
Kayed and Elsayed ﻿
Bulletin of the National Research Centre (2023) 47:94
https://doi.org/10.1186/s42269-023-01066-1

RESEARCH

An optimizing technique for using MATLAB
HDL coder
Somaya Kayed1 and Ghada Elsayed2*    

Abstract 

Background  MathWorks has provided an invaluable tool for designing and implementing FPGAs. MATLAB HDL
coder serves a dual purpose, providing a quick proof of concept on the one hand and providing the g an easy-to-use
platform for testing and verification on the other. It has main drawbacks over these advantages; it generates a code
that is not optimized for both area and frequency.

Results  In this paper, we provide a technique for optimizing both area and frequency without losing the main
advantages. The most affecting problem we found is loops. This paper classifies loop writing purposes into two
types. The first one is preferable and introduces ease of writing a few lines instead of repeating the code. The second
type is the problem that we intended to solve. Type II loop is appearing when the algorithm should perform these
lines for several clock cycles. Writing it traditionally, force the synthesizer to implement all the repetitive clock cycles
as repetitive hardware to be done in one clock cycle. This clock cycle is wide in time and is slow in frequency. This
paper introduces an optimization technique for this problem. We compare before and after the implementation
of our proposed technique.

Conclusions  We used Xilinx Spartan 6 XC6SLX4-2CPG196 FPGA. Our proposed technique improves the number
of slice LUTs (Look Up Tables) requirement from 366 to 72%. The frequency improved from: 26.574 to 185.355 MHz.
Based on that, we now recommend using MATLAB HDL coder in FPGA Design.

Keywords  FPGA, MATLAB HDL coder, AES

Background
In FPGA design, there are levels of abstraction. The
register transfer level and behavior level are the most
famous abstraction levels. Recently, MathWorks intro-
duced a new level of higher abstraction. Processes are
described semantically by their functionality, inputs,
outputs, and preconditions needed for their execution.
This, of course, makes the mind think about software,
not hardware. Hardware designers should be aware of

the level of each signal and its exact time. The invaluable
addition is that one can write software and MathWorks
by MATLAB HDL coder [1] generates the correspond-
ing HDL code. This is a breakthrough in the field of
digital design on FPGAs. It has many vital as it reduces
time to market through ease of design. This is beside
the ease of testing and verification. Not only writing
MATLAB scripts but also from Simulink to HDL code
is another option that was used for many applications
[2–8]. There is another cooperation between the ven-
dor of FPGAs and MathWorks. For example, Xilinx
Company proposed an Integrator Design Environment
(IDE) for FPGA under the MATLAB tool. This IDE is
named XSG; it is a high-level design tool that allows
the use of the MathWorks Simulink environment in the
design of digital circuits dedicated to Xilinx FPGAs.
It is used for hardware system generation, simulation,

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Bulletin of the National
Research Centre

*Correspondence:
Ghada Elsayed
Ghada.farouk@eng.mti.edu.eg
1 Electrical Department, Obour High Institute for Engineering
and Technology, Obour, Egypt
2 Electrical Engineering Department, Modern University for Technology
and Information, Cairo, Egypt
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3802-5620
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42269-023-01066-1&domain=pdf

Page 2 of 8Kayed and Elsayed ﻿Bulletin of the National Research Centre (2023) 47:94

and validation throughout the hardware co-simulation
technique. Examples of some implementations can be
found in [9–14]. The performance of the HDL code
generated by MATLAB HDL coder was studied many
times [15, 16], for example. The result of these studies
can be summarized by the generated HDL code having
different IOs and utilizing more area with low speed.
Research has shown that MATLAB currently consumes
more resources and provides less speedy design [16,
17]. These researchers compared it to the traditional
methods of designing FPGAs, i.e., VHDL/VERILOG.
These vital advantages are a major motive for search-
ing for methods to avoid these shortcomings. Not
only we as researchers, but also MathWorks has begun
to answer these questions and provided some solu-
tions. There exist optimization methods in MATLAB
HDL coder. It dealt with the same points that we pro-
pose the loop problem and pipeline. In loops problem,
MATLAB HDL coder provides two options: one called
stream option and the other called unroll option. For
area optimization, the stream option is used to gener-
ate one instance plus some logic to maintain the func-
tionality in the HDL CODE. For speed optimization,
unroll option is used to make multiple instances of the
loop body in the HDL code. But there is no control by
the developer on which loop on the code to be opti-
mized by which option. MathWorks assumes one loop
all over the script code. However, they use the making
between the embedded FPGA memory and matrices
[18] which is very useful. MathWorks also introduces a
pipeline optimization option. Distributed pipeline is a
subsystem-wide optimization supported by HDL coder
for reducing the critical path and achieving high-clock
speed hardware. By turning on the distributed pipeline,
HDL coder redistributes the input pipeline registers,
output pipeline registers of the subsystem, and the reg-
isters in the subsystem to positions that minimize the
combinatorial logic between registers and maximize
the clock speed of the chip synthesized from the gener-
ated HDL code. In this paper, we aim to present a tech-
nique for writing codes to reach the closest and best use

of resources and to improve the speed of design as well.
In This paper, we focus on improving the performance
of a DUT (Design Under Test) unit. We choose the AES
(Advanced Encryption Standard) [19] to be our DUT
unit. The AES was written by MathWorks as an exam-
ple for MATLAB HDL coder [20, 21]. In a previous
scope, we compared it with the VHDL implementation
[16]. We aim to introduce a layer between digital design
engineers and software developers. Digital designers
know the timing values of each signal in their design.
They use timing simulation to review the functionality
of the design from the top level to the lowest level of
interconnection. This takes time. This spent time is for
the cost of optimization of area and frequency. How-
ever, software developers know about transforming the
algorithm into a script code. They do not care about
how this script is performed and at what time. They just
care about output validation. We intend to put a pro-
cedure for them to reach the optimized output of the
FPGA implementation without having to learn digital
design.

Digital designers know some facts; first, pipeline
improves the frequency performance. In digital circuits,
the pipeline is to insert registers after combinatorial cir-
cuits and between combinatorial circuits [22]. Figure 1
illustrates the pipeline of a combinatorial logic with out-
put feedback to the input. This gives the chance for the
clock’s periodic time to be reduced. In consequence, the
frequency increases. The last and most important fact is
that digital circuits are controlled by a clock. The loop-
ing function is done by the existence of that clock with
a clock enabled. The synthesizer of the HDL code is not
able to understand loops. But instead, if you replace it
with an if statement you force the synthesizer to know
that here there is a clock enable signal and this clock is
under the control of the if statement conditions. The
loop is automatically performed. In “Methods” section,
we introduce a technique to improve the performance
by taking some functions of the AES by MathWorks as
examples we compare the area optimization before and
after the implementation of the proposed technique. In

Fig. 1  Simplified description of digital circuits

Page 3 of 8Kayed and Elsayed ﻿Bulletin of the National Research Centre (2023) 47:94 	

“Results” section, we represent the findings and results.
Next, we discuss the results. Finally, we conduct the
conclusion.

Methods
There is a main problem according to our research forces
MATLAB HDL Coder to consume more resources than
coding by VHDL/VERILOG languages. This problem is
writing loops. Two types of loops could be found. The
first one is meant to create multiple instants to be used
all in one clock cycle, i.e., multiple repetitive blocks with
different inputs. The second one is meant to force the
synthesizer to implement on the FPGA one instant to be
repetitively, used each clock cycle. This for-loop type is
our concern here. HDL synthesizers understand loops by
creating multiple instants of the loop’s body. If we keep
this type, the synthesizer will synthesize it as multiple
repetitive blocks without needs. This reduces the perfor-
mances in both area and frequency. In the next two sub-
sections, we will discuss two examples: one for the type I
loops and the other for type II loops. We take the Design
Under Test (DUT) as AES encryption.

Example of the type I loop
The type I loop has no problem with the performance it
just facilitates the coding. Figure 2 illustrates the exten-
sion of the AES key script. Each round of the ten rounds
needs a key that depends on the previous key. Each key
has four columns, BS = 4. Each round key has sixteen
bytes (128-bit) structured as columns such that column
1 has k_out array numbers 1, 5, 9, and 13, column 2 has
k_out array numbers 2, 6, 10, and 14, column 3 has k_out
array numbers 3, 7, 11, and 15, and column 4 has k_out

array numbers 4, 8, 12, and 16 [19]. The loop in Fig. 2 is
run over the number of columns BS. This loop ends by
creating a 128-bit round key “k.” The whole round key is
needed each round/ cycle. So let the synthesizer repeat
the implementation of the instant, knowing that this
matches the requirements without affecting the perfor-
mance, so this is an example of loop type I, in which each
round from the ten rounds the function should output
128 bits of the key. The loop here is just to generate the
128-bit key, not the ten 128-bit keys. This key is neces-
sary for each round. So we need this loop to be unrolled
while synthesizing which is the default. Then, there is no
need for any optimization just keep it as it is.

Example of the type II loop
The AES 128 encryption algorithm [19] has 10 rounds
to process one plain text. Initially, the input plain text
and cipher key are used in the first round. The output
of the first round is the temporary cipher text “s.” Each
round needs a round key “k,” this “k” is generated from
the extension of the AES key script. This means that the
next rounds process both “k” and the feedback “s” by the
“mainroundsstate” script to get new “k” and “s.” The last
round is different in using the final round script instead
of the “mainroundsstate” as shown in Fig. 3. As we can
see, we can process the round in a cycle. The output is
feedback to the input. This should be stored in registers.
However, if we keep this loop as it is and proceed to the
synthesizer, then we will obtain a bad utilization of the
FPGA resources. We need to find a way for storing the
previous value of the output and feedback on the input
with it. There exists a keyword in MATLAB that do so.
This keyword is persistent. A persistent variable is a local

Fig. 2  Type I loops example

Page 4 of 8Kayed and Elsayed ﻿Bulletin of the National Research Centre (2023) 47:94

variable in a MATLAB® function that retains its value
in memory between calls to the function. If one gener-
ates code from a model [23]. It generates a storage device
with either registers or memory blocks. Use the persis-
tent keyword to store the output of the loop that will be
feedback to the input in the next call. This storing of the
feedback acts as a pipeline. Pipeline improves both area
and frequency performance. Let the tester call the top
level in a loop. This loop in the tester replaces the clock
effect in the hardware (FPGA). Figure 4 illustrates the
code modifications. In Fig. 4, the loop is replaced with an
if statement to solve the looping problem and so improve
the area utilization. We also added a register to the out-
put by using the keyword persistent. These registers both
store the last value and pipeline the combinatorial logic.

This improves the frequency. In the next section, results
will be presented not only for the proposed method/
technique but also for the built-in MATLAB HDL coder
methods.

Results
In this section, we present the synthesizer results for non-
optimized code, unroll option, stream option, and our
proposed optimization technique. The FPGA platform
is the target platform to be Digilent Cmod S6TM FPGA
Board [24]. It has Xilinx Spartan 6 XC6SLX4-2CPG196
FPGA based on a previous AES design and implementa-
tion using VHDL, [25]. Table 1 shows the utilization of
Xilinx Spartan 6 XC6SLX4-2CPG196. Table 2 shows the
utilization under the unroll optimization option. Table 3

Fig. 3  Type II loops example

Page 5 of 8Kayed and Elsayed ﻿Bulletin of the National Research Centre (2023) 47:94 	

shows the utilization under the stream optimization
option. Table 4 shows the utilization under the proposed
optimization technique. In the next section, we will dis-
cuss these results in detail

Discussion
To illustrate the numbers, we draw a histogram for
each table utilization percentages. Figure 5 shows the
non-optimization options compared to the unroll opti-
mization. The effect of the unroll optimization area is
the huge increases of the used number of slice registers
from 5 to 58%, the number of fully used LUT-FF pairs
from 2 to 11%, and the number of block RAMs/FIFO
from 8 to 25%. The only thing that slightly decreased
is the number of slices LUTs 9%. This means that the
unroll optimization option has an undesired effect. Fig-
ure 6 shows the comparison between the non-optimi-
zation options and the stream optimization. The figure
illustrates that the stream optimization option in the

Fig. 4  Applying the proposed optimization for loop problem

Table 1  Estimated utilization summary for MATLAB HDL coder-
based implementation to AES encryption module without loop
optimization

Logic utilization Utilization (%)

Number of slice registers 5

Number of slice LUTs 366

Number of fully used LUT-FF pairs 2

Number of block RAM/FIFO 8

Number of BUFG/BUFGCTRL/BUFHCEs 6

Table 2  Device utilization summary (estimated values) for unroll
option by MathWorks

Logic utilization Utilization (%)

Number of slice registers 58

Number of slice LUTs 357

Number of fully used LUT-FF pairs 11

Number of block RAM/FIFO 25

Number of BUFG/BUFGCTRL/BUFHCEs 6

Table 3  Device utilization summary (estimated values) for
stream option by MathWorks

Logic utilization Utilization (%)

Number of slice registers 132

Number of slice LUTs 638

Number of fully used LUT-FF pairs 19

Number of block RAM/FIFO 8

Number of BUFG/BUFGCTRL/BUFHCEs 6

Table 4  Device utilization summary (estimated values) for the
proposed technique

Logic utilization Utilization (%)

Number of slice registers 20

Number of slice LUTs 72

Number of fully used LUT-FF pairs 35

Number of block RAM/FIFO 16

Number of BUFG/BUFGCTRL/BUFHCEs 6

Page 6 of 8Kayed and Elsayed ﻿Bulletin of the National Research Centre (2023) 47:94

HDL coder increased the number of slice registers from
5 to 132%. The number of slice LUTs is increased from
366 to 638%. The number of fully used LUT-FF pairs is
increased from 2 to 19%. This illustration leads us not
to recommend the stream optimization option. Figure 7
compares the three tables together. The comparison
shows that without HDL coder, optimization option is
better than both options.

In Fig. 8, a histogram comparison between before and
after optimization is introduced. This figure shows that
our optimization has freed up 294% number of slice
LUTs, at the expense of 15% number of slice registers,
33% number of fully used LUT-FF pairs, and 8% of the
number of block RAM/FIFO. The maximum frequency
of our proposed technique is 185.355 MHz, while the fre-
quency of the non-optimization method is 26.574 MHz.
That we improve the speed approximately seven times
faster. The proposed optimization technique is limited to
the script path and not applicable to the Simulink path.
This technique depends on loop problem. In the next sec-
tion, the conclusion of the paper will be conducted.

Conclusions
In this paper, we prove that the code writing affects the
synthesizing too much. We classified the loops into two
categories. One is used to reduce the time of repeating
the same body. This type should be kept without opti-
mization. The other is the equivalent of the clock and
clock enable signal in the hardware design. We intro-
duced two-step procedure to optimize type II loop. The
first step is to replace the for statement by if statement
with a condition over a counter. The second step is to
pipeline the output with a register using the persistent
keyword. Our proposed technique improved both area
and frequency. Using the proposed technique freed up
294% of the critical resources. This area optimization
enabled the unfit FPGA to be fit. At the same time, the
frequency was enhanced to be seven times faster than
without our proposed optimization solution. The target
was Xilinx Spartan 6 XC6SLX4-2CPG196 FPGA. Based
on these results, we recommend designing the FPGA
using MATLAB HDL coder on one condition; following
the newly proposed technique that helps in overcoming
its shortcuts.

Fig. 6  A comparison between the FPGA utilization with and without
the stream option

Fig. 7  A comparison between the stream, unroll, and non-optimization
options

Fig. 8  A comparison between the proposed technique optimization
and non-optimization utilization

Fig. 5  A comparison between the FPGA utilization with and without
the unroll option

Page 7 of 8Kayed and Elsayed ﻿Bulletin of the National Research Centre (2023) 47:94 	

Abbreviations
AES:	� Advanced Encryption Standard
FPGA:	� Field Programmable Gate Array
LUT:	� Look Up Table

Acknowledgements
The authors would like to acknowledge Electronics Research Institute (ERI),
Egypt, for supporting us with the simulation tool (MATLAB).

Author contributions
SK and GE have contributed equally to the manuscript. They have read and
approved the manuscript.

Availability of data and materials
We provide the code and the results in this manuscript. Any required data or
materials are available if needed.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Electrical Department, Obour High Institute for Engineering and Technology,
Obour, Egypt. 2 Electrical Engineering Department, Modern University for Tech-
nology and Information, Cairo, Egypt.

Received: 11 March 2023 Accepted: 11 June 2023

References
	1.	 MathWorks, inc: HDL CoderTM User’s GuideCOPYRIGHT 2012-2015 (2012)

https://​www.​mathw​orks.​com/​help/​hdlco​der/ Accessed 20 Feb 2023
	2.	 Km A, Duttagupta S (2023) Hdl-ready mac layer implementation for

multi-node Li-Fi communications. Int J Inf Technol. https://​doi.​org/​10.​
1007/​s41870-​023-​01255-1

	3.	 Sankar D, Lakshmi S, Babu C, Mathew K (2023) Rapid prototyping of
predictive direct current control in a low-cost fpga using hdl coder. Int J
Power Energy Syst 43(10):1–9. https://​doi.​org/​10.​2316/J.​2023.​203-​0437

	4.	 Bendahane B, Jenkal W, Laaboubi M, Latif R (2023) Hdl coder tool for ecg
signal denoising. In: Digital Technologies and Applications: Proceedings
of ICDTA’23, Fez, Morocco, Vol 1, pp 753– 760. Springer

	5.	 Wallace NL (2023) Developing firmware for space weather probes 2 using
HDL coder. Thesis on Master of Science (MS), Electrical and Computer
Engineering Commons, Utah State University, Date of Award 8-2023.
https://​doi.​org/​10.​26076/​b311-​3847

	6.	 Nandakrishnan R, Arjun S, Nandakumar CN, Sajesh S, Harikrishanan K,
Devi PA (2023) Adaptive beamforming using minimum variance distor-
tionless response. Int J Res Eng Sci Manag 6(4):27–30

	7.	 Havinga T, Jiao X, Liu W, Moerman I (2023) Accelerating fpga-based wi-fi
transceiver design and prototyping by high-level synthesis. arXiv preprint
arXiv:​2305.​13351

	8.	 Rajaby E, Sayedi SM, Yazdian E (2023) Hardware design and implementa-
tion of high-efficiency cube-root of complex numbers. Microprocess
Microsyst. https://​doi.​org/​10.​1016/j.​micpro.​2023.​104847

	9.	 Loganathan P, Karthikeyan R (2023) Combination of wavelet transform
and sobel operator using xilinx system generator for edge detection in
medical plant leaf. In: Computational Vision and Bio-Inspired Computing:
Proceedings of ICCVBIC 2022, Springer, pp 333– 341

	10.	 Neelima K, Meruva KR, Subhas C (2023) Image fusion using xilinx system
generator for mri and ct medical image modalities. In: 2023 International
Conference on Emerging Smart Computing and Informatics (ESCI), pp
1– 5

	11.	 Khudair NA, Shujaa MI, Zghair EM (2023) Iot based image processing
filters. In: AIP Conference Proceedings, vol 2591, AIP Publishing LLC, p
020007

	12.	 Semmad A, Bahoura M (2023) Scalable serial hardware architecture of
multilayer perceptron neural network for automatic wheezing detection.
Microprocess Microsyst 99:104844

	13.	 Hamdaoui F, Sakly A (2023) Automatic diagnostic system for segmen-
tation of 3d/2d brain mri images based on a hardware architecture.
Microprocess Microsyst 98:104814

	14.	 Lopez-Ramirez M, Ledesma-Carrillo LM, Rodriguez-Donate C, Miranda-
Vidales H, Mata-Chavez RI, Cabal-Yepez E (2023) Fpga-based online volt-
age/current swell segmentation and measurement. Comput Electr Eng
107:108620

	15.	 Zafar A (2022) Performance of FPGA-based implementations of data clas-
sification techniques using HDL coder. California State University, Long
Beach

	16.	 Elsayed G, Kayed S (2022) A comparative study between matlab hdl
coder and vhdl for FPGAs design and implementation. J Int Soc Sci Eng
4(4):92–98. https://​doi.​org/​10.​21608/​jisse.​2022.​136645.​1056

	17.	 Zamiri E, Sanchez A, Yushkova M, Martínez-García MS, de Castro A (2021)
Comparison of different design alternatives for hardware-in-the-loop of
power converters. Electronics 10(8):926

	18.	 MATHWORKS: Speed and Area Optimization (2022) Improvements
through resource sharing, streaming, pipelining, RAM mapping. https://​
www.​mathw​orks.​com/​help/​hdlco​der/​speed-​and-​area-​optim​izati​on-1.​
html Accessed 20 Feb 2023

	19.	 FIPS 197: Advanced Encryption Standard (AES) (2001). https://​csrc.​nist.​
gov/​publi​catio​ns/​detail/​fips/​197/​final Accessed 20 Feb 2023

	20.	 MATHWORKS Copyright 2011-2015 The MathWorks, Inc: Advanced
Encryption System (AES) (2023) https://​www.​mathw​orks.​com/​matla​bcent​
ral/​mlc-​downl​oads/​downl​oads/​submi​ssions/​50098/​versi​ons/3/​previ​ews/​
mlhdlc_​tutor​ial_​comms_​aes.m/​index.​html Accessed 20 Feb 2023

	21.	 David Hill: Advanced Encryption Standard (AES)-128,192, 256 (2021)
https://​www.​mathw​orks.​com/​matla​bcent​ral/​filee​xchan​ge/​73412-​advan​
ced-​encry​ption-​stand​ard-​aes-​128-​192-​256 Accessed 20 Feb 2023

	22.	 Dasgupta S (1989) Computer architecture: a modern synthesis. Vol 1,
John Wiley & Sons

	23.	 Mathworks: Initialize Persistent Variables in MATLAB Functions (2022)
https://​www.​mathw​orks.​com/​help/​simul​ink/​ug/​initi​alize-​persi​stent-​varia​
bles.​html Accessed 20 Feb 2023

	24.	 Digilent: Cmod S6 FPGA Board Reference Manual (2023) https://​digil​
ent.​com/​refer​ence/_​media/​refer​ence/​progr​ammab​le-​logic/​cmod-​s6/​
cmods6_​rm.​pdf Accessed 20 Feb 2023

	25.	 Naiem GF, Elramly S, Hasan BE, Shehata K (2008) An efficient implementa-
tion of cbc mode rijndeal aes on an fpga. In: 2008 National Radio Science
Conference, pp 1– 8

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Somaya Kayed  SK is an Associate Professor and a head of Electrical
Dept. (Electronics, communication, computer, and control engineer-
ing) at Obour Higher institute for Engineering and technology. She
is graduated in 1987 from Ain Shams University with a BSc in Elec-
tronics and Communications department, with general grade (very
Good) 80% her order of merit 13 of the successful students totaling
(75). Her graduation project tackled Distinction and she was top
ranked as the 13th on her class. In 1997, she finished her Masters
of Science (MSc.) in the same department. Afterward, in 2000, she
awarded her PhD also from Ain Shams University under the supervi-
sion of Prof. Hani Fikry Ragaie. She was an acting dean for the 2019
first term at Oubor Higher institute for Engineering and technology,
she has published in local and international conference many scien-
tific papers as well as multiple books related to her research interests
(analog and digital VLSI design, current conveyor, nanoelectronics).
At the same time, her passion for development is not limited to aca-
demia. She is also a volunteer member in NGO. On one side, these
diverse experiences enriched not only her team work skills but also
her leadership competencies.

https://www.mathworks.com/help/hdlcoder/
https://doi.org/10.1007/s41870-023-01255-1
https://doi.org/10.1007/s41870-023-01255-1
https://doi.org/10.2316/J.2023.203-0437
https://doi.org/10.26076/b311-3847
http://arxiv.org/abs/2305.13351
https://doi.org/10.1016/j.micpro.2023.104847
https://doi.org/10.21608/jisse.2022.136645.1056
https://www.mathworks.com/help/hdlcoder/speed-and-area-optimization-1.html
https://www.mathworks.com/help/hdlcoder/speed-and-area-optimization-1.html
https://www.mathworks.com/help/hdlcoder/speed-and-area-optimization-1.html
https://csrc.nist.gov/publications/detail/fips/197/final
https://csrc.nist.gov/publications/detail/fips/197/final
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/50098/versions/3/previews/mlhdlc_tutorial_comms_aes.m/index.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/50098/versions/3/previews/mlhdlc_tutorial_comms_aes.m/index.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/50098/versions/3/previews/mlhdlc_tutorial_comms_aes.m/index.html
https://www.mathworks.com/matlabcentral/fileexchange/73412-advanced-encryption-standard-aes-128-192-256
https://www.mathworks.com/matlabcentral/fileexchange/73412-advanced-encryption-standard-aes-128-192-256
https://www.mathworks.com/help/simulink/ug/initialize-persistent-variables.html
https://www.mathworks.com/help/simulink/ug/initialize-persistent-variables.html
https://digilent.com/reference/_media/reference/programmable-logic/cmod-s6/cmods6_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/cmod-s6/cmods6_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/cmod-s6/cmods6_rm.pdf

Page 8 of 8Kayed and Elsayed ﻿Bulletin of the National Research Centre (2023) 47:94

Ghada Elsayed  GE has received her Bsc, Msc, and PhD degrees in
electronic and communication engineering, 2001, 2005, and 2008,
respectively. She worked for the Egyptian Space Program for the
first seven years and then she shifted to academic career, in which
she worked for more than five years for MSA University and then she
traveled as a visitor researcher to Japan, Kyushu Institute of Technol-
ogy. After that, she continued for the same path in MTI University. In
2014, GE published a book about securing satellites control link. She
also published many scientific papers.

	An optimizing technique for using MATLAB HDL coder
	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Example of the type I loop
	Example of the type II loop

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

