 presents a range of values 
that offer many options for selecting the optimal nano-
fluid for various needs. The data highlight the  Al2O3–
water nanofluids’ potential for proper pressure drop 
maintenance while providing adequate heat transfer.

Table  1 shows that the temperature should be high, 
particle size should be high, and volume fraction should 
be high. Another variation will be small particle size and 

small volume fractions with fluid temperature around 
80  °C. The analysis yielded the following configuration 
with the optimal PEC. Temperature (oC), particle size 
(nm), volume fraction (%), heat transfer coefficient (kW/
m^2  K), pressure drop (Pas), and PEC were 82.6  °C, 
175.26 nm, 4.75%, 792.49 kW/m2K, 29.94 Pas, and 5.01.

It is important to note that the range of nanoparticle 
size in this study was set to be between 10 and 200 nm, a 
standard nanoparticle size range for nanofluids.

Table 1 The local optimal points along with their corresponding PEC

Temperature (°C) Particle size (nm) Volume fraction (%) Heat transfer coefficient (kW/
m^2 K)

Pressure drop (Pas) PEC

82.6 175.26 4.75 792.49 29.94 5.01

84.5 30.13 1.56 835.48 37.15 4.75

83.2 12.92 2.45 884.43 45.17 4.51

84.5 12.89 3.31 895.01 48.15 4.44

69.7 11.09 5.00 946.59 68.56 4.14

84.3 13.32 4.52 924.34 53.92 4.31

79.3 175.98 4.82 805.37 32.84 4.91

77.0 176.18 4.93 817.05 35.26 4.83

84.0 186.95 0.89 620.76 8.79 6.58

83.3 183.64 1.29 648.93 11.77 6.21

82.7 13.70 1.74 878.34 42.14 4.56

83.4 181.68 1.84 672.92 14.55 5.94

83.3 183.48 2.99 716.35 19.76 5.55

74.6 11.85 4.96 942.44 64.22 4.18

58.1 11.21 5.00 948.74 78.22 4.07

82.4 181.08 4.06 758.99 25.91 5.21

84.0 11.75 4.02 915.50 52.13 4.35

83.3 182.24 4.64 782.25 27.73 5.09

81.8 11.35 4.81 936.60 57.65 4.25

81.3 173.25 2.04 697.90 18.67 5.66

81.9 14.38 2.17 881.26 44.76 4.52

84.0 180.95 1.01 635.03 10.34 6.38

46.1 12.12 4.97 951.64 87.86 4.00

83.3 177.57 1.32 657.36 12.94 6.10

84.5 30.13 1.56 835.72 37.16 4.75

56.2 11.23 4.99 949.41 79.73 4.06

66.7 11.28 4.99 946.99 71.05 4.12

83.9 25.26 1.82 852.96 39.62 4.66

80.5 174.16 1.89 695.55 18.45 5.68

62.7 11.16 4.99 947.90 74.35 4.09

79.9 184.40 3.16 735.43 23.26 5.36

82.9 183.46 3.10 722.29 20.64 5.49

51.3 11.23 5.00 951.25 83.81 4.03

43.7 12.41 4.98 952.44 89.79 3.99

40.7 13.00 4.99 953.44 92.32 3.97
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Conclusions
This article delves into the optimisation of nanofluids 
to enhance heat transfer performance. The study uses a 
genetic algorithm to identify configurations of param-
eters that maximise the heat transfer coefficient while 
minimising pressure drop. The results show that pressure 
drop and heat transfer coefficient have an inverse rela-
tionship, highlighting the trade-off in nanofluid systems. 
Pareto plots demonstrate the options for selecting the 
optimal nanofluid based on specific needs and require-
ments. The study suggests that  Al2O3–water nanofluids 
have promising performance in maintaining pressure 
drop while delivering efficient heat transfer. Optimal 
values for temperature, particle size, and volume frac-
tion of nanofluids were identified, providing valuable 
insights for the design and selection of nanofluid sys-
tems. Using machine learning and multi-objective opti-
misation techniques proves effective in solving complex 
optimisation problems in nanofluids. This research con-
tributes to understanding nanofluid optimisation and 
offers practical guidance for engineers and research-
ers involved in designing and developing efficient heat 
transfer systems. The findings can be applied to various 
applications, such as refrigeration systems and industrial 
heat exchangers, to improve energy efficiency and overall 
system performance. Further research can expand on this 
work by exploring additional parameters, more complex 
geometries, and flow conditions. Experimental valida-
tion of the optimal configurations obtained through the 
genetic algorithm would provide more confidence in the 
results and enable a more comprehensive understanding 
of nanofluid behaviour. Overall, this study advances the 
knowledge and application of nanofluids for enhanced 
heat transfer, paving the way for developing more effi-
cient and sustainable thermal management systems in 
various industries and applications.
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