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Abstract 

Background This research introduces a novel approach for modelling single-material nanofluids, considering 
the constituents and characteristics of the fluids under investigation. The primary focus of this study was to develop 
models for predicting the thermal conductivity of nanofluids using a range of machine learning algorithms, includ-
ing ensembles, trees, neural networks, linear regression, Gaussian process regressors, and support vector machines.

The main body of the abstract To identify the most relevant features for accurate thermal conductivity prediction, 
the study compared the performance of established feature selection algorithms, such as minimum redundancy 
maximum relevance, Ftest, and RReliefF, a newly proposed feature selection algorithm. The novel algorithm elimi-
nated features lacking direct implications for fluid thermal conductivity. The selected features included temperature 
as a thermal property of the fluid itself, multiphase features such as volume fraction and particle size, and material 
features including nanoparticle material and base fluid material, which could be fixed based on any two intensive 
properties. Statistical methods were employed to select the features accordingly.

Results The results demonstrated that the novel feature selection algorithm outperformed the established 
approaches in predicting the thermal conductivity of nanofluids. The models were evaluated using fivefold cross-
validation, and the best model was the model based on the proposed feature selection algorithm that exhibited 
a root-mean-squared error of validation of 1.83 and an R-squared value of 0.94 on validation set. The model achieved 
a root-mean-squared error of 1.46 and an R-squared value of 0.97 for the test set.

Conclusions The developed predictive model holds practical significance by enabling nanofluids’ numerical study 
and optimisation before their creation. This model facilitates the customisation of conventional fluids to attain desired 
fluid properties, particularly their thermal properties. Additionally, the model permits the exploration of numerous 
nanofluid variations based on permutations of their features. Consequently, this research contributes valuable insights 
to the design and optimisation of nanofluid systems, advancing our understanding and application of thermal 
conductivity in nanofluids and introducing a novel and methodological approach for feature selection in machine 
learning.
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Background
This research introduces a novel method for modelling 
nanofluid thermophysical properties (thermal conductiv-
ity of single-material nanofluid). It uses the physics of the 
fluid to select its features. Using this approach ensures 
a generalised physical model. The implication of such 
an approach is creating a model that meets the needs 
of many cases of single-material nanofluids. This is so 
because the feature selection was physics-based.

*Correspondence:
Ekene Onyiriuka
mnejo@leeds.ac.uk
1 School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42269-023-01115-9&domain=pdf
http://orcid.org/0000-0003-1104-5733


Page 2 of 15Onyiriuka  Bulletin of the National Research Centre          (2023) 47:140 

This approach is unusual as much research depends on 
statistical tools to select its learning features (MathWorks 
2022).

Literature review
The prediction of the thermal conductivity of nanoflu-
ids has been studied extensively. The following reviews 
give the state of the art on this topic as given by various 
researchers, beginning with some historical studies to 
present works.

Xie et  al. (2002) studied the thermal conductivity 
measurement of SiC suspension in water and ethylene 
glycol and the effect of the size and shape of the added 
solid phase on the enhancement of thermal conductiv-
ity. Experimental data for SiC nanoparticles in water and 
ethylene glycol were presented. The thermal conductiv-
ity of SiC nanofluid was measured using a transient hot-
wire method. The effects of the morphologies (size and 
shape) of the added solid phase on the enhancement of 
the thermal conductivity of the nanoparticle suspension 
were studied. This study was one of the first to supply 
such data. Furthermore, it was one of the first to report 
the effects of morphology on thermal conductivity 
enhancement. It highlighted the deviation in the exist-
ing Hamilton–Crosser model with spherical and cylin-
drical assumptions. The study considers just one type 
of nanoparticle (SiC). However, only two particle sizes 
were considered. In the study, it was assumed that heat 
transfer between the particles and fluid takes place at the 
particle–surface interface. Heat transfer is expected to be 
more efficient and rapid for a system with a larger inter-
facial area. As the particle sizes decrease, the effective 
thermal conductivity of the suspension improves. Higher 
thermal conductivities were obtained by adding SiC nan-
oparticles. Furthermore, it was observed in the study that 
a linear relationship existed between low volume frac-
tion in the (1–5%) volume fraction range and the thermal 
conductivity enhancements.

Murshed et  al. (2005) studied the thermal conductiv-
ity of  TiO2 water nanofluid in their paper. A more con-
venient measurement of the thermal conductivity of 
nanofluids was created—A transient hot-wire apparatus 
with an integrated correlation model. A relationship was 
established between particle volume fraction, shape, and 
thermal conductivity. The study focused on conveniently 
measuring nanofluids’ thermal conductivity and compar-
ing results with the theoretical prediction. The study was 
one of the first to collect and compare such data with the-
oretical models. However, only one type of nanofluid was 
used. They pointed out that traditional models fail due to 
a lack of accounting of the effects of: (1) particle size, (2) 
particle Brownian motion, (3) nano-layering, (4) effects of 
nanoparticle clustering—an integrated correlation model 

allowed for a more precise and convenient measurement 
of the thermal conductivity of nanofluids. Further efforts 
to develop a suitable model to predict the thermal con-
ductivity of nanofluids will consider other factors that are 
important in enhancing the heat transfer performance of 
nanofluids.

Komeilibirjandi et  al. (2020) studied the thermal con-
ductivity of nanofluids containing two nanoparticles 
and predicted it by using correlation and artificial neural 
network. The GMDH (Group method of data handling) 
Neural network was applied to model the thermal con-
ductivity of CuO–nanofluids. Water and ethylene glycol 
were the base fluids. % volume fraction, nanoparticle size, 
temperature, and thermal conductivity of the base fluid 
were considered. Data used were extracted from experi-
mental studies in the literature.

It is worth knowing that most researchers, as outlined 
above, have attempted this modelling. Furthermore, 
researchers that attempt the generalised model form have 
fixed their models to only the nanofluid types collected. 
Implying no other nanofluid type outside their collected 
data can be accounted for.

Ramezanizadeh et al. (2019) mentioned the two types 
of nanofluids: conventional or single-material nano-
fluids and hybrid nanofluids. They reviewed proposed 
models for predicting the thermal conductivity of vari-
ous researchers. The following conclusions can be drawn 
from their report (Ramezanizadeh et al. 2019):

(a) The reviewed models were not tested with out-of-
sample data.

(b) Many models were made for a specific nanofluid 
(meaning they only covered one nanoparticle and 
base fluid type). The percentage of such models was 
89% (23) out of all 26 models reviewed.

(c) The remaining three (3) models were designed to 
cover more than one nanofluid. However, they were 
limited in the number of nanofluids on which they 
could make predictions due to the numerous nano-
fluid types that exist in the literature plus those that 
can be fabricated. A further study of the modelling 
approach used by these researchers reveals that 
a shift in convention in the choice of model fea-
tures might solve this problem. For example, one 
researcher Ahmadloo and Azizi (2016) considered 
numbers that would differentiate each nanoparti-
cle type and base fluid. Although this helped add a 
distinct factor to the conventional inputs of particle 
size, volume fraction, and temperature, the result-
ing model was still limited to 15 nanofluid types and 
could not be applied beyond those nanofluids. Also, 
adding ordinate numbers as opposed to encoding 
(one-hot types) has been shown in machine learn-
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ing to bias models by making those with higher 
numbers more critical.

(d) For the final two models of the three in (c). They 
could not distinguish between nanofluid types due 
to the features they selected, so they were only 
accurate in a limited range of parameters and thus 
not useful outside of those ranges.

(e) The models’ focus was curve fitting, not prediction.

The other group of models studied by Ramezanizadeh 
et al. (2019) are the correlation types with low accuracy 
and a narrow range where they hold; hence, they are usu-
ally avoided.

In this study, the predictors used as input were cho-
sen so that they uniquely represented the nanoparticle 
and base fluid data and could also apply to other nano-
particles and base fluids not available in the collected 
data. This ensures that it can be used to make predictions 
based on the numerical values of the predictors only 
and hence be a more general model. As compared to the 
work of other researchers such as Ahmadloo and Azizi 
(2016), as mentioned above, used predictors that were 
only uniquely identified with the nanoparticle and base 
fluid in the collected data; hence, they could not be used 
on a general basis for predicting the thermal conductivity 
of single material nanofluids not included in the collected 
data. Moreover, our approach in this study is to create a 
generalised model that accounts for all single-material 
nanofluids using a novel feature selection algorithm.

Experimental measurements and description 
of the experimental setup and procedures
Data used in this study were obtained from experimental 
data reported in the following articles (Patel et al. 2010):

The report’s experimental set-up for measuring ther-
mal conductivity utilised a transient hot-wire apparatus. 
The measurement cell consisted of a 15-cm-long plati-
num wire with a diameter of 100 μm. The platinum wire 
served both as a heater and a thermometer. It was placed 
in a glass container filled with the test liquid and formed 
an arm of a Wheatstone bridge. An analytical solution for 
the temperature distribution was employed to determine 
the thermal conductivity of the test liquid. This solution 
assumes an infinitely long line heat source continuously 
heating a semi-infinite medium. The platinum wire was 
electrically insulated to prevent interference. The validity 
of the measurement technique was established by com-
paring the obtained thermal conductivity values with lit-
erature values for various fluids such as water, ethylene 
glycol, transformer oil, xylene, and toluene. The results 
showed that the measurements obtained from the tran-
sient hot-wire apparatus were within 1.2% of the litera-
ture values, indicating its reliability. However, it should 

be noted that this equipment is not suitable for measur-
ing the thermal conductivity of fluids with high electrical 
conductivities. Nonetheless, it proved effective for meas-
uring the thermal conductivity of oxide nanofluids, which 
was the focus of their study. Overall, the transient hot-
wire equipment employed in the study provided a robust 
and validated method for measuring thermal conductiv-
ity, ensuring accurate and reliable data for the analysis of 
nanofluids.

Machine learning techniques
Machine learning (ML) techniques (Ewim et  al. 2020, 
2021; Géron 2022; Jiang et  al. 2020; Meng et  al. 2020; 
Sharma et al. 2022; Zhu et al. 2021) have revolutionised 
regression analysis by providing powerful tools for pre-
dicting continuous numerical outcomes. This section 
will explore several ML regression techniques commonly 
used in various domains. These techniques include neu-
ral networks, gradient boosting, random forest, support 
vector machine (SVM), linear models, decision trees, and 
naive Bayes regression models. Moreover, they have been 
investigated for nanofluid thermal conductivity predic-
tions in this study along with the application of the novel 
feature selection algorithm proposed by this study.

Neural networks
Neural networks are ML models inspired by the human 
brain’s neural structure. They consist of interconnected 
layers of artificial neurons that can learn complex pat-
terns and relationships. Neural networks have been suc-
cessfully applied to regression tasks because they capture 
nonlinear relationships in the data (Chiniforooshan Esfa-
hani 2023; Genzel et al. 2022; Hornik et al. 1989; Kamsu-
wan et al. 2023; Kannaiyan et al. 2019; Mijwil 2018; Ekene 
Jude Onyiriuka 2023a, b; Peng et al. 2020).

Gradient boosting
Gradient boosting is an ensemble learning method that 
combines multiple weak models, typically decision trees, 
to create a robust predictive model. It trains new models 
to correct the errors made by previous models, gradu-
ally improving the overall prediction accuracy (Friedman 
2001).

Random forest
Random forest is another ensemble learning technique 
that constructs a collection of decision trees and com-
bines their predictions to make accurate predictions. It 
reduces overfitting by introducing randomness in tree-
building (Breiman 2001; Gholizadeh et al. 2020; Tan et al. 
2022).
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Support vector machine (SVM)
SVM is a popular ML algorithm used for regression tasks. 
It aims to find the best hyperplane that separates the data 
into different classes while minimising the error in the 
training instances. SVM can handle linear and nonlinear 
regression problems (Razavi et al. 2019; Vapnik 1999).

Linear model
Linear regression is a simple and widely used ML tech-
nique for regression analysis. It assumes a linear relation-
ship between the input features and the target variable. 
The goal is to find the best-fit line that minimises the sum 
of squared differences between the predicted and actual 
values (Géron 2022).

Decision trees
Decision trees are versatile ML models that make predic-
tions by partitioning the feature space into regions based 
on simple decision rules. They are interpretable and can 
capture nonlinear relationships in the data. Decision 
trees can be used for regression and classification tasks 
(Breiman et al. 1984).

Naive Bayes regression model
Naive Bayes regression is based on Bayes’ theorem and 
assumes that the input features are conditionally inde-
pendent given the target variable. Despite its simplicity, 
naive Bayes can provide reasonable predictions, espe-
cially when the independence assumption holds (Rish 
2001).

These ML regression techniques offer various options 
for analysing and predicting continuous variables. The 
choice of technique depends on the specific problem, 
dataset characteristics, interpretability requirements, and 
computational considerations. Researchers and practi-
tioners often compare and combine these techniques to 
achieve the best performance for their regression tasks 
(Sharma et al. 2022; Witten et al. 2016; Yashawantha and 
Vinod 2021; Zhu et al. 2021).

Cross‑validation
Cross-validation is a machine learning technique used 
to estimate the ability of a machine learning model on 
unknown data. In this process, a small sample is used to 
assess how the model will perform. These data are called 
"out-of-bag" data. It is a popular strategy since it is sim-
ple and produces a less biased or optimistic estimate of 
a model’s predictive ability than other processes, such as 
a simple train–test split. Cross-validation ensures a fair 
comparison of the models (Brownlee 2020a).

To compare machine learning algorithms well, we 
ensured that each algorithm was evaluated on the same 
data and in the same way. Cross-validation is a resam-
pling technique for evaluating machine learning models 
on a small sample of data. Although there are several 
cross-validation methods, we chose the k-fold cross-val-
idation method because it was the most fitting for this 
study—for evaluating models without bias. However, 
researchers Brownlee (2020b) reported an alternative 
method called stratified cross-validation, which is suit-
able for cross-validating imbalanced datasets. However, 
it is only applicable to classification problems. Hence, it 
does not apply to our study. The process of k-fold cross-
validation includes a parameter, k, which specifies the 
number of groups into which a given data sample should 
be sectioned. Fivefold cross-validation refers to cross-val-
idation where the dataset is split into five sections. The 
cross-validation method used in this study was the five-
fold cross-validation method, which is applied to evalu-
ate every algorithm to ensure the same evaluation on all 
models.

The figure below shows the k-fold algorithm.
The general procedure is shown in Fig. 1:

1. Randomised shuffling of the dataset.
2. Divide the dataset into k distinct sections.
3. For each distinct section:

 i. Use the section as a test data set.
 ii. Use the remainder of the section as a training 

data set.

Fig. 1 The fivefold algorithm
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 iii. Fit each model to the training set (ii) and eval-
uate it on the test set (i).

 iv. Save the evaluation score and note the model.

4. Steps (i) through (iv) should be repeated for x num-
ber of models.

5. Report the predictive ability of each model by sum-
marising the model’s average evaluation score.

Evaluation metrics
The evaluation metrics are used to measure the perfor-
mance of the predictive model. Standard metrics for 
regression tasks include:

Root-mean-squared (RMSE) error (Hastie et al. 2009): 
it is a popular evaluation metric for regression tasks. It 
is derived from the mean-squared error (MSE) as seen 
in Eq.  1 by taking the square root of the average of the 
squared differences between the predicted values and 
the actual values. The rationale behind using RMSE as an 
evaluation metric is like that of MSE, but with some addi-
tional considerations RMSE, like MSE, provides a meas-
ure of the average prediction error. However, by taking 
the square root of MSE, RMSE is expressed in the same 
units as the target variable, making it more interpretable 
and easier to relate to the original scale of the problem. 
For example, if the target variable represents the temper-
ature of a fluid in oC, RMSE will also be expressed in oC. 
Like MSE, RMSE also emphasises more significant errors 
by squaring them. However, by taking the square root 
of MSE, RMSE balances penalises significant errors and 
maintaining interpretability. It allows a more intuitive 
understanding of the typical magnitude of errors in the 
model’s predictions. RMSE enables direct comparison 
of models or different scenarios, as it provides a scale-
dependent standard metric. When comparing models, 
lower RMSE values indicate better performance, indi-
cating that the model’s predictions are closer to average. 
RMSE is related to the standard deviation of the errors. 
It measures the typical spread or dispersion of the errors 
around the actual values. Smaller RMSE values suggest a 
more concentrated distribution of errors, indicating bet-
ter accuracy and precision in the model’s predictions.

RSQUARED(Gareth et al. 2013) is a widely used evalu-
ation metric for regression tasks. It measures the pro-
portion of the variance in the dependent variable that 
is predictable from the independent variables as seen 
in Eqs.  (2)–(5). RSQUARED measures how well the 
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regression model fits the observed data. It quantifies the 
proportion of the total variation in the dependent vari-
able that the independent variables can explain. Higher 
RSQUARED values indicate a better fit and suggest 
that the model accounts for a more significant propor-
tion of the variation in the target variable. RSQUARED 
allows for comparison against a baseline model, often the 
mean of the dependent variable. An RSQUARED value 
of 1 indicates that the model perfectly predicts the tar-
get variable, while a value of 0 suggests that the model 
does not provide any improvement over the baseline 
model. RSQUARED has a straightforward interpreta-
tion as the proportion of variance explained. It provides 
a convenient measure to communicate the model’s pre-
dictive power to non-technical researchers, such as 
decision-makers.

Mean-squared error (MSE) (Hastie et  al. 2009) is a 
commonly used evaluation metric for regression tasks. 
It measures the average squared difference between pre-
dicted and actual values as shown in Eq. (6). MSE meas-
ures the average prediction error by considering the 
squared differences between the predicted and actual 
values. It penalises more significant errors due to the 
squaring operation, providing a way to assess the accu-
racy of the model’s predictions. MSE is mathematically 
convenient and has desirable properties for optimisa-
tion. It is differentiable, allowing efficient gradient-based 
optimisation algorithms commonly used in machine 
learning. This property makes MSE practical for train-
ing regression models using gradient-based optimisation 
techniques. MSE can be decomposed into the sum of var-
iance and bias terms, known as the bias–variance trade-
off. This decomposition provides insights into the model’s 
performance by assessing the balance between overfitting 
(low bias, high variance) and underfitting (high bias, low 
variance). By minimising MSE, the model aims to find the 
optimal balance between bias and variance for improved 
generalisation.
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Mean absolute error (MAE) (Gareth et  al. 2013) is a 
commonly used evaluation metric for regression tasks. 
It measures the average absolute difference between pre-
dicted and actual values as seen in Eq. (7).

MAE is less sensitive to outliers compared to other 
error metrics like MSE. Since MAE calculates the abso-
lute difference, it does not heavily penalise significant 
errors. This makes MAE more robust to outliers, mini-
mising their influence on the overall error measurement. 
MAE has a straightforward interpretation as the average 
absolute difference between the predicted and actual val-
ues. It represents the average magnitude of the errors, 
providing an intuitive understanding of the model’s per-
formance. MAE is easily understandable by non-techni-
cal researchers, making it suitable for communication. 
MAE is mathematically simple and computationally effi-
cient. It does not involve squaring the differences, sim-
plifying calculations and reducing the computational 
complexity of evaluating the error metric.

Methods
The procedure to evaluate the predictive model involves 
the following: The trained model was used to make pre-
dictions on the validation dataset. Moreover, the above 
evaluation metrics were computed using the predicted 
values and the corresponding actual values from the vali-
dation dataset.

The calculated metrics are presented in Table  2. The 
validation RMSE is used to sort the table from best to 
worse.

Data exploration and models
The variables were collected for analysis, selecting which 
features might be necessary for modelling the thermal 
conductivity of nanofluids.

The nanofluid data set was collected from experimental 
studies. It consisted of 348 data points.

Conceptualisation and parameter selection
Conceptualisation in this context is formulating a novel 
parameter selection method for predicting the thermal 
conductivity of all single-material nanofluids. Parameter 
selection is the selection of the training data character-
istics learned during the learning process. In this study, 
there is a shift from parameter selection based solely on 
statistics to selection based on physics and reduction of 

(6)MSE =
1

n

n
∑

i=1

(hi − hi
pred

)
2

(7)MAE =
1

n

n
∑

i=1

∣

∣

∣
hi − hi

pred
∣

∣

∣

an initially large dimensional space. It describes a feature 
engineering technique where all variables possible are 
selected to increase the dimensional space of a dataset by 
increasing the number of descriptive features. The goal 
is to find an optimal physical dimensional set of features 
that make each data point distinct from the others. Even 
though these extra variables may not have high impor-
tance in predicting the target variables, their presence in 
the model helps to make the predictions unique. This is 
a different approach from conventional feature engineer-
ing. In conventional feature engineering, feature engi-
neering aims to create new variables from existing ones 
to improve the performance of a machine learning model 
by providing more information to the model (Patel 2021).

In this case, the new variables are not derived from the 
existing variables but are other independent variables 
that further define the characteristics of what is being 
predicted.

It is important to remember that feature engineering is 
an iterative process that necessitates a thorough under-
standing of the problem and the data at hand.

Proposed algorithm for parameter selection
Here we discuss the procedure for selecting parameters 
according to the novel method discussed above to predict 
the thermal conductivity of all single-material nanofluids.

(1) Check the problem being solved.
(2) List all the possible features (start with the largest 

number of features/dimensional space possible).
(3) Manually drop features that have no meaning or 

direct implication to the thermal conductivity of a 
fluid. For example, using single-material nanofluids:

(a) Fluid features—Temperature
(b) Multiphase features—Volume fraction and par-

ticle size
(c) Material features

 (i) Nanoparticle material: Any two intensive 
properties will fix the material of the nano-
particle type (Callister 2007; Cengel et  al. 
2011; Moran et al. 2010).

 (ii) Base fluid material: Any two intensive properties 
will fix the material of the base fluid type (Callister 
2007; Cengel et al. 2011; Moran et al. 2010).

So, these three feature groupings define a nanofluid.

(4) Apply statistical methods to select features accord-
ing to 3) out of all other features.

(5) At the end of steps (3)–(5), you should have a rea-
sonable number of features and optimal accuracy.
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Note that this parameter selection focuses on accuracy 
and enhanced model learning for generalisation. Accu-
racy is still of utmost importance.

Other feature selection algorithm
The section presents the minimum redundancy maxi-
mum relevance (MRMR) and RReliefF.

Minimum redundancy maximum relevance (MRMR).

• Begin by picking the most relevant feature from a set 
and add it to a selected set (S).

• Check the remaining features (Sc) for those with rel-
evant information but not redundant with the ones 
in S.

• If such features exist, add the most relevant of them 
to S.

• Keep doing this until there are no more non-redun-
dant features left in Sc.

• Find the Sc feature with the highest value consider-
ing its ability to contribute new information—Mutual 
Information Quotient (MIQ) while balancing rel-
evance and redundancy.

• Add this feature to S and repeat Step 4 as needed.
• Include Sc features with zero relevance into S, ran-

domly.

The algorithm chooses features that are informative 
and distinct, resulting in an optimised subset for analysis.

RReliefF.
Initialise the weights Wdy , Wdj , Wdy∧dj , and Wj to 0.
The algorithm then follows these steps for a certain 

number of iterations, denoted by ’updates.’
For each iteration ’i’ and for a randomly chosen obser-

vation xr
Find the k-nearest observations to xr.
m is the number of iterations specified by ’updates’.
Update the intermediate weights as follows:

The �y

(
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)

 calculates the difference in continuous 
response y between observations xr and xq normalised by 
the range of response values:
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where yr is the response value for observation xr ; yq is 
the response value for observation xq . drq is a distance 
function.

After updating all intermediate weights for each itera-
tion, RReliefF calculates the predictor weights Wj using 
the formula:

Preprocessing of experimental data for training 
and validation
Preprocessing experimental data for training and valida-
tion involve several steps to ensure the data are in a suit-
able format and quality for ML regression analysis. The 
following are essential components of data preprocessing 
for training and validation: The removal of any irrelevant 
or redundant data did not contribute to the regression 
task. This includes removing duplicates, handling miss-
ing values, and addressing outliers. Missing values can 
be imputed using techniques such as mean, median, or 
advanced imputation methods like regression imputa-
tion. However, this study did not impute missing values 
since the data had no missing values.

Feature selection and modelling
In this study, the modelling process is approached from 
the standpoint of feature selection.

To start the modelling procedure, we first designed it 
for reproducibility. This was achieved by using a default 
and consistent random seed generator. The data are then 
partitioned into two sets in an 80:20 ratio, 80% for train-
ing (252 observations) and 20% (69 observations) for later 
out-of-bag testing. And 10% of the 80% for testing (27 
observations). The fivefold cross-validation was carried 
out to select the model without bias fairly.

The response (percentage enhancement of thermal 
conductivity—“ENT”) was specified. Moreover, the rest 
of the variable was specified as the predictors.

Results
Discussion
Data analysis
The total number of data rows collected was 348, with 22 
columns including the response variable.

The variables are represented by the following nomen-
clature for ease of reference, as shown in Table 1:

Figure  2 showcases histograms portraying the char-
acteristics of each variable, including the response 
variable "ENT" response variable. Visual scrutiny of 
these histograms swiftly indicates that none of the vari-
ables conforms to a normal distribution, prompting the 

Wj =
Wdy∧dj

Wdy
−

Wdj −Wdy∧dj

m−Wdy
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requirement for models attuned to handling such non-
normal data distributions. Therefore, a range of model-
ling methodologies comes into view. Notably, robust 
linear regression (Maronna et  al. 2019) emerges as a 
promising method, particularly due to its reliable coeffi-
cient estimates even in the presence of outliers. Likewise, 
nonparametric models, including decision trees, ran-
dom forests, and support vector machines (Kurani et al. 
2023), surface as possible modelling options, capable of 
understanding intricate relationships without making 
such assumptions about data distribution. Furthermore, 
ensemble models, represented by boosting and bagging 
(Mohammed & Kora 2023), also exhibit their strength 
to enhance predictive accuracy. This proves invaluable 
when dealing with non-normal data and intricate nonlin-
ear relationships. Additionally, the potency of neural net-
works (Cong & Zhou 2023) becomes evident, owing to 
their remarkable capacity for detecting patterns and rela-
tionships even amidst complex data representation. It is 
noteworthy that the author avoids data transformation of 
the response variable since that could potentially lead to 
data leakage because data transformation holds the risk 
of inadvertent data leakage as noted by Osborne (2010) 

where knowledge from the target variable infiltrates the 
transformation process, affecting the model outcomes. 
In conclusion, Fig.  2 effectively visualises the histogram 
plots of diverse variables, exposing their departure from 
normality. Consequently, a suite of modelling options is 
proposed, encompassing robust linear regression, non-
parametric models (e.g., decision trees, random forests, 
support vector machines), ensemble models (e.g., boost-
ing, bagging), and neural networks. These selections are 
apt for handling data exhibiting non-normal distribu-
tions. The selection among these modelling approaches 
should be guided by the specific data characteristics.

Figure 3b presents the box plot for each variable, offer-
ing a visual summary of their distribution characteristics, 
including skewness, symmetry, and potential outliers. 
The structure of the box plot is depicted in Fig. 3a. Box 
plots allow for a concise representation of multiple vari-
ables, facilitating the identification of differences in cen-
tral tendency and variability among them. The box plot 
provides several important features for each variable. The 
rectangular box represents the interquartile range (IQR), 
encompassing the middle 50% of the data. The line within 
the box represents the median, indicating the central 

Table 1 Common feature selection algorithm

Feature selection type Brief description of the feature selection 
algorithm

Selected features and their importance Model performance

Minimum redundancy 
maximum relevance 
(MRMR)

The MRMR (minimum redundancy maxi-
mum relevance) algorithm aims to identify 
an optimal feature subset highly relevant 
to the response variable and maximally 
dissimilar

VF = 0.2279, TC = 0.2000 RMSE (Validation) 5.65

MSE (Validation) 31.96

RSQUARED (Validation) 0.40

MAE (Validation) 4.57

MAE (Test) 5.34

MSE (Test) 39.61

RMSE (Test) 6.29

RSQUARED (Test) 0.25

FTest (Importance > 25) This involves conducting separate 
Chi-square tests for each predictor 
variable to determine if there is a sig-
nificant association between the predictor 
and the response

VF = 50.7728, DP = 31.8726, NPk = NPa = NP
cp = NPmp = NPri = NPek = NPms = NPd = 2
6.5023

RMSE (Validation) 3.50

MSE (Validation) 12.27

RSQUARED (Validation) 0.78

MAE (Validation) 2.64

MAE (Test) 2.33

MSE (Test) 9.72

RMSE (Test) 3.12

RSQUARED (Test) 0.77

RReliefF (> Abs (0.01)) The RReliefF algorithm considers the con-
sistency of predictor values among neigh-
bours with the same response values. It 
penalises predictors exhibiting inconsistent 
values among neighbouring instances 
with the same response while rewarding 
predictors demonstrating differing values 
among neighbours with different response 
values

VF = 0.1515, BFv = 0.0142, BFkv = 0.0126, 
DP = − 0.0092

RMSE (Validation) 2.66

MSE (Validation) 7.07

RSQUARED (Validation) 0.86

MAE (Validation) 1.94

MAE (Test) 1.95

MSE (Test) 7.39

RMSE (Test) 2.72

RSQUARED (Test) 0.90
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tendency of the variable. The whiskers extend from the 
box, indicating the data range within 1.5 times the IQR. 
Values beyond the whiskers are considered potential 
outliers and are displayed as individual data points. By 
examining the box plots in Fig.  3b, we can observe the 
distributional characteristics of each variable. Skewness 
can be observed by considering the asymmetry of the box 
and whiskers. The whisker lengths are significantly dif-
ferent, suggesting unequal variability. Outliers are visu-
ally identifiable as can be observed by data points lying 
beyond the whiskers. The side-by-side presentation 
of multiple variables in Fig.  3b allows for an easy com-
parison of their central tendencies and variabilities. Dif-
ferences in box lengths, medians, and whisker lengths 
among the variables indicate variations in their distribu-
tions. The utilisation of box plots aids in understanding 
the distributional properties of each variable and enables 
the identification of potential outliers and variations in 
central tendency and variability across multiple variables. 
We can observe similar data characteristics between the 
variables regarding skewness, making it possible to cre-
ate some groupings. In contrast, some variables are single 
and do not fall under similarity groupings. The follow-
ing groups 1 to 12 show the variables that have similar 
relationships with themselves by visual examination as 
observed in the box plot in Fig. 3.

Group 1: Nanofluid temperature
Group 2: Particle size diameter, Nanoparticle density, 
Nanoparticle thermal conductivity
Group 3: Volume fraction, Base fluid surface tension
Group 4: Nanoparticle thermal diffusivity, Base fluid 
dielectric constant
Group 5: Nanoparticle-specific heat capacity, Nano-
particle electrical conductivity
Group 6: Nanoparticle melting point, Base fluid spe-
cific heat capacity
Group 7: Nanoparticle dielectric constant, Base fluid 
density
Group 8: Nanoparticle refractive index, Base fluid 
boiling point
Group 9: Nanoparticle magnetic susceptibility
Group 10: Base fluid thermal conductivity, Base fluid 
thermal diffusivity
Group 11: Base fluid viscosity
Group 12: Base fluid kinematic viscosity, Percentage 
enhancement of nanofluid thermal conductivity

Groups 1, 9, and 11 are very different from the rest.

Results analysis
In the appendix, the table presents the results of the 
model selection process. The neural networks emerged 

Fig. 2 A histogram plot of each variable
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as the best basic model based on the cross-validated 
set’s root-mean-squared error (RMSE). The selected 
neural network consisted of three fully connected layers 

with sizes of 10, 10, and 10, respectively. The rectified 
linear unit (ReLU) was used as the activation function, 
and the regularisation strength was set to zero. The 

Fig. 3 a Box plot anatomy (MathWorks 2022). b Box plot of the variables
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implementation of the neural network had a variable 
learning rate and a validation check stopping criteria. 
Additionally, the data were standardised before train-
ing the model. To further optimise the neural network, 
Bayesian optimisation was employed. The optimisation 
process was guided by the estimated improvement per 
second plus 30 iterations. The hyperparameter search 
range included the number of fully connected layers 
(1–3), the size of the first layer (1–300), the size of the 
second layer (1–300), the size of the third layer (1–300), 
and the choice of the activation function (ReLU, tanh, 
sigmoid, or none). The regularisation strength varied 
between 3.9683 × 10^(-08) and 396.8254. Data stand-
ardisation was considered a binary choice (yes/no). The 
optimised hyperparameters for the neural network were 
determined as follows: two fully connected layers with 
sizes of 64 and 10, respectively. The ReLU activation 
function was utilised, the regularisation strength was set 
to 392.6291, and the data were standardised. However, it 
was observed that the performance of the optimised neu-
ral network was not satisfactory. The validation RMSE 
for the optimised model was 14.472, which was higher 
than the non-optimised version. The mean-squared error 
(MSE) was 209.443, the R-squared (RSQUARED) was 
-2.841, and the mean absolute error (MAE) was 12.482. 
For the test set consisting of 27 observations, the MAE 
was 9.096, the MSE was 125.532, the root-mean-squared 
error (RMSE) was 11.204, and the RSQUARED was 
-1.932. This observation is possibly due to overfitting the 
model parameters to the data and hence the poor perfor-
mance on the validation set and test set. In order to per-
form feature selection, a copy of the most accurate model 
was used. Table 1 presents the results of the analysis using 
standard feature selection algorithms. The minimum 
redundancy maximum relevance (MRMR) algorithm 
identified VF and TC as the selected features with respec-
tive importance scores of 0.2279 and 0.2000. The model’s 
performance based on validation data included an RMSE 
of 5.65, an MSE of 31.96, an RSQUARED of 0.40, and 
an MAE of 4.57. For the test set, the MAE was 5.34, the 
MSE was 39.61, the RMSE was 6.29, and the RSQUARED 
was 0.25. Another feature selection algorithm, FTest, 
was employed with an importance threshold of 25. This 
approach involved conducting separate Chi-square tests 
for each predictor variable to determine their significant 
association with the response. The resulting selected fea-
tures and their importance scores were VF (50.7728), DP 
(31.8726), and others with importance scores of 26.5023. 
The model’s performance improved compared to the 
MRMR-selected features, with an RMSE of 3.50, an MSE 
of 12.27, an RSQUARED of 0.78, and an MAE of 2.64 for 
the validation set. For the test set, the MAE was 2.33, the 
MSE was 9.72, the RMSE was 3.12, and the RSQUARED 

was 0.77. The RReliefF algorithm was also applied with a 
threshold of importance greater than 0.01. This algorithm 
considers the consistency of predictor values among 
neighbours with the same response values. The selected 
features and their importance scores were VF (0.1515), 
BFv (0.0142), and BFkv (0.0126), while DP had a negative 
importance score of -0.0092. The model’s performance 
improved further, with an RMSE of 2.66, an MSE of 7.07, 
an RSQUARED of 0.86, and an MAE of 1.94 for the vali-
dation set. For the test set, the MAE was 1.95, the MSE 
was 7.39, the RMSE was 2.72, and the RSQUARED was 
0.90. Table  2 presents the results of novel feature selec-
tion algorithms (NFSA). One NFSA algorithm was based 
on selecting variables with similar statistical character-
istics, selecting TC, DP, VF, NPk, NPd, BFkv, and BFv. 
This algorithm achieved improved performance, with an 
RMSE of 1.74, an MSE of 3.01, an RSQUARED of 0.94, 
and an MAE of 1.14 for the validation set. For the test 
set, the MAE was 1.01, the MSE was 2.26, the RMSE was 
1.50, and the RSQUARED was 0.95. The second NFSA 
algorithm focused on selecting variables with differ-
ent statistical characteristics, selecting TC, DP, VF, NPk, 
NPmp, BFkv, and BFv. This algorithm achieved the best 
model performance, with an RMSE of 1.83, an MSE of 
3.34, an RSQUARED of 0.94, and an MAE of 1.23 for 
the validation set. For the test set, the MAE was 0.99, the 
MSE was 2.14, the RMSE was 1.46, and the RSQUARED 
was 0.97. Based on the results from Table 2, it is evident 
that the novel feature selection algorithm with different 
statistical characteristics provided the best model per-
formance, achieving the lowest RMSE for the validation 
set. This result emphasises and encourages researchers 
to develop models in this manner since it leads to better 
models in terms of accuracy and generalisation.

It is worth noting that further investigation and experi-
mentation are necessary to validate the findings and 
potentially explore alternative modelling approaches or 
feature selection methods. The following study’s limita-
tions should also be acknowledged, such as the sample 
size, potential biases, and the context of the analysis. 
Future research could address these limitations to pro-
vide a more comprehensive understanding of the studied 
phenomena and potentially improve model performance 
by applying the novel feature selection algorithm for 
other scenarios like hybrid nanofluids and similar 
technologies.

Practical significance of the developed predictive 
model
By developing this model, it is possible to study and 
optimise nanofluids numerically before creating them. 
It enhances the ability to edit conventional fluids to fit 
any fluid description of our desire, especially the fluid’s 
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thermal properties. Also, it is to be noted that by editing 
the base fluids by adding nanoparticles, we can obtain 
numerous fluids (nanofluids as there are permutations 
of the features of the nanoparticles and base fluids) and 
adequately model their characteristics.

Conclusions
This research presents a novel approach for modelling 
single-material nanofluids, considering their constitu-
ents, the specific fluid characteristics, and the problems 
being addressed. The developed approach has demon-
strated high accuracy in modelling nanofluids.

The significance of this study lies in its potential to 
advance our understanding of nanofluid behaviour by 
examining the individual and combined effects of vari-
ables on the thermophysical properties of nanofluids and 
providing researchers a road map on how to select fea-
tures for nanofluid modelling so that we can have more 
general and accurate models. Furthermore, this meth-
odological process for modelling as detailed in this study 
serves to suggest a process for researchers to apply when 
modelling nanofluids’ thermophysical properties. By 

delving into these relationships, researchers can gain val-
uable insights into the underlying mechanisms govern-
ing nanofluid behaviour, leading to improved design and 
optimisation of nanofluid systems.

The ability to accurately model single material nano-
fluids opens up new possibilities for investigating and 
resolving the anomalous heat transfer enhancement 
observed in these fluids. Furthermore, it allows for the 
customisation of nanofluids to meet desired thermal 
properties, providing greater control over their applica-
tion in various fields.

Overall, this research contributes to the growing 
body of knowledge on nanofluids, offering a promising 
avenue for further exploration and understanding of 
their thermophysical properties. The developed model-
ling approach sets the stage for future studies aimed at 
harnessing the full potential of nanofluids in enhancing 
heat transfer and achieving desired thermal character-
istics. It is to be noted that the work is purely computa-
tional, and hence, researchers can look to validate these 
claims experimentally. Also applying these to hybrid 
nanofluid serves as a significant future work.

Table 2 Novel feature selection algorithms (NFSAs)

Feature selection type Brief description of the feature 
selection algorithm

Selected features and their 
importance

Model performance

Novel feature selection algo-
rithm is based on similar skew-
ness and data resemblance

This selects variables that have close 
to or the same statistical characteristics

TC, DP, VF, NPk, NPd, BFkv, BFv RMSE (Validation) 1.74

MSE (Validation) 3.01

RSQUARED (Validation) 0.94

MAE (Validation) 1.14

MAE (Test) 1.01

MSE (Test) 2.26

RMSE (Test) 1.50

RSQUARED (Test) 0.95

Novel feature selection 
algorithm is based on different 
skewness and data resemblance. 
(The best)

This selects variables that have dis-
similar. Statistical characteristics, differing 
values among neighbours with different 
response values

TC, DP, VF, NPk, NPmp, BFkv, BFv RMSE (Validation) 1.83

MSE (Validation) 3.34

RSQUARED (Validation) 0.94

MAE (Validation) 1.23

MAE (Test) 0.99

MSE (Test) 2.14

RMSE (Test) 1.46

RSQUARED (Test) 0.97
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Appendix
Basic modelling and comparison step across various machine learning algorithms.

Model 
Type

RMSE 
(Validation)

MSE 
(Validation)

RSQUARED 
(Validation)

MAE 
(Validation)

MAE 
(Test)

MSE 
(Test)

RMSE 
(Test)

RSQUARED 
(Test)

Pre‑set

Neural 
Network

1.707 2.912 0.947 1.196 0.792 1.547 1.244 0.964 Trilayered 
Neural 
Network

Gaussian 
Process 
Regression

1.871 3.501 0.936 1.299 1.006 2.185 1.478 0.949 Exponen-
tial GPR

Gaussian 
Process 
Regression

1.929 3.720 0.932 1.390 0.923 1.447 1.203 0.966 Squared 
Exponen-
tial GPR

Gaussian 
Process 
Regression

1.931 3.729 0.932 1.377 0.941 1.441 1.200 0.966 Matern 5/2 
GPR

SVM 1.935 3.743 0.931 1.515 0.950 1.658 1.288 0.961 Quadratic 
SVM

Gaussian 
Process 
Regression

2.032 4.128 0.924 1.422 0.919 1.422 1.193 0.967 Rational 
Quadratic 
GPR

SVM 2.131 4.540 0.917 1.491 0.789 1.160 1.077 0.973 Cubic SVM

Neural 
Network

2.185 4.776 0.912 1.542 0.619 0.561 0.749 0.987 Narrow 
Neural 
Network

Neural 
Network

2.222 4.937 0.909 1.502 0.743 0.947 0.973 0.978 Bilayered 
Neural 
Network

Ensemble 2.359 5.567 0.898 1.672 1.165 2.062 1.436 0.952 Boosted 
Trees

Neural 
Network

2.529 6.395 0.883 1.641 0.655 0.790 0.889 0.982 Medium 
Neural 
Network

Stepwise 
Linear 
Regression

2.573 6.620 0.879 1.988 1.546 2.977 1.725 0.930 Stepwise 
Linear

Neural 
Network

2.590 6.707 0.877 1.632 0.797 1.761 1.327 0.959 Wide 
Neural 
Network

SVM 2.679 7.176 0.868 1.940 1.159 2.492 1.579 0.942 Medium 
Gaussian 
SVM

Ensemble 2.964 8.788 0.839 2.225 1.514 3.575 1.891 0.916 Bagged 
Trees

Tree 3.188 10.164 0.814 2.447 1.555 3.760 1.939 0.912 Fine Tree

Linear 
Regression

3.387 11.470 0.790 2.319 1.828 5.000 2.236 0.883 Interac-
tions Linear

Linear 
Regression

3.530 12.459 0.771 2.889 2.045 6.297 2.509 0.853 Linear

Linear 
Regression

3.570 12.747 0.766 2.911 2.050 6.340 2.518 0.852 Robust 
Linear

SVM 3.712 13.777 0.747 2.949 2.001 7.062 2.657 0.835 Linear SVM

Tree 4.004 16.028 0.706 3.091 2.235 7.242 2.691 0.831 Medium 
Tree

SVM 4.394 19.305 0.646 3.193 2.393 11.682 3.418 0.727 Coarse 
Gaussian 
SVM

SVM 4.468 19.962 0.634 3.009 3.002 17.704 4.208 0.586 Fine Gauss-
ian SVM
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Model 
Type

RMSE 
(Validation)

MSE 
(Validation)

RSQUARED 
(Validation)

MAE 
(Validation)

MAE 
(Test)

MSE 
(Test)

RMSE 
(Test)

RSQUARED 
(Test)

Pre‑set

Tree 5.164 26.672 0.511 4.082 3.579 19.630 4.431 0.541 Coarse Tree

Kernel 6.134 37.623 0.310 4.747 4.428 29.106 5.395 0.320 Least 
Squares 
Regression 
Kernel

Kernel 7.101 50.417 0.075 5.540 5.077 42.941 6.553 -0.003 SVM Kernel

Abbreviations
BFa  Base fluid thermal diffusivity  (m2/s) e + 07
BFbp  Base fluid boiling point (°C)
BFcp  Base fluid specific heat capacity (J/(kg K))
BFd  Base fluid density (kg/m3)
BFde  Base fluid dielectric constant (–)
BFk  Base fluid thermal conductivity (W/(m K))
BFkv  Base fluid kinematic viscosity  (m2/s) e + 07
BFst  Base fluid surface tension (mN/m)
BFv  Base fluid viscosity (Pa s)
DP  Particle size diameter (nm)
ENT  Percentage enhancement of nanofluid thermal conductivity (%)
GMDH  Group method of data handling
GPR  Gaussian process regressor
h̄  Mean value of observed heat transfer coefficient
MAE  Mean absolute error
ML  Machine learning
MRMR  Minimum redundancy maximum relevance
MSE  Mean-squared error
n  Number
NFSA  Novel feature selection algorithms
NPa  Nanoparticle thermal diffusivity  (m2/s) e + 07
NPcp  Nanoparticle-specific heat capacity (J/(kg K))
NPd  Nanoparticle density (kg/m3)
NPde  Nanoparticle dielectric constant (–)
NPek  Nanoparticle electrical conductivity (mMS/m)
NPk  Nanoparticle thermal conductivity (W/ (m K))
NPmp  Nanoparticle melting point (°C)
NPms  Nanoparticle magnetic susceptibility (–)
NPri  Nanoparticle refractive index (–)
ReLU  Rectified linear unit
RMSE  Root-mean-squared error
SSreg  Explained sum of squares
SStot  Total sum of squares
SVM  Support vector machine
TC  Nanofluid temperature (oC)
VF  Volume fraction (%)

Superscript
pred  Prediction

Subscript
i  Data point
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