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Abstract 

Background The textile industry represents a great portion of the global industry due to the increase in population 
and demand for sustainable products. Tons of textile wastewater contains predominantly synthetic complex organic 
dyes like direct dyes, processing dyes, reactive dyes, …etc. making discharge of colored effluents challenging.

Main body of the abstract Textile wastewater treatment is essential to maintain the environmental balance 
and reduce public health threats. Conventional wastewater treatment methods cannot overcome and decompose 
these toxic wastes; therefore, numerous modern approaches have been studied and implemented for pollutant deg-
radation to be suitable for environmental disposal. Membranes and photocatalysis have proven their significant effect 
on the photodegradation of different dyes and the production of pure water for further use in industrial purposes.

Short conclusion This review paper aims to represent a comprehensive review of textile dyeing wastewater treat-
ment by integrating polyvinylidene fluoride (PVDF) and titanium dioxide  (TiO2) in a hybrid system named “Photocata-
lytic membrane reactor, PMR”.

Keywords Textile wastewater treatment, Methylene blue (MB), Polyvinylidene fluoride (PVDF), Photocatalysis, 
Titanium dioxide  (TiO2)

Background
Wastewater is a critical problem that threatens the envi-
ronmental balance (Yang et  al. 2020; Zhao et  al. 2022; 
Azanaw et al. 2022; Mavlanova et al. 2023). It is particu-
larly important to work hard to decrease water pollutants 
and issue strict regulations for waste disposal to keep 
our environment clean and healthy (Maity et  al. 2020; 
Arutselvan et  al. 2022; Mahboob et  al. 2023). Finding 

new wastewater treatment methods should be one of 
the important concerns in scientific research. Countries 
should cooperate to recycle and reuse wastewater due to 
the decrease in water resources (Zahmatkesh et al. 2023; 
Stefanakis 2020; Bouwer 2000). Several aspects produce 
large volumes of wastewater (e.g., the industrial sector 
(Rajoria et al. 2022)), the agricultural sector (Khan et al. 
2022), and the domestic sector (Ghani and Mahmood 
2023), all of which should collaborate to treat wastewater 
to be disposed of according to the environmental regula-
tions (Paredes et al. 2019; Partyka and Bond 2022).

The textile industry is one of the largest sources yield-
ing tons of waste dyeing effluents that, even at low con-
centrations, reduce wastewater transparency, and oxygen 
solubility, and are toxic (Mondal et  al. 2018; Castillo-
Suárez et al. 2023; Islam et al. 2023). Dyeing and finish-
ing processes are one of the main reasons for producing 
textile wastewater. A large variety of inputs, as chemicals 
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and dyestuff, are used in these processes and unfortu-
nately, not all the inputs are contained in the final prod-
uct, therefore, they become waste and discharged to the 
environment (Jahan et al. 2022; Yaseen and Scholz 2019). 
The main reason for the obstacle to textile wastewater 
treatment is the difficulty in dealing with the chemical 
structure of the textile chemicals (Azanaw et  al. 2022). 
Pollutants exist as suspended solids, heat, color, acidity, 
and chemical oxygen demand (Uddin 2021; Palani et al. 
2021). Moreover, the pH can be changed over a wide 
range from 2 to 12 which increases challenges in front of 
treatment methods. (Gadow et al. 2022; de Araújo et al. 
2020). Some characteristics of textile wastewater are 
shown in Table 1 (Pal 2017b).

Therefore, the treatment of textile wastewater is a seri-
ous challenge due to the presence of strong color and 
chemical composition of liquid waste. Significant con-
cern was directed to investigate different methods to 
treat textile wastes before being discharged into the envi-
ronment to meet the limitations imposed by legislation 
(Castillo-Suárez et  al. 2023; Sharkey et  al. 2020; Pervez 
et al. 2021). Over the years, wastewater treatment meth-
ods were advanced beyond conventional methods (i.e., 
coagulation, filtration, adsorption, etc.) to overcome the 
complexity and diversity of pollutants existing in domes-
tic, industrial, and agro-industrial waste streams and to 
provide clean drinking water to confront the population 
growth and water scarcity issues (Abuhasel et  al. 2021; 
Rahman et al. 2023).

To date, several studies have reported the remarkable 
effect of coupling membranes and photocatalysis for dye 
photodegradation (Li et al. 2023; Farouq 2022; Khan et al. 
2023). Nevertheless, the fabrication of polyvinylidene flu-
oride (PVDF) membrane and integration with titanium 
dioxide  (TiO2) photocatalyst is still challenging. This 
leads to the current review to highlight the developments 

of PVDF membranes and  TiO2 photocatalyst for methyl-
ene blue degradation in a hybrid system named “Photo-
catalytic Membrane Reactor, PMR”.

Main text
Wastewater treatment
Different technologies are involved to improve wastewa-
ter quality to be disposed of according to environmental 
regulations. Owing to the large volumes of wastewater, 
treatment is carried out in continuous open systems. 
Wastewater treatment can be classified according to the 
nature of the treatment process to physical, chemical, 
and biological processes (Bera et  al. 2022; Donkadokula 
et al. 2020; Crini and Lichtfouse 2019).

Physical treatment is the removal of material ready to 
be settled out by gravity or floating in the water where 
no change in chemical or biological composition occurs 
(Darra et  al. 2023). In domestic wastewater treatment, 
physical treatment will approximately lead to the removal 
of a few of the organic and non-organic loads (Al-Mawla 
et al. 2023). Physical treatment is carried out by commi-
nution, screening, sedimentation, grit removal, aeration, 
pH control, and flotation. Chemical treatment involves 
chemical reactions to improve water quality. It consists of 
different processes like coagulation, neutralization, disin-
fection, and ion exchange (Akbar et al. 2023). Some pro-
cesses represent a combination of physical and chemical 
treatment as adsorption by activated carbon.

The biological treatment method is defined as the 
decomposition of dissolved organic matter by microor-
ganisms under aerobic or anaerobic conditions (Ilmasari 
et al. 2022). It is widely used for domestic sewage treat-
ment. Wastewater is introduced into a bioreactor where 
microorganisms start to feed on the dissolved organic 
matter in wastewater. Microorganisms responsible for 
decomposition are bacteria (aerobically or anaerobically), 
algae, and fungi (aerobically). Due to the presence of food 
and oxygen, biological oxidation occurs to end up with 
stable thick bacterial biomass, therefore, it is necessary to 
separate the produced biomass using sedimentation. This 
sludge contains bacterial cells in contrast to the sludge 
from the physical treatment process which is fecal solid. 
Several methods are operated under aerobic conditions 
such as oxidation ponds, aerobic digestion, and trickling 
filtration. On the other hand, septic tanks and anaerobic 
digestion utilize the anaerobic conditions by holding the 
wastewater in tanks for 1–2 days to reduce the biochemi-
cal oxygen demand (BOD) by about 35–40% (Kurniawan 
et al. 2020; Arlyapov et al. 2022).

Photocatalysis for wastewater treatment
Photocatalysis is a physicochemical wastewater treat-
ment process in which a catalyst is induced by light for 

Table 1 Industrial textile wastewater characteristics (Pal 2017b; 
Katal et al. 2014; Kapdan and Alparslan 2005)

Parameters Values based 
on literature

Dye concentration (mg/L) 700

pH 9–10

Chloride (mg/L) 17,750–34,000

Sulfate (mg/L) 1400

Total nitrogen (mg/L) 23

Biological oxygen demand (mg/L) 363

Chemical oxygen demand (mg/L) 1781

Dye (mg/L) 15–8000

Total dissolved solids (mg/L) 1950–2925

Color 50–2500
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activation and accelerating the rate of reaction (Ali et al. 
2023). The catalysts used in this reaction are semicon-
ductors (Hong et  al. 2022). Each semiconductor has its 
bandgap for activation (Table  2). Thus, by illuminating 
the catalyst with light having energy higher or equal to 
the bandgap energy, electrons transfer from the valence 
band to the conductive band creating a hole in the 
valence band. Oxidation and reduction photodegradation 
reactions take place by the generated hole and electron, 
respectively (Chaves et al. 2020; Zhu and Zhou 2019).

Photocatalysis is widely studied and investigated in dif-
ferent aspects (Patial et al. 2022; Yu et al. 2022). Illumi-
nation of the catalyst can be carried out by visible light 
or UV light according to the required bandgap energy. 
Photocatalytic degradation of organic water pollutants 
by a photocatalyst present as a slurry can be described as 
(Baruah et al. 2019):

a. Dispersing the photocatalyst in wastewater.
b. Illuminating the catalyst by the proper wavelength.
c. Recording water concentration.
d. Separating the dispersed photocatalyst from the 

treated water.

Photocatalysis is divided into two categories, homoge-
neous photocatalysis, and heterogeneous photocatalysis. 
The main difference between the two categories is the 
phase of the catalyst and reaction medium. If the cata-
lyst and the reaction medium are in phase (same phases), 
then the photocatalysis process is said to be homogenous 
photocatalysis. A simple example of that is the photo-
degradation of dye using water-soluble carbon dots. On 
the other hand, heterogeneous photocatalysis is termed 
when the catalyst and the reaction medium are out of 
phase (different phases). Usually, heterogeneous photo-
catalysis takes place between a solid-phase catalyst and 
a water-soluble organic pollutant compound. Separation 

of the catalyst from the reaction medium in homogenous 
photocatalysis is difficult in contrast to heterogeneous 
photocatalysis. Heterogeneous photocatalysis is the most 
common process for wastewater treatment and degra-
dation of MB by the  TiO2 solid particles represent this 
process (Zeitoun et al. 2020; Riaz and Park 2020; Anto-
nopoulou 2022).

Semiconductors suitable for photocatalysis
Different semiconducting materials, such as oxides  (TiO2, 
ZnO,  CeO2,  ZrO2,  WO3,  V2O5,  Fe2O3, etc.) and sulfides 
(CdS, ZnS, etc.) have been used as photocatalysts (Hong 
et al. 2022; Tahir et al. 2020). A photocatalyst should have 
the following properties (Weldegebrieal 2020; Xiao et al. 
2020):

• Significantly active.
• Non-poisoning and stable for long-term operation at 

high temperatures.
• Resistant to attribution and mechanically stable.
• Physically and chemically stable under various condi-

tions.
• Activated by visible light and UV light.
• Cost-effective and eco-friend.
• High surface area, mobility, and lifetime.

Titanium dioxide  (TiO2) has proven its outstanding 
performance in many applications over other semicon-
ductors (Ijaz and Zafar 2021; Kang et  al. 2019). Binary 
metal sulfides such as CdS and PbS are toxic and unsta-
ble for catalysis. ZnO has been reported to have the same 
energy characteristics as  TiO2, however, it suffers insta-
bility in illuminated aqueous solution leading to photo-
corrosion affecting its activity after long-term operation 
(Barnes et  al. 2013; Štrbac et  al. 2018).  WO3 has been 
studied by different researchers and it was found that it 
is less active than  TiO2. Combining two or more different 
photocatalysts can improve the photocatalytic activity 
and stability significantly (Ferreira et al. 2023; Al-Mamun 
et al. 2019; Pasini et al. 2021).

Titanium dioxide structure, characteristics, and activation 
mechanism
Titanium dioxide has three well-known natural poly-
morphs which are anatase (tetragonal), brookite 
(orthorhombic), and rutile (tetragonal) (Elamin et  al. 
2023; Lavrov et  al. 2022). The unit cells of these struc-
tures are shown in Fig. 1 where grey and dark red spheres 
represent titanium and oxygen, respectively (Hiroi 2022; 
Eddy et al. 2023; Bai et al. 2014; Hu et al. 2003).

Rutile is the thermodynamically stable phase whereas 
anatase and brookite are metastable phases that trans-
form into rutile upon heating (Hu et al. 2003; Hanaor and 

Table 2 Bandgap energies for various semiconductors (Serpone 
and Pelizzetti 1989; Schiavello and Sclafani 1989; Sakthivel et al. 
2000)

Semiconductor Bandgap 
energy (eV)

Semiconductor Bandgap 
energy (eV)

Diamond 5.4 WO3 2.76

CdS 2.42 Si 1.17

ZnS 3.6 Ge 0.744

ZnO 3.436 Fe2O3 2.3

TiO2 3.03 PbS 0.286

CdS 2.582 PbSe 0.165

SnO2 3.54 ZrO2 3.87

CdSe 1.7 Cu2O 2.172
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Sorrell 2011; Janczarek et al. 2022). The different octahe-
dral arrangement for each polymorph brings about their 
diverse physical and electronic properties. In particular, 
the energy values of their band gaps vary from 3.0 eV (λ 
= 413 nm ) in rutile to 3.2 eV (λ = 387 nm ) in anatase 
and 3.2−3.4 eV (λ = 387–365  nm) in brookite (Ibhadon 
2008). The photocatalytic activity of  TiO2 depends on 
many factors including crystalline phase, crystal size, lat-
tice or surface defects, specific surface area, particle size, 
duration of light irradiation, charge carrier lifetimes, or 
efficiency for charge transfer to molecules adsorbed 
on the semiconductor surface (Riaz and Park 2020; 
Yamazaki et  al. 2020; Navidpour et  al. 2023). Regarding 
the pure phases’ evaluation, it is well established that 
anatase is the polymorph that shows the highest photo-
catalytic activity in water treatment applications (Žerjav 
et al. 2022).

Owing to the wide bandgap energy of anatase  TiO2 
( 3.2 eV ), various studies were concerned about improv-
ing  TiO2 activity to be activated by visible light. These 
modifications were presented in numerous studies (Sai-
anand et  al. 2022; Tang et  al. 2022; Arora et  al. 2022; 
Kanakaraju et al. 2022) and include:

• Coupling of  TiO2 with dye sensitization (Behera 
et al. 2022), polymer sensitization (Enesca and Cazan 
2022), and semiconductors to improve surface prop-
erties (Thambiliyagodage 2022; Cui et al. 2022).

• Creation of oxygen vacancies and oxygen sub-stoi-
chiometry for bandgap modification (Khatibnezhad 
et al. 2022, 2021).

• Doping with non-metals (N Asahi and Morikawa 
2007; Di Valentin et al. 2007; Shen et al. 2007; Feng 

et al. 2008; Li et al. 2008), S (Sakai et al. 2008; Wang 
et al. 2008; Zhou et al. 2008; Wei et al. 2008), C (Xu 
et al. 2006; Ren et al. 2007), B (In et al. 2007; Zhang 
and Liu 2008), F (Todorova et al. 2008; Wu and Chen 
2008), Cl (Long et al. 2007)) and co-doping with two 
different non-metals as (N and S (Wei et  al. 2008), 
N and F (Xie et  al. 2007), N and B (Xue-li and Wei 
2022), etc.

• Doping with metals as ( Fe, V, Cr, Mn, Co, Ni,

Cu, Pt, etc. ) (Kanakaraju et  al. 2022; Khatibnezhad 
et al. 2021).

Although the only disadvantage of  TiO2 is inactiv-
ity by visible or sunlight and a UV light source must be 
used for activation (Binjhade et  al. 2022). Moreover, it 
has superior characteristics as photo-stability, chemically 
and mechanically inert, non-toxic, efficient photoactiv-
ity, resistance to photo-corrosion and microbe, and lower 
cost (Nasrollahi et al. 2021).

Titanium dioxide is widely used in wastewater treat-
ment as shown later. Several studies investigated the 
mechanism of organic pollutant (i.e., methylene blue) 
degradation, and as shown below it is based on activation 
by the suitable wavelength to transfer the electron from 
the valence band to the conductive band (Konstantinou 
and Albanis 2004; Mohammad Jafri et  al. 2021; Bullo 
et al. 2022).

(1)TiO2 + hv → TiO2 e− + h+

(2)h+ +H2O → H+
+HO·

Fig. 1 Titanium dioxide polymorphic structures
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Membranes
A membrane can be defined as a selective barrier or 
interphase between two bulk phases Membranes are 
essentially used for separation processes, and they have 
been widely adopted over the last 30  years for various 
industrial applications (Vasishta et al. 2023; Suresh et al. 
2023b). Separation processes based on membranes are 
more capital and energy-efficient than conventional sepa-
ration processes (Suresh et al. 2023b). A membrane can 
be solid, liquid, or gel and symmetric or asymmetric and 
homogenous or heterogenous and it can be neutrally, 
positively, or negatively charged. Membrane thickness 
ranges from less than 1 nm to more than 1 cm. The driv-
ing force for mass transport through the membranes 
can be gradients in concentration, temperature, or pres-
sure (Al-Najar et  al. 2020). Membranes include vari-
ous fabrication materials, structures, morphology, and 
configurations. Despite the existence of different types 
of membranes, all membranes have the same function 
which is the prevention of undesired species from the 
passage to the permeate side, Fig. 2 (Qamar et al. 2023; 
Graham and Higgins 2020; Costa et al. 2019).

Membrane distillation (MD) is a favorable technique 
for desalination and water/wastewater treatment, and it 
provides several advantages over conventional treatment 
methods (Yang et al. 2022; Nishad and Rajput 2023). It is 
a thermally driven process where vapor molecules of the 
solvent are only capable to pass through a hydrophobic 
porous membrane (Meng et al. 2023; Julian et al. 2023). 
The existence of a vapor pressure difference between the 
two sides of the membrane improves the passage of vapor 
molecules from the feed compartment to the permeate 
compartment. MD has many advantages (Gude 2018; Pal 

(3)h+ +HO−
→ HO·

(4)e− +O2 → O·−

2

(5)O·−

2 +H+
→ HO·

2

(6)HO·
2 +HO·

2 → H2O2 +O2

(7)H2O2 +O·−

2 → HO·
+HO−

+O2

(8)e− +H2O2 → HO·
+HO−

(9)H2O2 + hv → 2HO·

(10)
Pollutant+

(

h+, HO·, e−, HO·
2

)

→ degradation products

2017a; Zhong et  al. 2021; Kebria and Rahimpour 2020), 
such as:

• Low operating temperatures where it is not required 
to heat the feed solution to its boiling point.

• The hydrostatic pressure in MD is lower than all 
other membrane processes as reverse osmosis.

• Low cost.
• Membranes can be made from cheap materials such 

as plastic therefore there will be no corrosion prob-
lems.

• High rejection factor and complete separation pro-
cess.

• Less fouling in comparison to other membrane pro-
cesses due to the large membrane pore size.

• MD can be combined with other separation pro-
cesses to form an integrated system producing out-
standing products and high efficiency.

• Renewable energy sources can be utilized to heat the 
feed.

However, there are some limitations for MD (Nishad 
and Rajput 2023; Reddy et al. 2022; Yang et al. 2022):

• Low permeated flux due to concentration and tem-
perature polarization.

• The presence of trapped air inside the membrane cell 
increases the resistance to mass transfer, hence per-
meating flux decreases.

• Heat loss by conduction.
• Membrane fouling and wetting.

Contribution of PVDF membrane in wastewater treatment
A popular polymeric membrane material is polyvi-
nylidene fluoride (PVDF), it is a semi-crystalline poly-
mer containing 59.4  wt% fluorine and 3  wt% hydrogen 
(Dohany 2000; Rajeevan et  al. 2021; Ismail et  al. 2021). 
A PVDF monomer structure is (–CH2–CF2–) and the 
spatial arrangement of the atoms can be verified by 

Fig. 2 Membrane separation mechanism (Sani 2015)
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Fourier transform infrared spectroscopy (FTIR) charac-
terization (Van Tran et al. 2019). Moreover, ease of PVDF 
dissolution by different organic solvents such as dimethy-
lacetamide (DMAC), dimethylformamide (DMF), and 
n-Methyl-2-Pyrrolidone (NMP) encourages the evalua-
tion of PVDF performance in different applications and 
purposes (Saxena and Shukla 2021; Fei et al. 2019).

Recently, PVDF has gained remarkable attention due to its 
exceptional characteristics in comparison to other polymers 
such as polysulfone (PS), polyethersulfone (PES), and poly-
imide (PI). High mechanical properties, thermal stability, 
chemical resistance, and high hydrophobicity have provided 
PVDF a notable center of research for various operations 
(Mohammadpourfazeli et  al. 2023; Dallaev et  al. 2022; 
Suresh et al. 2023a, b) from 2010 to 2023 as shown in Fig. 3.

This review article focuses on the role of PVDF mem-
brane in wastewater treatment. Figure  4 shows that the 
number of publications increased from 2010 to 2023 
revealing the outstanding performance and high removal 
efficiency of pollutants from wastewater to be suitable for 
environmental disposal.

Integrating PVDF and  TiO2 for methylene blue removal
The limitations accompanied by membrane separation 
processes and photocatalytic degradation of contami-
nants can be solved by coupling both methods to form 
a hybrid system named photocatalytic membrane reac-
tors (PMRs) (Samuel et al. 2022). As a result, PMRs have 
gained a noticeable focus for evaluation in the waste-
water treatment aspect (Chen et  al. 2022) as shown in 
Fig. 5. The performance of different PMRs combinations 
of membrane fabrication materials and photocatalysts 
have been assessed in the open literature (Mozia 2010; 
Chakachaka et  al. 2022; Chen et  al. 2022), and it was 
found that an integrated system of PVDF membrane 
along with  TiO2 photocatalyst seems to be a promising 
system for methylene blue photocatalytic degradation 
owing to the previously mentioned advantages of the 
PVDF, as well as  TiO2.

Jia et  al. (2009) compared the performance of PVDF 
pure membrane versus PVDF/TiO2 composite mem-
brane on the removal of two different dyes (i.e., MB and 
Congo red (CR) dyes). Pure PVDF membrane and PVDF/
TiO2 hybrid membranes were prepared by phase inver-
sion. Membrane properties were examined by a series 
of analytical methods. It was found that rejection of dye 
increased by increasing  TiO2 content to 21% . The reten-
tion of methylene blue was more than CR due to the 
ability of the negatively charged membranes to retain 
positively charged methylene blue components. Moreo-
ver, the anti-fouling performance was examined by using 
a protein solution (BSA) and the results showed that the 
relative flux of the blend membranes are higher than the 
pure membrane and reached more than 80%.

Likewise, Ngang et  al. (2012) synthesized polyvi-
nylidene fluoride (PVDF)-Titanium dioxide  (TiO2) 
mixed-matrix membranes by phase inversion and proved 
that the mixed matrix membrane is photo-catalytically 
active as it shows better MB degradation compared to the 
neat membrane with ∼ 100% pure water flux recovery Fig. 3 Contribution of PVDF in various processes

Fig. 4 Contribution of PVDF studies in wastewater treatment 
annually Fig. 5 Contribution of PMRs in wastewater treatment annually
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under 1 h of UV light irradiation. Membrane characteri-
zation was measured, and photocatalytic performance 
was tested against the degradation of methylene blue 
(MB). The hydrophilicity of the mixed-matrix mem-
branes 

(

392.81± 10.93 l
m2 · bar

)

 showed significant 
enhancement in comparison with the pure PVDF mem-
brane 

(

76.99± 4.87 l
m2 · bar

)

.

Li et  al. (2015) evaluated the performance of 
Ag/TiO2/PVDF composite membrane in wastewater 
treatment. The composite membrane was prepared via 
the blending/photo reduction combined method. Mem-
brane characterization was performed and showed high 
hydrophilicity owing to a large amount of hydroxyl group 
( −OH ) formed on the PVDF membrane. The composite 
membrane showed excellent activity in the degradation 
of MB and the inactivation of bacteria under visible-light 
illumination. Correspondingly, (He et  al. 2016) utilized 
the electrospinning technique to fabricate nanofibrous 
PVDF membranes containing  TiO2 nanoparticles and Ag 
nanoparticles as well. Mechanical strength was improved 
due to the presence of Ag nanoparticles. Degrada-
tion of MB was recorded to be 39.5% , 50.9% , 78.9% and 
92.3% for pure PVDF membrane, Ag/PVDF membrane, 
TiO2/PVDF membrane and Ag–TiO2/PVDF membrane 
respectively.

Martins et  al. (2014) evaluated the performance of 
a copolymer ( PVDF/TrFE ) membrane with immobi-
lized  TiO2 nanoparticles doped with erbium (Er) and 
codoped with Er and praseodymium (Pr). High poros-
ity ( 75% ) coupled with a low bandgap ( 2.63 eV of these 
 TiO2-modified nanoparticles) and high surface area 
( 273 m2/g ) achieved 98% MB degradation after exposure 
to UV for 100 min.

Li et al. (2014) prepared a novel hollow fiber compos-
ite membrane of PVA/PVDF with nano  TiO2 particles 
by dip coating. Crosslinking between the polymers was 
done by glutaraldehyde which improved the mechanical, 
chemical, and thermal stabilities as well. Characteriza-
tion was performed to examine the surface morphology 
and chemical structures of the modified membranes. 
Membrane separation efficiency was highly influenced 
by dye concentration, salt concentration, pH, and oper-
ating temperature. The results showed that the opti-
mum amount of  TiO2 is 1 g/L by which rejection to CR, 
Methylene Orange (MO) and MB reached 94 ± 2.57% , 
52.1± 2.45% , and 92± 2.20% , respectively. The modified 
membranes with  TiO2 proved higher antifouling, stabil-
ity, and separation efficiency in comparison to neat PVA/
PVDF membranes.

Fischer et  al. (2015) studied the performance of three 
membranes (hydrophilic PES and PVDF, hydrophobic 

PVDF) coated with  TiO2 nanoparticles. The coating was 
carried out via hydrolysis of titanium tetraisopropoxide. 
All the tested membranes degraded MB; however, the 
hydrophilic TiO2/PVDF membrane achieved the high-
est degradation rate. Moreover, Hydrophilic ( TiO2/PES 
and TiO2/PVDF ) membranes degraded two non-inflam-
matory drugs (diclofenac and ibuprofen) in contrast to 
hydrophobic TiO2/PVDF membrane.

Ramasundaram et al. (2016) thermally fixed  TiO2 nan-
oparticles on PVDF at different temperatures to study 
their photocatalytic activity.  TiO2 nanoparticles dis-
persed in methanol were electrosprayed on a steel mesh 
(SM) coated with PVDF followed by thermal fixation 
to improve the mechanical strength. When the electro-
sprayed volumes were 10 , 20 , 30 , 40 , 50 , and 60 mL , the 
 TiO2 loading on both sides of the PVDF-coated SM was 
0.20, 0.43, 0.73, 0.97, 1.10, to 1.60 mg respectively. The 
SM sample with 1.1mg  TiO2 proved to be the optimum 
for MB degradation under UV irradiation due to its high 
stability for 20 photocatalytic runs. Thermal fixation at 
160  °C showed higher MB degradation than those fixed 
at 180  °C and 200  °C because of PVDF melting (165–
172 °C) leading to entrapping the  TiO2 nanoparticles and 
decreasing their photocatalytic activity. The rate constant 
for MB removal ( 100% removal efficiency) was found to 
be 0.0251 min−1 for the optimum SM-TiO2.

Dadvar et al. (2017) investigated the characteristics and 
performance of different polymeric membranes such as a 
perfluorinated polymer ( Nafion ), cellulose acetate, poly-
carbonate (PC), polysulfone fluoride (PSF), and poly-
vinylidene fluoride (PVDF). The examined membranes 
were supported with semi-conductor  TiO2 and graphene 
oxide (GO) to improve the antifouling property, photo-
catalytic activity for removal of Azo dyes as methylene 
blue, and these membranes proved their ability to be 
used in the treatment of wastewater from polycyclic aro-
matic hydrocarbons (PAHs).

The blended PVDF with different dosages of 
Ag/TiO2/APTES for dyeing wastewater treatment 
(Peng et  al. 2018). Membrane hydrophilicity was tested 
by comparing the contact angle of the composite mem-
brane (61.4°) with the original PVDF membrane (81.8°). 
Rejection of MB increased to 90.1% after the addition 
of Ag/TiO2/APTES in comparison with the neat PVDF 
membrane which showed rejection rate of only 74.3% . 
Moreover, the composite membrane with a concentra-
tion of 0.5% Ag/TiO2/APTES showed a significant effect 
on inhibition of bacteria preventing it from reproducing 
or causing serious membrane fouling.

Li et  al. (2017) coated PVDF membrane with three 
dimensional (3D) TiO2/ZnO photocatalyst and detected 
its stability, reusability, and photocatalytic oxidation. 
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Coating of the PVDF membrane surface and the pore 
walls were carried out by atomic layer deposition (ALD). 
Excellent stability, reusability, and photocatalytic oxida-
tion were realized during MB degradation. The photo-
induced super-hydrophilicity was realized with a decline 
of 82.6% for the water contact angle and an increase of 
33.5% for the pure water flux. The antifouling property 
was enhanced especially for the composite membrane 
( TiO2 : ZnO = 1 : 3 ) to reach 73% humic acid (HA) 
removal.

Galiano et  al. (2018) tested the photocatalytic activity 
of ultrafiltration TiO2/PVDF hollow fiber membranes 
(HFs) for MB degradation in water and salty seawater. 
These hollow fibers proved high hydrophilicity, stability, 
and catalytic activity under UV-A irradiation. Despite the 
low amount of catalyst added ( 0.5% ), degradation of MB 
was found to be 97% under UV-A irradiation. Moreo-
ver, HFs achieved 97% MB reduction which reveals their 
excellent catalytic activity for degradation of MB in syn-
thetic seawater.

Cheng and Pu (2018) improved the photodegra-
dation of MB by blending multi-walled carbon nano-
tubes ( MWCNTs ) with  TiO2. A novel PVDF composite 
nanofibers were fabricated using nanolayer coextrusion. 
 TiO2 and multi-walled carbon nanotubes ( MWCNTs ) 
were blended with the PVDF to develop a highly active 
PVDF photocatalyst membrane. It was observed that 
MWCNTs played a vital role in MB degradation as they 
acted as bridges between  TiO2 particles which resulted in 
an improvement in transfer of electrons. The photocata-
lytic reaction rate for PVDF/(30 wt% TiO2/MWCNTs ) 
and PVDF/(40 wt% TiO2/MWCNTs ) reached 0.412 h−1 
and 0.531 h−1 , respectively, which exceeded that of pure 
 TiO2 ( 0.375 h−1).

Abdullah et  al. (2018) prepared PVDF/TiO2 hollow 
fibers membranes and evaluated their performance by 
photodegradation of MB. The results showed that the 
undoped PVDF as well as  TiO2 doped VDF membrane 
was capable of degrading MB. The composite membrane 
( 9 wt% TiO2/PVDF ) showed the highest performance 
while the neat PVDF membrane showed the lowest per-
formance which reveals the significant effect of incorpo-
rating the  TiO2 photocatalyst into the PVDF membrane. 
The rate of degradation of the MB fitted well into first 
order kinetic data with apparent kinetic constants 
of 0.0591 , 0.0295 , 0.0188 , and 0.0100 obtained using 
pure membrane, undoped PVDF, 3 wt% TiO2/PVDF , 
6 wt% TiO2/PVDF , and 9 wt% TiO2/PVDF , respectively.

Lee et al. (2018) studied the effect of changing the ratios 
of PVDF and PVP on performance of the composite mem-
branes. P25-TiO2 was entrapped with a bi-polymer system 
of electrospun fibers of PVDF and PVP in different ratios. 
Concentration of  TiO2 in the fabricated membranes 

(  PVDF : PVP = 2 : 1, PVDF : PVP = 1 : 1, PVDF : PVP = 1 : 2  ) 
was maintained to be 4% . Methylene blue (MB) degrada-
tion was tested to visualize contaminant removal, assess 
the sorption capacity ( 5.93± 0.23 mg/g ) and demon-
strate stable removal kinetics ( kMB > 0.045 min−17 ) 
under UV-A irradiation ( 3.64 × 10−9 einstein/cm2/s ) 
over 10 cycles. The membrane ( PVDF : PVP weight 
ratio of 2 : 1 ) proved to have the highest photocatalytic 
activity.

Liu et  al. (2018) fabricated a hollow fiber membrane 
of ( TiO2/PVDF ) using single orifice spinneret. The fab-
ricated membrane was used for degradation of dye, i.e., 
MB and Congo red (CR), and Na2SO4 resulting from tex-
tile wastewater. The results revealed outstanding prop-
erties such as good hydrophilicity, high stability for long 
operations, and good flux recovery ratio. Additionally, 
the hollow fiber ( TiO2/PVDF ) membrane rejected with 
excellence the CR and MB dye and less retention extent 
to Na2SO4.

Suriani et  al. (2019) synthesized a composite nanofil-
tration membrane of ( PVDF/SDS− GO/TiO2 ) by phase 
inversion technique. Synthesis of dimethylacetamide-
based graphene oxide (GO) was carried out by electro-
chemical exfoliation in combination with single-tail 
sodium dodecyl sulfate (SDS) surfactant. Comparison 
between neat PVDF membrane and the composite mem-
brane was performed in a dead-end cell at the pressure 
of 2 bar. Results showed the excellent performance of the 
composite membrane in MB rejection ( 92.76% ) in com-
parison with the pure PVDF membrane. The compos-
ite membrane achieved the highest flux ( 7.770 L/m2 h ) 
due to the presence of GO and  TiO2 which affected the 
membrane morphology and properties as the increase 
in hydrophilicity, an increase in porosity ( 57.46% ), and a 
decrease in contact angle ( 64.0± 0.11◦ ). Moreover, the 
fabricated membrane attained the highest water perme-
ability ( 4.187 L/m2 h bar).

Martins et  al. (2019) prepared by solvent casting 
a microporous membrane based on polyvinylidene 
difluoride-co-trifluoro ethylene ( PVDF/TrFE ) with 
immobilized  TiO2 nanoparticles. Characterization was 
conducted by scanning electron microscopy, energy dis-
persive X-ray spectroscopy, Fourier-transform infrared 
spectroscopy, porosimeter, and contact angle goniom-
etry. Performance of the fabricated membrane exhibit 
high degradation for MB ( 99% ), ciprofloxacin ( 95% ), and 
ibuprofen ( 48% ). Moreover, long-term stability and high 
efficiency were observed after 20  h of UV irradiation, 
corresponding to four use cycles.

Venkatesh et  al. (2020) modified electrospun PVDF 
membrane by graphitic carbon nitride (G-C3N4) deco-
rated on reduced graphene oxide (RGO) with titanium 
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dioxide  (TiO2). The novel ternary composite membrane 
exhibited outstanding thermal stability, antifouling 
performance, and increased contact angle. Moreover, 
performance was tested against the rejection of oil–
water emulsion and MB which reached 95.4 ± 0.1% and 
94.2± 0.5% , respectively. These results are attributed to 
the reasonable hierarchical structure and formation of 
the hydration layer which chemically and physically helps 
in the separation of oil–water emulsion and dye rejection.

Abdelmaksoud et  al. (2021) examined the effect of a 
composite of nano black (NB–TiO2), graphene oxide 
(GO), and PVDF on photodegradation of MB and mala-
chite green dyes. At first NB-TiO2 was prepared by simple 
hydrogenation of anatase  TiO2 while modified Hummer’s 
method was utilized for the preparation of graphene 
oxide. Secondly, GO–PVDF membrane was synthesized 
by electrospinning technique followed by submerging 
the electrospun GO–PVDF into a crosslinking medium 
with 2.5 wt% glutaraldehyde (GA). Finally, a solution of 
NB–TiO2 was added to the PVDF–GO nanofibers result-
ing in the required composite PVDF–GO/NB–TiO2. 
Evaluation of the composite nanofibers was carried out 
by the photodegradation of MB and malachite green. It 
was found that the optimum degradation efficiency of 
malachite green and MB dyes occurred at pH values of 8 
and 10 , respectively, while the maximum photocatalytic 
degradation efficiencies of malachite green and MB were 
found to be 74 and 39% , respectively, under visible light 
after 30 min.

Zeitoun et  al. (2020) developed a new hybrid photo-
catalytic membrane reactor for treating industrial waste 
(e.g., organic dye MB waste). The experimental setup 
was designed in a flexible way to enable both separate 
and integrated investigations of the photocatalytic reac-
tor and the membrane, separately and simultaneously. 
A membrane cell containing electrospun PVDF mem-
brane and a photocatalytic reactor with  TiO2 as a slurry 
were implemented for MB photodegradation. Different 
amounts of  TiO2 and dye concentrations were investi-
gated, and results showed that 100% removal is achieved 
at certain conditions. Additionally, kinetic analysis was 
carried out to indicate that degradation of MB follows 
pseudo-first-order reaction.

Yadav et al. (2021) prepared photocatalytic  TiO2 sheets 
(PTS) incorporated PVDF-co-hexafluoropropylene 
(HFP) UV-cleaning mixed matrix membranes with vari-
ous PTS compositions (0–5  wt%). This prepared mem-
brane was utilized to eliminate Congo red (CR) and MB 
from synthetic textile industry wastewater, with equal 
CR and MB concentrations 

(

100 mg/l
)

 and 4% NaCl 
via direct contact membrane distillation (DCMD). The 
results showed that the prepared membrane with 3 wt% 

PTS has a dye removal efficiency close to 100% for both 
MB and CR and 6.1 kg/m2 h vapor flux. Moreover, after 
UV cleaning, the flux recovery ratio (FRR) for long-run 
DCMD studies (5 days) was more than 91%.

Since membranes are the most effective dye wastewa-
ter treatment approach, (Azhar et al. 2022) listed all prior 
research in their review article relating to membrane 
technology used to recover MB from wastewater. The Fis-
cher et al. study in 2015 (Fischer et al. 2015) is included 
in this review article, where the results showed that after 
2  h, the MB recovery percentage was 100% when using 
the hydrophilic TiO2/PVDF.

A glass hollow membrane fabricated using glass waste, 
PVDF, and N, N-dimethylacetamide DMAC, coated 
with  TiO2 via dip-coating and calcination by Zhang et al. 
(2022). In this study, the photocatalytic removal of MB 
from wastewater using the fabricated membrane was 
examined and the results showed that the  TiO2-coated 
membrane calcined at 550°Chas good photocatalytic and 
antifouling properties. Also, the photocatalytic removal 
of MB was higher than 97.2% and could be recycled mul-
tiple times by a simple treatment. Moreover, the MB 
removal percentage was in the range of 92.3–93.6% after 
five recycling operations.

Ma et  al. (2023) studied MB recovery from syn-
thetic wastewater with initial MB concentration equals 
0.5 mg/L using PVDF, carbon black (CB), and  TiO2 mem-
brane hybridized via a polyvinylpyrrolidone (PVP)by 
phase inversion method. The fabricated PVDF–CB–TiO2 
membrane recorded recovery percentage equal to 98.6%.

PVDF–TiO2–graphene oxide (GO) based hybrid mem-
brane was blended with various polymer additive (poly 
methyl methacrylate (PMMA), polyvinyl alcohol (PVA), 
and polyvinylpyrrolidone (PVP)) using phase inver-
sion method in Mohamat et al. (2023a, b). The impact of 
combining 4  wt% from the different polymer additives 
was evaluated based on MB dye recovery percentage 
and antifouling performance. The Experimental out-
comes showed that adding PVP to the membrane matrix 
resulted in high recovered water flux  635.897 L/m2 h 
and permeability 55.833 L/m2h Pa together with 57.56% 
MB recovery percentage. Whereas, adding PMMA to 
membrane enhanced the MB recovery percentage to 
79.18% with 86.46% flux recovery ratio (FRR). Addition-
ally, Mohamat et al. study in 2023 (Mohamat et al. 2023a, 
b) investigated how various polymer types (such as poly-
ether sulfone (PES) and PVDF) utilized in membrane 
fabrication affected the membrane performance. Based 
on the findings of this investigation, the PVDF–GO–
TiO2 demonstrated a higher MB recovery percentage of 
92.63% and an FRP that was near to 100%.
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All above list of studies involving the treatment of MB 
from wastewater (illustrated in Table 3) show that mem-
brane technology is the most efficient method to recover 

MB from wastewater. Specially with some modifications 
to the membrane fabrication by integrating PVDF and 
 TiO2 to improve the membrane performance.

Table 3 Previous studies on MB removal by PVDF and  TiO2

PVDF configuration Dissolution 
solvents

Fabrication 
technique

%  TiO2 MB Conc Percentage 
removal/photo-
degradation

References

Flat sheet DMAc Phase inversion 6 vol%
12 vol%
21 vol%

0.01 mM 67.52%
75.89%
82.63%

Jia et al. (2009)

Flat sheet DMAc Phase inversion 1.5 wt% 10 ppm
50 ppm
100 ppm

98.84%
93.11%
85.24%

Ngang et al. (2012)

Flat sheet DMAc Blending/photo 
reduction combined 
method

4 wt% 10 ppm
20 ppm
30 ppm

24%
23%
21%

Li et al. (2015)

Flat sheet DMF and acetone Electrospinning 0.4 wt% 0.05 M 78.9% He et al. (2016)

Flat sheet DMF Solvent casting 2 ml of titanium iso-
propoxide solution

0.00001 M 98% Martins et al. (2014)

Hollow fiber – Purchased 1 g/L 50 mg/L 92 ± 2.20% Li et al. (2014)

Flat sheet – Purchased 2.00 × 10 M titanium 
isopropoxide solu-
tion

10 μm 100% Fischer et al. (2015)

Flat sheet DMAc Dip coating of PVDF 
solution on steel 
mesh

10 ml
20 ml
30 ml
40 ml
50 ml
60 ml

10 μM 68.7%
76%
87.3%
91.6%
100%
100%

Ramasundaram et al. 
(2016)

Flat sheet DMAc Immersion phase 
inversion

Amount of (Ag–
TiO2–APTES):
0.1 g
0.2 g
0.5 g

3 mg/L 80.3%
86.7%
90.1%

Peng et al. (2018)

Flat sheet – Purchased Titanium tetraisopro-
poxide solution

10−5 M 27% Li et al. (2017)

Hollow fibers N-Methyl-2-pyrro-
lidone
(NMP)

Dry/wet spinning 0.5 wt% 10 μM 97% Galiano et al. (2018)

Flat sheet – Nanolayer coextru-
sion

10 wt%
20 wt%
30 wt%
40 wt%

10 ppm 22%
32%
57%
64%

Cheng and Pu (2018)

Hollow fibers DMAc Electrospinning 3 wt%
6 wt%
9 wt%

10 ml/L 85%
90%
100%

Abdullah et al. (2018)

Flat sheet DMAc and acetone Electrospinning 4 wt% 3.2 mg/L
6.4 mg/L

93.75%
81.25%

Lee et al. (2018)

Flat sheet DMAc Solvent casting 1 wt% 10 ppm 92.76% Suriani et al. (2019)

Flat sheet DMF Solvent casting 0.087 g 2 mg/L 99% Martins et al. (2019)

Flat sheet DMF Electrospinning 5 ml Titanium 
butoxide

– 94.2% Venkatesh et al. (2020)

Flat sheet DMF Electrospinning 5 mg
10 mg
20 mg

5 ppm 29%
32%
39%

Abdelmaksoud et al. 
(2021)
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Conclusions
Membrane separation in combination with photoca-
talysis has a promising effect on textile wastewater treat-
ment.  TiO2 is a stable semiconductor where effective dye 
removal can be achieved under UV-irradiation. Vari-
ous modifications for  TiO2 to be activated under visible 
light are reported. The limitation of membrane processes 
as organic fouling can be decreased by coupling photo-
catalysis and membrane in a photocatalytic membrane 
reactor. Several studies for MB removal by photocatalytic 
membrane reactors have been reviewed showing higher 
performance than conventional membrane processes 
and photocatalysis as well. However, different photocata-
lytic membrane reactors configurations should be stud-
ied to determine the most suitable design for highest dye 
removal and flux. This review article will provide valuable 
knowledge for further research work about wastewater 
treatment by membrane photocatalytic reactors.
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Table 3 (continued)

PVDF configuration Dissolution 
solvents

Fabrication 
technique

%  TiO2 MB Conc Percentage 
removal/photo-
degradation

References

Flat sheet DMAc and acetone Electrospinning 0.1 g/L 4 ppm
7 ppm
11 ppm
15 ppm

100%
100%
100%
99.4%

Zeitoun et al. (2020)

0.2 g/L 4 ppm
7 ppm
11 ppm
15 ppm

100%
100%
98.1%
100%

0.3 g/L 4 ppm
7 ppm
11 ppm
15 ppm

100%
100%
100%
99.3%

Flat sheet Methanol Spray drying fol-
lowed by calcination

0–5 wt% 100 mg/L 100% Yadav et al. (2021)

Flat sheet TTIP/ethanol Dip coating 0.092 wt% 10 μmol/L 100% Fischer et al. (2015)

Hollow fiber Ethanol Phase inversion calci-
nation/dip coating

0.62 wt% 20 mg/L 97.2% Zhang et al. (2022)

Flat sheet Ethanol Phase inversion 2–5 wt% 0.5 mg/L 98.6% Ma et al. (2023)

Flat sheet Dimethylacetamide 
(DMAC)

Casting solution 1 wt% 10 ppm 79.18% Mohamat et al. (2023a, 
b)

Flat sheet DMAC Non-solvent induced 
phase separation 
(NIPS)

1 wt% 10 ppm 92.63% Mohamat et al. (2023a, 
b)
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