
Elsayed et al.
Bulletin of the National Research Centre (2023) 47:122
https://doi.org/10.1186/s42269-023-01096-9

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Bulletin of the National
Research Centre

FPGA design and implementation
for adaptive digital chaotic key generator
Ghada Elsayed1*   , Elsayed Soleit1 and Somaya Kayed2 

Abstract 

Background  Information security is very important in today’s digital world, especially cybersecurity. The most com-
mon requirement in securing data in all services: confidentiality, digital signature, authentication, and data integrity
is generating random keys. These random keys should be tested for randomness. Hardware security is more recom-
mended than software. Hardware security has more speed and less exposure to many attacks than software security.
Software security is vulnerable to attacks like buffer overflow attacks, side-channel attacks, and Meltdown–Spectre
attacks.

Results  In this paper, we propose an FPGA Implementation for the adaptive digital chaotic generator. This algorithm
is proposed and tested before. We introduce its implementation as hardware. This algorithm needs a random number
seed as input. We propose two designs. The first one has an input random number. The second one has PRNG inside.
The target FPGA is Xilinx Spartan 6 xc6slx9-2-cpg196. We used MATLAB HDL Coder for the design. We propose a con-
figurable Key block’s length. For 32 bit the maximum frequency is 15.711 MHz versus 11.635 MHz for the first and sec-
ond designs respectively. The area utilization of the Number of Slice Registers is 1% versus 2%. The number of Slice
Look Up Tables is 40% versus 59%. number of bonded input output blocks is 64% versus 66%. otherwise are the same
for the two designs.

Conclusions  In this paper, we propose an efficient and configurable FPGA Design for adaptive digital chaotic key
generator. Our design has another advantage of storing the output keys internally and reading them later.

Keywords  FPGA, MATLAB HDL Coder, Chaotic

Background
Nowadays, generating a cryptographic random number
generator is very important. Its importance comes from
information security importance, cyber security, and test-
ing machine learning. How to generate pseudo-random
numbers is a question to which we’ll pick an answer of it
and introduce a hardware Implementation to it over the
FPGA. The FPGA Design is performed by MATLAB HDL

Coder (MathWorks 2023). Its workflow is shown in Fig. 1.
In Fig. 1 there are two input methods either by Simulink or
Matlab script. Our work is based on a Matlab script. MAT-
LAB HDL Coder needs two files; the first one is the top
level of the design and the other is its test. After creating
the HDL CODER project, we select only, the top function
of the design and its tester. Then the HDL CODER con-
verts this script to an HDL file. The HDL file is then for-
warded to the FPGA’s vendor synthesizer. The generation
of the HDL code from the MATLAB script requires under-
standing the I/O types. This is necessary for the FPGA
pins. It also requires making all types compatible with each
other. It also requires identifying all the used functions
and libraries such that all functions could be mapped into
hardware. Functions like printf and scanf are examples of
not supported functions. The MATLAB HDL Coder as a

*Correspondence:
Ghada Elsayed
Ghada.farouk@eng.mti.edu.eg
1 Electrical Engineering Department, Modern University for Technology
and Information, Cairo, Egypt
2 Electrical Department, Obour High Institute for Engineering
and Technology, Obour, Egypt

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42269-023-01096-9&domain=pdf
http://orcid.org/0000-0002-3802-5620

Page 2 of 9Elsayed et al. Bulletin of the National Research Centre (2023) 47:122

tool for FPGA Design was a subject for evaluation by many
researchers. They first recommended using it for only fast
proofing of the idea. This was the result of area utiliza-
tion and speed compared to the VHDL is not encourag-
ing (Elsayed and Kayed 2022). However, the latest research
has proposed an Optimization technique to dramatically,
improve the result (Kayed and Elsayed 2022). Based on that
recommendation we here design and implement the key
generation over the FPGA using MATLAB HDL Coder.
We selected the new chaotic random numbers key genera-
tor (Soleit 2018) which was published by Elsayed A. Soleit
T 2018. Soleit is one of the authors of this paper so, we
already have a tested Algorithm that can generate a crypto-
graphic random number generator written and tested as a
MATLAB script. Figure 2 shows the Block Diagram of the
new adaptive chaotic key generator (Soleit 2018). this was
already, written by MATLAB script in previous research,
and fortunately, the author of this research is one of the
authors of this paper, Fig. 3 illustrates the given simula-
tion code. Therefore, the code is one of the givens of this
research. We can notice that the input depends on the rand
(x) function which is built in MATLAB. All the scripts can

be hardware implemented except this function. In Fig. 2
we can see the adaptive coefficients from c1 to cN, here we
selected N to be three to just prove the idea. However, the
design is configurable and we can easily change Nc, where
Nc is the number of the coefficients − 1. This block dia-
gram is the representation of the following equations:

where Zk is the seed, in the simulation code illustrated
in Fig. 3, it is stored in variable x and initialized by
rand (). Again, the Rand function can’t be implemented
over the FPGA. Rand itself should be replaced with a
method that generates its output. To generate a random
seed we adopted a published algorithm in (Soleit 2018).
The Hardware Implementation of this part is subject to
another publication. This algorithm depends on the accu-
racy of calculating the square root and gives some sort of
randomness in the fractional part. The first order is rep-
resented by Eq. (4) and the second order is represented
by Eq. (5). This algorithm was also already both simulated
and tested.

(1)yk =Zk +

N
∑

i=0

Ciyk−i

(2)mod (y) =y− 2× ⌊
y+ 1

2
⌋

(3)yk = mod Zk +

N

i=0

Ciyk−i , yi ∈ I = (−1, 1)

(4)xi+1 =
√

(xi) mod 1× 10
n

Fig. 1  MATLAB HDL Coder Workflow (Eda techchannel OpenSystems
Media 2023)

Fig. 2  New adaptive chaotic key generator block diagram

Page 3 of 9Elsayed et al. Bulletin of the National Research Centre (2023) 47:122 	

We here used the second order (Su and McSweeney
2019) to supply our main algorithm with the required
random input. In the following section, we will illustrate
the design process from the starting point of the simu-
lated algorithm by Matlab script to the implementation
of the FPGA.

Methods
Chaotic Random Number generator Design is done using
MATLAB HDL Coder. The Block Diagram of Fig. 2 was
written by MATLAB just for simulation and testing.
As we mentioned its code is introduced in Fig. 3, some
modifications should be done to the code the make it
suitable to be valid for the generation of the HDL code.
Figure 4 illustrates the modified code. We used the fixed-
point numeric object to unify almost all the types. Val-
ues of nbits and n fractions are word length and fraction
length respectively. The memory size is configurable by

(5)xi+1 =
√

(xi + xi−1) mod 1× 10
n the variable nsamp. We here put the Nc variable equal

to 2 in the code and this implies three coefficients c1,
c2, and c3. This is the main function that takes the input
random number and the feedback ’s’ for sum and ’C’ for
coefficients. The outputs are the random number, also
used for feedback, and the two feedback feed the inputs
with sum and c. This function itself needs to be embed-
ded into another function to connect the feedback with
the inputs, this function is called Cahaos. Figure 5 shows
the top view of the Cahaos design. The Figure illustrates
the inputs and the outputs. We have a 32-bit input ran-
dom number as a seed and we have output to the gener-
ated chaotic random number. The output is also 32-bit.
We have also a clock and clock enable input pins, CLK
and clk_enable respectively. We have also input reset
and output enable ce_out. As recommended by Kayed
and Elsayed (2022) we used the persistent keyword to
generate registers on the feedback signal. This improves
both the area and speed. In Fig. 6 the code of this func-
tion is illustrated. After defining the persistence for the

Fig. 3  Original MATLAB Code

Page 4 of 9Elsayed et al. Bulletin of the National Research Centre (2023) 47:122

three feedback, we just call the cahaos1 function and
then connect the inputs with the outputs The second file
needed by the MATLAB workflow is the tester. Figure 7
illustrates the code for the tester. Here we call the cahaos
function 512 times. As we can see all variables are config-
urable and we can easily change them. The tester output
is illustrated in Fig. 8. For that, the design is implemented.
Frequency and its area utilization are discussed in sec-
tion five. Now we will introduce the design by adding a
module that generates a random seed. The new design
is called cahaos_sqrt_rand_top. So instead of feeding
the design input with a random number we just feed it

with a non-square number. This non-square number is
go through equ 5 to generate the required random seed.
The design of this part is out of the scope of this paper.
We also supported the design with a memory to store the
generated output and we can read this memory by acti-
vating the input read signal Rd. In Fig. 9 the top view of
cahaos_sqrt_rand_top is illustrated. We here output the
valid output that indicates the finishing of the square
part. Also, the LOAD/CALC input is used for loading the
input non-square number and then starting to calculate
the square root. These were the inputs and the outputs
different from the previous design. The code and its test-
ing are illustrated in Figs. 10 and 11 respectively.

Results
The Target Device is Xilinx Spartan 3 xc6slx9-2-cpg196
FPGA (Digilent 2023). The estimated values for device
utilization for design 1 and design 2 are illustrated in
Tables 1 and 2 respectively. For 32 bit the maximum fre-
quency is 15.711 MHz versus 11.635 MHz for the first
and second designs respectively. The area utilization
of the Number of Slice Registers is 1% versus 2%. The
number of Slice LUTs is 40% versus 59%. The number of
fully used LUT-FF pairs is 5% versus 8%. The number of
bonded IOBs is 64% versus 66%. The number of BUFG/
BUFGCTRL/BUFHCEs and the Number of DSP48A1s
are the same for the two designs 6% and 100%. In this

Fig. 4  Cahaos1 function’s code after modification

Fig. 5  Cahaos Top view

Page 5 of 9Elsayed et al. Bulletin of the National Research Centre (2023) 47:122 	

Fig. 6  MATLAB script for Cahaos function

Fig. 7  Cahaos Tester Code

Page 6 of 9Elsayed et al. Bulletin of the National Research Centre (2023) 47:122

paper, we propose an efficient and configurable FPGA
Design for adaptive digital chaotic key generator. Our
design has another advantage of storing the output keys
internally and reading them later.

Discussion
The usage of the Chaotic is very wide. In Kumar et al.
(2023) A combined chaotic key generator (CCKG) is
proposed to enhance key sensitivity and generation to
improve the security of medical images to be encrypted.
In Kiran and Parameshachari (2022) they combine the
image encryption and chaotic system to improve the
security. In Sha et al. (2023) the paper proposed an image
encryption algorithm using a hybrid of three modified
and improved chaotic one-dimensional (1D) maps to

avoid the shortcomings of 1D maps and multidimen-
sional (MD) maps. In Zhao et al. (2023) they enhanced
the randomness of the constructed chaotic system and
expand its key space. In Yildirim and Tanyildizi (2023)
The Mode2(x) method and the unpredictable nature of
chaotic systems are used for random number generation.
In Bonny et al. (2023) The paper presented a new, highly
secure chaos-based secure communication system that
combines a conventional cryptography algorithm with
two levels of chaotic masking technique. In Al-Saadi and
Alshawi (2023) they introduce Light Encryption Device
(LED) which is a high-performance, lightweight block
encryption solution that works on resource-constrained
devices and considers a lighter version of AES. They pro-
vided Chaos-based encryption as an exceptionally high
level of security because of the unique characteristics of
chaotic systems. In Bonilla et al. (2016) they introduced a
true random number generator based on chaos.

Many PRNGs are implemented as an example of FPGA
implementation of PRNG (Rezk et al. 2019). They also
adopted an already published and tested algorithm and
implemented it on the FPGA (XC5VLX50T), a large
FPGA compared to ours. Their implementation has uti-
lized 1.4% and 16.7% of the available slices and DSP
blocks respectively. this is huge utilization compared to
ours The Maximum frequency was 78which which is
much faster than ours. They didn’t use MATLAB HDL
Coder. The most usage of the PRNG is for key generation,
key generation over FPGA can be found in Srinivas and
Janaki (2021) and Naiem et al. (2009). Many other imple-
mentations of chaotic over FPGA for many applications
like Abd El-Maksoud et al. (2020), Tutueva et al. (2020),
Al-Musawi et al. (2021) and Dridi et al. (2020).

Conclusions
In this paper, we introduced the design and implementa-
tion of an adaptive chaotic key generator over FPGA. The
design and its implementation were done by using MAT-
LAB HDL Coder. The target FPGA was Xilinx Spartan 3
xc6slx9-2-cpg196. We introduced two designs; design 1
was the implementation of the algorithm with a random
seed input. and design 2 was the implementation of the
algorithm with input non-square number and the ran-
dom seed is internally generated. Design 2 also has mem-
ory to store the generated output that can be accessed
later. For design 1, the area utilization was for design 1,
189 slice registers, 2303 slice LUTs (lookup tables), 126
fully used LUT, 68 IOs, and 16 DSP blocks. is the maxi-
mum frequency was 15.711 MHz. While for design 2, the
area utilization was 304 slice registers, 3380 slice LUTs
(lookup tables), 276 fully used LUT, 70 IOs, and 16 DSP
blocks. is the maximum frequency is 11.635 MHz.

Fig. 8  The plot of the output of the Adaptive chaotic random
number generator

Fig. 9  Top level of the chaotic random number key grnerstor based
on swuare root PRNG seed

Page 7 of 9Elsayed et al. Bulletin of the National Research Centre (2023) 47:122 	

Fig. 10  Script of cahaos_sqrt_rand_top

Fig. 11  Code for the tester of Top view of cahaos_sqrt_rand_top

Page 8 of 9Elsayed et al. Bulletin of the National Research Centre (2023) 47:122

Abbreviations
AES	� Advanced Encryption Standard
FPGA	� Field programmable gate array
 LUT	� Look up table
HDL	� Hardware description language

Acknowledgements
The authors would like to acknowledge Electronics Research Institute (ERI),
Egypt for supporting us with the simulation tool (MATLAB).

Author contributions
GE, ES and SK have contributed equally to the manuscript. They have read and
approved the manuscript.

Authors’ Information
Ghada Elsayed has received her Bsc, Msc, and PhD degrees in electronic and
communication engineering, 2001, 2005, and 2008 respectively. She worked
for the Egyptian Space Program for the first seven years then she sifted to
academic career, in which she worked for more than five years for MSA
University then she travelled as a visitor researcher to Japan, Kyushu Institute
of Technology. After that, she continued for the same path in MTI University. In
2014, Ghada published a book about securing satellites control link. She also
published many scientific papers.
 Elsayed Soleit, Electrical Engineering Dept. Faculty of Engineering, The
Modern University For Technology and Information. Professor of digital signal
processing and data communication since 2000. Ph.D. in Electronic Engineer-
ing, Information Technology Faculty, University of Kent, United Kingdom, UK.
March 1989. The area of interest and research are adaptive signal processing,
data communication, computer networks, encryption/decryption algorithms,
and image processing.
Somaya Kayed is an Associate Professor and a head of Electrical Dept.
(Electronics, communication, computer and control Engineering) at Oubor
Higher institute for Engineering and technology. She is graduated in 1987
from Ain Shams University with a BSc. in Electronics and Communications
department, with general grade (very Good) 80% her order of merit 13 of the
successful students totaling (75). Her graduation project tackled Distinc-
tion and she was top ranked as the 13th on her class. In 1997, she finished
her Masters of Science (MSc.) in the same department. Afterwards, in 2000,
she awarded her PhD also from Ain Shams University under the supervision
of Prof. Hani Fikry Ragaie. She was an acting dean for the 2019 first term at

Oubor Higher institute for Engineering and technology, she has published in
local and international conference many scientific papers as well as multiple
books related to her research interests (Analog and digital VLSI design, current
conveyor, Nano electronics). At the same time, her passion for development is
not limited to academia. She is also a volunteer member in NGO. On one side,
these diverse experiences enriched not only her team work skills but also her
leadership competencies.

Funding
No funding was obtained for this study

Availability of data and materials
We provide the code and the results in this manuscript. any required data or
materials are available if needed.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 March 2023 Accepted: 1 August 2023

References
Abd El-Maksoud AJ, Abd El-Kader AA, Hassan BG, Rihan NG, Tolba MF, Said LA,

Radwan AG, Abu-Elyazeed MF (2020) FPGA implementation of integer/
fractional chaotic systems. Multimedia security using chaotic maps:
principles and methodologies, pp 199–229

Al-Musawi WA, Wali W, Al-Ibadi MA (2021) Implementation of chaotic system
using FPGA. In: 2021 6th Asia-Pacific conference on intelligent robot
systems (ACIRS), IEEE, pp 1–6

Al-Saadi HM, Alshawi I (2023) Provably-secure led block cipher diffusion and
confusion based on chaotic maps. Informatica 47(6)

Bonilla LL, Alvaro M, Carretero M (2016) Chaos-based true random number
generators. J Math Ind 7:1–17

Bonny T, Nassan WA, Baba A (2023) Voice encryption using a unified hyper-
chaotic system. Multimed Tools Appl 82(1):1067–1085

Digilent (2023) Cmod S6 FPGA Board Reference Manual. https://​digil​ent.​com/​
refer​ence/_​media/​refer​ence/​progr​ammab​le-​logic/​cmod-​s6/​cmods6_​rm.​
pdf. Accessed 20

Dridi F, Atamech C, El Assad S, Youssef WE, Machhout M (2020) FPGA
implementation of a chaos-based stream cipher and evaluation of its
performances. Int J Chaotic Comput 7(1):179–186

Eda techchannel OpenSystems Media: MathWorks Introduces HDL Coder
and Verifier For MATLAB (2012). http://​tech.​opens​ystem​smedia.​com/​
eda/​2012/​03/​mathw​orks-​intro​duces-​hdl-​coder-​and-​verif​ier-​for-​matlab/.
Accessed 20 (2023)

Elsayed G, Kayed SI (2022) A comparative study between MATLAB HDL Coder
and VHDL for FPGAs design and implementation. J Int Soc Sci Eng
4:92–98

Kayed SI, Elsayed G (2022) Optimizing Techniques for using MATLAB HDL
Coder. https://​aeas2​022.​asu.​edu.​eg

Kiran P, Parameshachari B (2022) Resource optimized selective image encryp-
tion of medical images using multiple chaotic systems. Microprocess
Microsyst 91:104546

Kumar D, Sudha V, Ranjithkumar R (2023) A one-round medical image encryp-
tion algorithm based on a combined chaotic key generator. Med Biol Eng
Comput 61(1):205–227

MathWorks, inc: HDL CoderTM User’s GuideC© COPYRIGHT 2012-2015 (2012).
https://​www.​mathw​orks.​com/​help/​hdlco​der/. Accessed 20 (2023)

Table 1  The estimated values for device utilization for Design1

Logic utilization Used Available Utilization (%)

Number of Slice Registers 189 11440 1

Number of Slice LUTs 2303 5720 40

Number of fully used LUT-FF pairs 126 2366 5

Number of bonded IOBs 68 106 64

Number of BUFG/BUFGCTRL/
BUFHCEs

1 16 6

Number of DSP48A1s 16 16 100

Table 2  The estimated values for device utilization for design 2

Logic utilization Used Available Utilization (%)

Number of Slice Registers 304 11440 2

Number of Slice LUTs 3380 5720 59

Number of fully used LUT-FF pairs 276 3408 8

Number of bonded IOBs 70 106 66

Number of BUFG/BUFGCTRL/
BUFHCEs

1 16 6

Number of DSP48A1s 16 16 100

https://digilent.com/reference/_media/reference/programmable-logic/cmod-s6/cmods6_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/cmod-s6/cmods6_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/cmod-s6/cmods6_rm.pdf
http://tech.opensystemsmedia.com/eda/2012/03/mathworks-introduces-hdl-coder-and-verifier-for-matlab/
http://tech.opensystemsmedia.com/eda/2012/03/mathworks-introduces-hdl-coder-and-verifier-for-matlab/
https://aeas2022.asu.edu.eg
https://www.mathworks.com/help/hdlcoder/

Page 9 of 9Elsayed et al. Bulletin of the National Research Centre (2023) 47:122 	

Naiem GF, Elramly S, Hasan BEM, Shehata K (2009) New symmetric key genera-
tion algorithm. In: 2009 national radio science conference, IEEE, pp 1–8

Rezk AA, Madian AH, Radwan AG, Soliman AM (2019) Reconfigurable chaotic
pseudo random number generator based on FPGA. AEU-Int J Electr Com-
mun 98:174–180

Sha Y, Mou J, Wang J, Banerjee S, Sun B (2023) Chaotic image encryption with
hopfield neural network. Fractals 2340107

Soleit EA (2018) A new adaptive chaotic key generator. In: The international
conference on electrical engineering, Military Technical College, vol 11,
pp 1–8

Srinivas K, Janaki V (2021) Symmetric key generation algorithm using image-
based chaos logistic maps. Int J Adv Intell Paradigms 19(3–4):393–409

Su J, McSweeney J (2019) Square root pseudo-random number genera-
tors. PhD thesis, Rose-Hulman Institute of Technology, Mathematics
Department

Tutueva AV, Nepomuceno EG, Karimov AI, Andreev VS, Butusov DN (2020)
Adaptive chaotic maps and their application to pseudo-random num-
bers generation. Chaos Solitons Fractals 133:109615

Yildirim G, Tanyildizi E (2023) An innovative approach based on optimization
for the determination of initial conditions of continuous-time chaotic sys-
tem as a random number generator. Chaos Solitons Fractals 172:113548

Zhao W, Chang Z, Ma C, Shen Z (2023) A pseudorandom number genera-
tor based on the chaotic map and quantum random walks. Entropy
25(1):166

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	FPGA design and implementation for adaptive digital chaotic key generator
	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Results
	Discussion
	Conclusions
	Acknowledgements
	References

