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Abstract 

Background:  Stuttering is a fluency disorder typically characterized by part-word repetitions, voiced or voiceless 
sound prolongations, and broken words. Evidence suggests that 1% of the world population stutters. Compelling 
evidence from past research suggests that stuttering is caused by non-synonymous coding sites. This study evaluates 
the intronic regions of GNPTAB, GNPTG, and NAGPA genes for possible pathogenicity of intronic variants from unre-
lated non-syndromic stutterers in a cohort of the south Indian population.

Results:  High-throughput sequencing revealed 41 intronic variants. Computational tool Reg-SNP Intron identified 
three intronic variants rs11110995 A>G, rs11830792 A>G, and rs1001171 T>A of having a plausible pathogenic impact 
which was identified in 37.9%, 26.5%, and 59.4% of stutterers, respectively. RegulomeDB identified the regulatory 
motifs and susceptible loci of the intronic variants.

Conclusions:  This study imparts the identification, association, and interpretation of pathogenicity and regulatory 
significance of the intronic variants in the context of the noncoding DNA elements. Future work is warranted to better 
understand the role of the intronic variants in a larger cohort of stutterers, and a cohort of fluent controls would be 
valuable.
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Background
Stuttering is a fluency disorder resulting in various forms 
of speech interruptions affecting all language groups 
which typically arise in children aged ~ 2 to 5 years when 
they begin to develop more complex speech and lan-
guage (Reilly et al. 2013; Didirková et al. 2021; Polikowsky 
et  al. 2022). Stuttering occurs predominantly in males 
than females with a male-to-female ratio of 5:1 and most 
of them; particularly the females recover spontaneously 

or with the aid of speech therapy (Drayna and Kang 2011; 
Yairi and Ambrose 2013). It has long been observed that 
stuttering frequently runs in families and is highly herit-
able (Fedyna et al. 2011; Barnes and Neutel 2016; Blood-
stein et al. 2021). Various Studies have elucidated a solid 
genetic influence on stuttering risk and identified coding 
variants in GNPTAB, GNPTG, and NAGPA genes which 
have been linked to mutations in the lysosomal enzyme-
targeting pathway (Riaz et  al. 2005; Kang et  al. 2010; 
Raza et  al. 2016; Frigerio-Domingues and Drayna 2017; 
Gunasekaran et al. 2021).

Over the years, research on neurological aspects of 
stuttering has been carried out to understand the nature 
and metabolism of the disorder (Alm 2021). Expression 
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of stuttering genes (GNPTAB and NAGPA) in children 
with persistent stuttering and non-stuttering controls 
revealed gray matter differences linked to lysosomal defi-
cits (Chow et  al. 2020). Lysosomal deficits likely reduce 
the processing of biomolecules (Alm 2021); energy 
metabolism was observed in mice carrying the mutant 
GNPTAB gene which had fewer astrocytes in the brain 
which could be the result of a reduced peak rate of energy 
supply to the motor system (Barnes and Neutel 2016).

The genes GNPTAB [NM_024312.4] (N-acetylglucosa-
mine-1-phosphate transferase subunits alpha and beta) 
located on chromosome 12q23.2 together with GNPTG 
[NM_ 032520.4] (N-acetylglucosamine-1-phosphate 
transferase subunit gamma) located on chromosome 
16p13.3 encodes for a phosphotransferase enzyme, while 
NAGPA [NM_016256.3] (N-acetylglucosamine-1-phos-
phodiester alpha-N-acetylglucosaminidase) also located 
on chromosome 16p13.3 encodes an enzyme responsible 
for the removal of N-acetylglucosamine, thus uncovering 
the mannose 6 phosphate (M6P) targeting acid hydro-
lases to lysosomes (Kazemi et  al. 2018; Gunasekaran 
et  al. 2021). Some candidate missense variants in stut-
tering such as GNPTAB: rs137853824, rs137853823, 
rs137853825; GNPTG: rs137853827; and NAGPA: 
rs139526942 were previously detected in stutterers (Kang 
et al. 2010).

Genome-wide association studies (GWAS) by high-
throughput sequencing have identified several loci 
linked with the trait and identified additional can-
didate genes. Exonic mutations in  the SLC6A3 gene 
(rs2617604, rs28364997, rs28364998) and DRD2 gene 
(rs6275, rs6277) were detected among the Hans Chi-
nese patients with speech disfluency (Lan et  al. 2009); 
AP4E1 gene (rs760021635, rs556450190) variants among 
a large African family (Raza et al. 2013, 2015); CYP17A1 
gene (rs743572) variant among the Kurdish (Moham-
madi et  al. 2017); and CYRIA gene (rs12613255) vari-
ant in patients of  European ancestry (Shaw et  al. 2021). 
Also, high-throughput sequencing has transformed to 
detect an abundance of variants of noncoding segments 
(introns) through several GWAS (Reuter et  al. 2015; 
Elliott and Larsson 2021). Sequence elements within 
the nuclear introns may modulate significant functions 
in gene expression, mRNA export, splicing, alternative 
splicing  and transcription coupling (Berk 2016; Panaro 
et al. 2022). Studies on intronic variants in stuttering are 
limited, and only a few studies have reported the pres-
ence of fewer intronic alleles. Therefore, the current 
study was performed to reveal the intronic single-nucleo-
tide variants (iSNVs) of three candidate genes (GNPTAB, 
GNPTG, and NAGPA) to conceal the possible patho-
genicity of intronic variants in the south Indian cohort 
who stutter.

Methods
Recruitment and stuttering examination
The study included 100 participants (94 male and 6 
female) > 18 years of age, who enrolled for speech impair-
ment assessment at the All India Institute of Speech and 
Hearing (AIISH). The study participants had a detailed 
speech pathology examination. Individuals without any 
associated communication, cognition, psychological, and 
neurological problems except for developmental stutter-
ing were selected. Among the 100 participants, 67/100 
(67%) had a family history of stuttering and the remaining 
33/100 (33%) participants had no family history. The dis-
tribution of severity ranged from very mild 46/100 (46%), 
moderate 36/100 (36%) to very severe 18/100 (18%) stut-
tering with an average onset age of 2–5 years. The stut-
tering Severity Instrument (Riley and Bakker 2009) was 
used to document the severity of overt stuttering.

Sample and DNA isolation
About 5  ml of peripheral venous blood was collected 
from the study participants (n = 100) by standard phle-
botomy. DNA isolation was done using PureLink ™ 
Genomic DNA Mini Kit (Thermo Fisher Scientific) as per 
the manufacturer’s protocol.

Massively parallel sequencing and analysis
Among the 100 samples, only 79 samples (75 males: 4 
females; mean age ± SD = 26 ± 6.49  years) were selected 
based on the DNA quantitation. Custom-targeted librar-
ies were constructed by Ion AmpliSeq Library Kit Plus 
(Life Technologies) and PCR enrichment was done using 
Ion AmpliSeq Exome RDY panel (Life Technologies) 
according to the manufacturer’s protocols. Sequenc-
ing was processed on the Ion Proton™ next-generation 
sequencing systems (Life Technologies) following the 
manufacturer’s guidelines. All sequencing data passed 
specific minimal quality control requirements, and 
the sequence read alignment and variant calling were 
performed with the reference genome (hg19) using 
TMAP Alignment (Thermo Fisher Scientific). Variants 
were detected using the Ion Reporter (Thermo Fisher 
Scientific).

Allele frequency estimation, functional annotation, 
and pathogenicity prediction of iSNVs
Intronic variants were filtered based on the allele fre-
quencies. The allele frequencies of the variants were 
compared with the gnomAD database (Karczewski et al. 
2020) (https://​gnomad.​broad​insti​tute.​org/) that served 
as a control. RegulomeDB (http://​regul​omedb.​org) is a 
database integrating information from the Encyclopedia 
of DNA Elements (ENCODE) that was used to annotate 
single-nucleotide variants (Boyle et  al. 2012). Reg-SNP 
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Intron (https://​regsn​ps-​intron.​ccbb.​iupui.​edu/), a com-
putational framework, was used to predict the patho-
genic impact of intronic single-nucleotide variants (Lin 
et al. 2019).

Statistical analysis
Descriptive statistics, i.e., mean, standard deviation (SD), 
and probability values of the allele frequencies, were ana-
lyzed using Statistical Package for Social Sciences (SPSS 
v21 IBM Corp New York).

Results
In this study, massively parallel sequencing of the three 
genes GNPTAB, GNPTG, and NAGPA identified 41 
iSNVs in 79 samples (75 males and 4 females; mean 
age ± SD = 26 ± 6.49 years). Among the indexed patients, 
mild stuttering (46%) was more prevalent followed by 
moderate (36%) and severe (18%) and all the study par-
ticipants were of south Indian descent. Allele frequencies 
of the 41 iSNVs were compared with the allele frequen-
cies of the South Asian record and total allele frequency 
record using the gnomAD database; the allele frequency 
was highly significant and consistent with both south 
Asian (p = 0.001) and total allele frequency (p = 0.001) 
from gnomAD database (Table 1).

Functional annotation of intronic SNVs identified in this 
study
RegulomeDB was used to identify the potential regula-
tory/functional iSNVs. Overall 41 iSNVs were identi-
fied in this study, out of which 38 revealed RegulomeDB 
scores of 1- 6 and 3 with a score of 7 (Table 1 and Addi-
tional file  1: Table  S1) Further, 6 iSNVs showed com-
paratively more evidence for the regulatory element 
with a score of 1, which included 5 iSNVs (rs11111002, 
rs4764814, rs4764813, rs1001171, and rs1001170) with a 
score of 1f and 1 iSNV (rs11110995) with a score of 1d. 
Expression quantitative trait loci (eQTLs) were observed 
in GNPTAB and NAGPA gene variants which describes 
a fraction of the genetic variance of a gene expression 
phenotype (Nica and Dermitzakis 2013). It is noticeable 
that the lesser the RegulomeDB score, it is more likely 
that it would be the variant that lies within a potential 
functional region (Liao et al. 2016). Detailed information 
about the regulatory iSNVs and functional annotation of 
other variants observed in the study, viz. likely/less likely 
affecting binding, and minimal binding are shown in 
Additional file 1: Table S1.

Pathogenicity of iSNVs
The pathogenic impact of intronic SNVs was analyzed 
using RegSNPs-intron which measures the impact of 
splicing on an intronic variant with structural features 

corresponding to potential alternatively spliced exons. 
The assay identified three iSNVs: GNPTAB: c.3603 - 
1359A>G (rs11110995) in 30/79 (37.9%) of the cases and 
c.324 - 457A>G (rs11830792) in 21/79 (26.5%) cases and 
NAGPA: c.543 - 404T>A (rs1001171) in 47/79 (59.4%) 
cases with the prediction score of having a potentially 
deleterious effect (Table 2), and the remaining 38 iSNVs 
were benign (Additional file 1: Table S2).

Discussion
Stuttering is a disorder of speech interruptions or disflu-
ency which is highly heritable and has a strong genetic 
influence. This study describes the potential regulatory 
and pathogenic effect of intronic SNVs which has been 
discussed. Apart from the coding exonic variants, the 
noncoding intron plays a vital part in gene regulation 
(Rose 2019). The assortment of proteins is enhanced by 
alternative splicing where introns play important roles in 
producing multiple variant proteins from a single gene 
in a eukaryotic cell (Wang et al. 2015; Yang et al. 2021). 
Conservations in flanking introns of conserved alterna-
tive exons regulate alternative splicing (Pan et  al. 2008; 
Vaz-Drago et al. 2017; Yang et al. 2021). In this study, we 
investigated the intronic variants of GNPTAB, GNPTG, 
and NAGPA genes and predicted the pathogenic impact 
of intronic SNVs using the RegSNPs-intron tool. This 
study identified three possibly pathogenic intronic vari-
ants rs11110995, rs11830792, and rs1001171. Previous 
studies have reported an intronic variant g.10985G>A in 
the GNPTG gene among the Iranian stutterers (Kazemi 
et al. 2018), and another intronic variant c.192+618G>A 
(rs7837758) in the ZMAT4 gene in stutterers of African 
ancestry was also reported (Shaw et al. 2021).

Among the three possibly pathogenic intronic variants 
detected, rs11110995A>G in GNPTAB gene with a Regu-
lomeDB score of 1d which is an eQTL that likely affects 
binding and is linked to the expression of a gene tar-
get, pathogenicity estimation showed a damaging effect 
which was detected in 30/79 (37.9%) of the stutterers. 
The variant rs11830792 A>G in the GNPTAB gene with a 
RegulomeDB score of 6 indicated whether a certain posi-
tion in the DNA sequence is bound or unbound by the 
transcription factor, pathogenicity estimation was possi-
bly damaging for the iSNV which was detected in 21/79 
(26.5%) of the stutterers. The variant rs1001171T>A 
detected in the NAGPA gene segment with a Regu-
lomeDB score of 1f also indicated to affect binding and 
was linked to expression of a gene target with patho-
genicity estimated to be possibly damaging and was 
detected in 47/79 (59.4%) of stutterers. No pathogenic 
iSNVs were detected in the GNPTG gene. In summary, 
these database provided evidence allowing us to examine 
the nucleotide variations responsible for conservation, 

https://regsnps-intron.ccbb.iupui.edu/
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chromatin state, and their effect on regulatory motifs. 
However, these regulatory variants are only associated 
with altered gene expression which is not the risk loci on 
disease pathogenesis and progression, and may not be as 
disruptive as the coding region variants which may mod-
ify the genes.

Conclusions
This study identified three intronic variants of patho-
genic impact (rs11110995, rs11830792, and rs1001171) 
using the RegSNPs-intron tool in stuttering patients that 
are known to be associated with a certain genetic trait, 
as well as the regulatory function of the intronic variants 
were identified using RegulomeDB database which docu-
mented a few potential regulatory variants and suscepti-
ble loci. Thus, the combination of the two computational 
approaches may be helpful to understand the regulatory 
regions and derive a valid hypothesis as to their function. 
The limitations of this study included the relatively small 
sample size, and the patients were chosen  from a single 
center, which may limit the generalizability. Therefore, 
future work confirming the current findings is warranted 
to better understand the role of the intronic variants in a 
larger cohort of stutterers and a cohort of fluent controls 
would be valuable.
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