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Abstract 

Background:  With regard to the extensive production of genetically modified organisms, scientists focused on the 
safety of antibiotic resistance marker (ARM) genes present in GM-crops produced for the consumption of human or 
animal. We investigated the possible transfer of these genes to the microflora present in the gastrointestinal tract and 
blood cells of two groups of Male Wistar Albino rats fed on a transgenic diet containing the ARM genes nptII and aadA 
for 90 days. The conventional PCR was employed to screen for the presence of nptII and aadA genes in the experi‑
mental diets, and animals’ samples.

Results:  The occurrence of DNA transfer of nptII and aadA genes from GM-diet to blood and bacterial cells has been 
unambiguously demonstrated. Results were further confirmed by sequencing and blast analysis, indicating that both 
transferred segments shared significant alignment with number of Binary and Cloning Vectors with variable similari‑
ties. The frequency of transfer of DNA segments from the GM-diet into blood DNA was unexpectedly higher than its 
transfer to bacterial DNA which may be attributed to a number of factors.

Conclusions:  Our results unambiguously demonstrated the occurrence of DNA transfer of ARM genes (nptII and 
aadA) from GM plant diet to blood cells and enteric microflora in rats. Results may draw attentions to the importance 
of exploring the possible effects of transfer of ARM genes horizontally from GM products to consumers and to extend 
our attentions to the importance of a better understanding of the factors influencing HGT in the intestine of the GM-
food consumers.
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Background
Genetically modifying food technologies, like all new 
technologies, may have some known and unknown risks. 
Globally, great concern regarding genetically modified 
organisms (GMOs) is focusing on the safety of antibi-
otic resistance marker (ARM) genes in transgenic crops 
intended for human and animal consumption. Antibiotic 

resistance genes are known to produce enzymes to 
degrade antibiotics. Transfer of these genes to human or 
animal pathogens could make them resistant to available 
antibiotics (Bakshi 2003), which may, consequently, cause 
deleterious effects to public health.

The majority of antibiotic resistance genes used in 
biotechnology were isolated originally from bacteria 
(Miki and McHugh 2004). The neomycin phosphotrans-
ferase gene (nptII) conferring resistance to kanamycin 
and ampicilin is the most common selectable marker 
gene used in the transformation of various organisms as 
bacteria, yeast, plants and animals (Conner 1997). The 
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source of nptII gene is the transposon (Tn5) from E. coli 
K12. The antibiotic hygromycin B is also used for selec-
tion as kanamycin (Miki and McHugh 2004). Resistance 
to hygromycin is confirmed mainly by aminoglycoside 
phosphotransferase (aphIV) which is also derived from E. 
coli (Day 2003; Miki and McHugh 2004). As for plastid 
transformation, the chimeric bacterial-derived antibiotic 
resistance marker, aminoglycoside 3″ adenyltransferase 
(aadA) gene, is the most widely used selectable marker. 
This gene (aadA) confers resistance to the antibiotics 
spectinomycin and streptomycin (Svab and Maliga 1993).

One of the hazards associated with the production of 
genetic modification is the probable spread of a DNA 
fragment from a donor cell/organism into unrelated 
recipient cells of another species through a process called 
horizontal gene transfer (HGT) (Keese 2008; Nielsen and 
Daffonchio 2007).

Several reports showed that transgenic or endogenous 
plant DNA could become incorporated into various tis-
sues of animals (Oraby et al. 2014; Rizzi et al. 2012), leu-
cocytes of rainbow trout (Chainark et  al. 2008), goats 
(Tudisco et  al. 2010), pigs (Mazza et  al. 2005; Sharma 
et al. 2006) and human blood stream (Spisak et al. 2013), 
Mohr and Tebbe (2007) reported the transfer of segments 
of herbicide tolerance gene (pat-1) to gut bacteria in bees 
that pollinated GM Brassica. Another study (Netherwood 
et  al. 2004) revealed evidence of low frequency transfer 
of a small fragment (180  bp) of EPSPS introduced gene 
derived from GM soybean to microorganisms within the 
small intestine of human ileostomists.

HGT of recombinant DNA from GMOs to bacteria is 
one of the unsettled biosafety issues (Nielsen et al. 2005). 
Scientists are concerned about transfer of such recombi-
nant DNA which may promote the spread of antibiotic 
resistance (Beever and Kemp 2000; Chassy 2008; Rames-
sar et al. 2007). A study conducted by Woegerbauer et al. 
(2015) discovered that the nptII-load of the studied soils 
was low, rendering nptII a typical candidate as environ-
mental pollutant upon anthropogenic release into these 
ecosystems.

Other studies (Wilcks and Jacobsen 2010) have sus-
pected that DNA of genetically modified (GM) plants 
can be taken up by microbiota in the gut of animals fed 
on GM-plant diet. Chassy (2010) have also demonstrated 
that antibiotic resistance genes present in some trans-
genic crops have not added to the spread of antibiotic 
resistance in the environment.

The present work was planned to investigate the pos-
sible incorporation of transgenic DNA into enteric 
micro-flora of a group of experimental rats fed on GM-
diet containing the antibiotic resistance marker (ARM) 
genes nptII and aadA for 90 days, using the polymerase 
chain reaction (PCR) assay. Transfer of ARM genes has 

also been investigated in blood cells of another group 
of experimental rats fed on the same GM-diet for the 
same duration (90  days). Samples were collected at 
three intervals (30, 60, and 90  days). The prevalence of 
the transferred ARM genes in blood cells of each of the 
experimental rats has been pursued all through the feed-
ing duration. Further to confirm the transfer of these 
genes to the enteric microflora or blood cells, products 
of the PCR amplification of these genes were sequenced 
and analyzed through alignment with the GenBank Data 
Base.

Methods
Screening experimental diet samples for the presence 
of genetic modification
Animal feed samples were obtained from different animal 
feed suppliers in Cairo. None of these animal diets were 
labeled as genetically modified. Homogenous samples 
from each experimental diet were prepared by milling 
approximately 100–250 g of starting material. DNA was 
extracted from all samples applying a modified CTAB–
based method (Aboul-Maaty and Oraby 2019).The pres-
ence of genetically modified contents in the purchased 
animal feed samples were investigated applying the con-
ventional PCR assay, using primers for the Cauliflower 
Mosaic Virus -35S promoter (CaMVP-35S) and antibiotic 
resistance marker genes nptII and aadA (Table 1).

The internal nucleotide sequencing of the PCR amplifi-
cation products of primers for P-35S and nptII and aadA 
genes has been performed by MWG-Biotech AG, to 
confirm the presence of CaMV 35S promoter and ARM 
genes (nptII and aadA) in the chosen animal feed sample.

Blast analysis with the GenBank was further performed 
for sequencing data to test for alignment.

The animal diet, which was experimentally proven to 
contain the targeted GM ingredients (P35S, nptII and 
aadA), was chosen for feeding the experimental rats dur-
ing this investigation.

The potential for horizontal gene flow of ARM genes 
from GM-diet into enteric microflora and blood cells of 
experimental rats.

Animals, housing, and feeding durations
For bacterial analysis Male Wistar Albino rats (30 
rats) obtained from the animal house of the National 
Research Centre shortly before weaning, were divided 
into three groups ten animals each. Group 1 was 
immediately euthanized (shortly before weaning) and 
considered as a control group (G1). The other two 
groups of animals were housed in standard cages and 
under standard ambient conditions for 30 days (G2) or 
90  days (G3).The two experimental animal groups (G2 
and G3) were euthanized at the end of the two feeding 
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durations (after 30 and 90 days, respectively). The pro-
tocol applied during this study fulfills all the require-
ments of the NRC Ethical committee’s guidelines 
(reference 12,142)  as well as the ARRIVE guidelines, 
where all animals received humane care.

In order to study the potential for horizontal gene 
flow of antibiotic resistance marker genes from GM-
diet into blood cells of investigated rats, an additional 
group of nine Male Wistar Albino rats were also pur-
chased and were coded by the letters A, B, C, D, E, F, G, 
H, and K. A special approach was adopted for this part 
of our investigation, during which each animal is used 
as its own self-control (Table  2). Blood samples (1  ml 
each) were collected on EDTA (0.5%) from the coded 
experimental rats at four intervals. The first sample was 
collected shortly before weaning (i.e. 0-day sample) and 

before feeding them with the chosen GM-diet. Each of 
these samples (0-day samples) is used as a self-control 
for the three successive collected samples (after 30, 60, 
and 90 days) from the same corresponding rat (Table 2) 
during the whole feeding duration (90 days).

Sampling processing
Micro-flora in the rectum and caecal cavity of all ani-
mals groups were inoculated onto the surface of nutri-
ent agar plates. These inoculated plates of all groups were 
incubated for 24–48  h at 37  °C, after which they were 
examined for colony characters, cellular morphology and 
the purity of the culture. Bacterial DNA extraction was 
performed by using GF-1 Bacterial DNA Extraction Kit 
(Vivantis) according to the manufacturer’s procedure.

DNA was also extracted from blood samples collected 
from coded rats (Table 2) at the four intervals using DNA 
Purification Kit (Promiga Wizard Genomic DNA Purifi-
cation Kit) following the manufacturer’s manual. Deter-
mination of the quality and concentration of all DNA 
samples was performed using the Nano Drop 1000/
Thermo Scientific spectrophotometer.

The transfer of transgenic DNA from the GM-diet into 
the extracted DNA samples was tested using the conven-
tional polymerase chain reaction (PCR) assay.

At least duplicates of most of the Polymerase Chain 
Reactions (PCR) were conducted in TM Thermal cycler 
(MJ Research PTC-100 thermocycler). PCR conditions 
and profile were carried out as described by Oraby et al. 
(2014, 2021).

The presence of a fluorescent band of the expected 
level for the investigated segments (nptII 173  bp-target, 
and aadA 284  bp-target) in all PCR products was ana-
lyzed using SYNGENE Bio Imaging Gel Documenta-
tion System. Further to confirm the obtained results, 
total fragment DNA purification kit (MEGA quick-spin, 

Table 1  List of primers used throughout the experimental duration, their sequences, amplicon lengths and annealing temperatures

‡ Positions of the primers are relevant to: Cauliflower mosaic virus genome (accession no. emb|V00141.1|), NPTII gene (accession no. AF080390.1), and aadA gene 
(accession no.MH973510.1)

Primers Positions on the 
genomes‡

Sequences (5′–3′) Amplicon 
length (bp)

Annealing Temp 
(°C)

References

P-35S 7190–7209
7364–7384

5′-GCT​CCT​ACA​AAT​GCC​ATC​A-3′
5′-GAT​AGT​GGG​ATT​GTG​CGT​CA-3′

195 57 Hemmer (1997)

Cf3-Cr4 7313–7333
7411–7435

5′-CCA​CGT​CTT​CAA​AGC​AAG​TGG-3′
5′-TCC​TCT​CCA​AAT​GAA​ATG​AAC​TTC​C-3′

123 62 Lipp et al. (2001)

NPTII 2382–2397
2554–2539

5′-GGA​TCT​CCT​GTC​ATCT-3′
5′-GAT​CAT​CCT​GAT​CGAC-3′

173 50 Hemmer (1997)

NPTII 2145–2167
2225–2245

5′-CTA​TGA​CTG​GGC​ACA​ACA​GACA-3′
5′-CGG​ACA​GGT​CGG​TCT​TGA​CA-3′

101 60 Cited by Li et al. (2015)

aadA 1188–1208
1471–1451

5′-CGC TAT GTT CTC TTG CTT TTG-3′
5′-TGA TTT GCT GGT TAC GGT GAC-3′

284 63 Clark et al. (1999), Hol‑
lingshead and Vapnek 
(1985)

Table 2  Blood sampling codes matrix

0-day samples are collected shortly before weaning; they represent 
control samples for the three successive collected samples from the same 
corresponding rat after GM-feeding durations of 30, 60, and 90 days

Animals’ 
codes

Sampling codes

0-Day samples Successive sampling times

Control 30 Days 
samples

60 Days 
samples

90 Days 
samples

A A0 A30 A60 A90

B B0 B30 B60 B90

C C0 C30 C60 C90

D D0 D30 D60 D90

E E0 E30 E60 E90

F F0 F30 F60 F90

G G0 G30 G60 G90

H H0 H 30 H 60 H 90

K K0 K30 K60 K90
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iNtRON Biotechnology, Inc) was used for purification of 
some of these PCR products for the subsequent internal 
nucleotides sequencing analysis which was performed 
by MWG-Biotech AG. Following sequencing, BLASTN 
analysis with the GenBank was performed to test for 
alignment.

Results
Screening animal feed samples for the presence of genetic 
modification
The CaMVP35S promoter investigated in the present 
work (P-35S) was identified in all collected animal feed 
samples (1, 2, and 3) screened for the presence of genetic 
modification (Fig. 1). The figure also includes PCR prod-
ucts of amplified primers for nptII and aadA in diet 
samples.

The presence of the amplified primers in DNA of the 
chosen animal feed (Animal diet 1) was further con-
firmed by DNA sequencing. The internal nucleotide 
sequencing analysis results of the PCR amplicon obtained 
from the amplification of primers for CaMV promoter 
(P-35S) and the antibiotic resistance marker genes nptII 
and aadA are included in the figure (Fig.  1), as well as 
results of Blast analysis with the GenBank. Alignment 
using NCBI-BLASTN program for the PCR amplicon of 
the investigated segments (P-35S, nptII and aadA) is also 
presented.

BLASTN analysis showed a 100% homology of the 
amplified segment with binary vector pGWB80 Acc. 

No. dbj|AB752377.1| at nucleotide (nt) coordinate 
5559 to 5753. It also shared 100% sequence homol-
ogy with CaMV-P35S promoter (emb|V00141.1|). The 
nptII retrieved segment (173  bp) shared 100% identity 
with Minitransposon mTn5-GNm, complete sequence 
(AF080390.1) at nt coordinate 2382–2554. The nptII 
retrieved segment also shared 100% identity with many 
other cloning, Binary and Gateway vectors. PCR ampli-
fication of the aadA primers gave a fragment of 284  bp 
in size. The aadA (284  bp) retrieved segment shared 
100% identity with Binary vector pKT pKT-NB-H2Bsf-
GFP, complete sequence (MH973511.1) at nt coordinate 
1188–1471.

The potential for horizontal gene flow of ARM genes 
from GM‑diet into enteric microflora and blood cells 
of experimental rats fed on GM‑diet for three months
Bacterial DNA samples representing the three groups 
of animals were screened for the presence of CaMV 
35S promoter, two segments of the antibiotic resistance 
marker gene nptII (101 bp-target and 173 bp-target) and 
a segment of the aadA gene(284 bp-target).

Results presented in Table  3 indicated that bacterial 
DNA extracted from GIT of the control group (G1) did 
not harbor any fragments from P-35S or from the anti-
biotic resistance marker genes (nptII or aadA). All tested 
primers showed no amplification in this group (G1). 
Table  3 also shows that tested primers for P-35S, nptII, 
and aadA, recorded variable amplification percentages 

Fig. 1  Detected genetic modifications in the collected diet samples and their nucleotide sequence alignment with GenBank
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in bacterial DNA extracted from GIT of the other two 
groups; G2 and G3 that were fed with GM-diet for 30 or 
90  days, respectively. Primers for CaMV-35S promoter 
were amplified in about 89% and 78% of the bacterial 
samples in G2 and G3, respectively.

The primers pair for the smaller segment (101 bp) from 
nptII gene was amplified in 60% of each of the two inves-
tigated groups (G2 and G3), whereas primers pair for 
nptII gene (173 bp-target) was amplified in 40% of each of 
the two investigated groups (G2 and G3). Jointly, the two 
primers pairs for nptII gene (101 bp-target and 173 bp-
target) recorded amplification percentage of 80% in each 
of the investigated groups G2 and G3.

Primers used for the amplification of segment from 
aadA gene (284  bp-target) were amplified in 90% and 
100% of the bacterial cell in G2 and G3, respectively.

Sequencing and BLASTN analysis
It was not possible to obtain reliable sequencing results 
from the short segment (101 bp) of nptII gene. Therefore, 
in order to confirm the transfer of nptII fragment from 
the diet to microflora in GIT of rats fed on the GM diet 
for 90  days, the internal nucleotide sequencing of the 
amplified nptII longer segment (173 bp-target) was per-
formed for two of these DNA samples (B14 and B15).

The retrieved sequences from both samples were 167 
and 170 base pairs in size, respectively. Alignment of 
the two sequences (B14 and B15) revealed that similar-
ity between the two sequences was only 96% (Fig. 2A).

Blast analysis for sequencing results (Fig. 2B) showed 
that the distribution of the top 101 Blast Hits on 100 
subject sequences were the same for both samples B14 

and B15, yet with variable similarities percentages (97% 
and 100%, respectively).

The internal nucleotide sequencing of the amplified 
aadA amplimers (284  bp-target) was performed for a 
number of samples from both groups, samples B3, B4, 
B7, B8 from G2 and samples B12, B13, B15, B16, B18, 
B20 from G3 group. The retrieved sequences from the 
amplified segments of the aadA gene were 284 base 
pairs in size. Clustal Omega multiple sequence align-
ment analysis for these sequences along with the cor-
responding segment from the reference sequence 
(MH973511.1), showed that they were not completely 
similar.

The internal nucleotide sequences similarities among 
the bacterial DNA samples ranged from 74.91 to 100.00% 
as presented in Fig.  2C, whereas similarity between 
them and the original reference sequence (MH973511.1) 
ranged from 82.27 to 99.29%.

Screening DNA of blood samples of experimental animals 
for the presence of ARM genes
The prevalence of DNA segment from GM-diet contain-
ing fragments from nptII (173  bp) and aadA genes in 
blood cells of investigated rats is presented in Table  4. 
Results revealed that no amplification occurred in DNA 
extracted from blood samples of rats collected shortly 
before weaning (0-day samples). Results also indicated 
that nptII was detected in all DNA of blood samples col-
lected from rats fed on GM-diet after 30, 60 and 90 days 
except sample D90 in which nptII and aadA were not 
detected. PCR amplification of nptII (173  bp) fragment 

Table 3  Incidence of transfer of P35S, nptII and aadA into bacterial cells in GIT of rats fed on GM-diet

1 Bacterial cells collected from control rats shortly before weaning

nt not tested, %P: percentage of transfer of GM sequences

Bacterial DNA samples of control group of 
rats1

Bacterial DNA samples of the 30 days group Bacterial DNA samples of the 90 days group

Code P35S
195 bp

nptII
101 bp

nptII
173 bp

aad
284 bp

Code P35S
195 bp

nptII
101 bp

nptII
173 bp

aad
284 bp

Code P35S
195 bp

nptII
101 bp

nptII
173 bp

aad
284 bp

C1  −   −   −   −  B1  +   −   +   +  B11  +   −   −   + 

C2  −   −   −   −  B2  +   −   −   +  B12  +   +   +   + 

C3  −   −   −   −  B3  −   +   −   +  B13  +   +   −   + 

C4  −   −   −   −  B4  +   −   +   +  B14  +   −   +   + 

C5  −   −   −   −  B5  +   +   +   +  B15  −   −   +   + 

C6  −   −   −   −  B6  +   +   −   +  B16  −   +   +   + 

C7  −   −   −   −  B7  +   +   +   +  B17  +   +   −   + 

C8  −   −   −   −  B8  +   +   −   +  B18  +   +   −   + 

C9 nt  −   −   −  B9  +   +   −   +  B19  +   +   −   + 

C10 nt  −   −   −  B10 nt  −   −   −  B20 nt  −   −   + 

%P %P 88.8 60 40 90 %P 77.7 60 40 100
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Fig. 2  The internal nucleotide sequencing (for nptII and aadA amplimers), alignment and Blast analysis with gene bank. A Alignment of the internal 
nucleotide sequences of the amplified nptII in DNA of two of the microflora samples (B14 and B15) from GIT of rats fed on GM-diet for 90 days. B 
Variable similarities percentages of number of sequences that produced significant alignment with nptII in the two bacterial samples B14 and B15. C 
Percent Identity Matrix created by Clustal 2.1 for the internal nucleotide sequences of the PCR amplicons obtained from the amplification of primers 
for aadA gene in number of bacterial cells. OR is the original reference sequence of the corresponding segment of aadA (MH973511.1)
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in blood samples collected from rats after 90 days is pre-
sented in Fig. 3.

The prevalence of DNA segments from GM-diet con-
taining fragments from aadA(284 bp) gene in blood cells 
of investigated rats are also presented in Table 4. Results 
showed that aadA segment was not detected in DNA 
extracted from blood samples of rats collected shortly 
before weaning (0-day samples).

Results also showed that aadA investigated segment 
was eliminated from some of the blood DNA samples, 
after 90  days (A90, C90 and D90). These samples were 
harboring the aadA segment at earlier sampling times, 
(A30, C30, and D60, respectively).

Further to confirm the transfer of fragments from 
nptII and aadA genes from the GM-diet to the blood of 
rats, the internal nucleotide sequencing of the obtained 
nptII and aadA amplimers was performed. The internal 
nucleotide sequencing of the amplified nptII amplimers 
(173 bp-target) was performed for selected samples after 
60 days (K60) and 90 days (C90, E90, F90 and G90). The 
retrieved sequences from these samples were 173  bp in 
size. Alignment of these five sequences using the Clustal 

Omega multiple sequence alignment program along with 
the corresponding segment from the reference sequence 
(AF080390.1) is presented in Fig. 4A.

CLUSTAL O (1.2.4) multiple sequence alignment 
(Fig.  4B) showed that samples C90, G90, F90 and K60 
shared 100% identities with Minitransposon mTn5-
GNm, complete sequence (AF080390.1). In case of E90, 
the identity percent was only 97.11%.

NCBI Blast analysis for NPTII (173 bp-target) sequenc-
ing results were carried out using BLASTN 2.9.0+ (Zhang 
et al. 2000). Blast analysis for C90, F90, K60, G90 inter-
nal nucleotide sequences gave 100% alignment with 
many cloning vectors (e.g. MK453498.1,MK448012.1, 
MK176935.1), Gateway binary vectors (e.g.AP018981.1, 
AP018954.1, AP018948.1) and other vectors (e.g. 
MH325111.1, MH325106.1, MK044344.1). Blast analysis 
for E90 internal nucleotide sequences gave 97.11% align-
ment with the same binary and cloning vectors.

Amplification of the aadA primers in DNA of blood 
samples of the experimental animals produced fragment 
of the size 284 bp. The internal nucleotide sequencing of 
the amplified aadA amplimers (284  bp-target) was per-
formed for selected samples from the third sampling time 
group (E90, F90 and H90) fed on the GM-diet for 90 days.

Alignment of these sequences (E90, F90 and H90) using 
the Clustal Omega multiple sequence alignment program 
along with the corresponding segment from Binary vec-
tor pKT pKT-NB-H2BsfGFP and complete sequence 
(MH973511.1) are presented in Fig. 5A.

Results (Fig. 5B) showed that samples E90, F90 and H 
90, respectively, shared 97.89%, 98.59 and 97.17% identi-
ties with the corresponding segment of aadA gene in the 

Table 4  Prevalence of transfer of nptII and aadA genes into blood cells of rats fed on GM-diet

1 Blood samples collected from control rats just before weaning. 2Blood samples collected from rats after being fed on the GM-diet for 30 days. 3Blood samples 
collected from rats after being fed on the GM-diet for 60 days. 4Blood samples collected from rats after being fed on the GM-diet for 90 days. %P: Percentage of 
transfer of GM sequences

Rats Samples Codes and results of PCR amplification of nptII and aadA genes

0-Day samples1 30 Days samples2 60 Days samples3 90 Days samples4

Code nptII aadA Code nptII aadA Code nptII aadA Code nptII aadA

A A0  −   −  A30  +   +  A60  +   −  A90  +   − 

B B0  −   −  B30  +   +  B60  +   −  B90  +   + 

C C0  −   −  C30  +   +  C60  +   −  C90  +   − 

D D0  −   −  D30  +   −  D60  +   +  D90  −   − 

E E0  −   −  E30  +   +  E60  +   +  E90  +   + 

F F0  −   −  F30  +   +  F60  +   +  F90  +   + 

G G0  −   −  G30  +   +  G60  +   −  G90  +   + 

H H 0  −   −  H 30  +   −  H 60  +   −  H 90  +   + 

K K0  −   −  K30  +   −  K60  +   −  K90  +   + 

%P %P 100 66.6 %P 100 33.3 %P 88.8 66.6

Fig. 3  PCR amplification products of nptII (173 bp) in blood samples 
of rats fed on GM-diet for 90 days
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Fig. 4  Analysis of the results of amplification of nptII in blood cells of rats fed on GM-diet for 90 days. A Clustal Omega multiple sequence 
alignment of the internal nucleotide sequences of a number of blood samples along with the corresponding segment from the reference sequence 
mTn5 (AF080390.1). B Percent Identity Matrix—created by Clustal2.1—for the internal nucleotide sequences of the PCR amplicon (C90, F90, K60, 
G90 and E90) obtained from the amplification of primers for NPTII gene. mTn5 is the original sequence of the corresponding segment of mTn5 
(AF080390.1)



Page 9 of 14Oraby et al. Bulletin of the National Research Centre          (2022) 46:268 	

Fig. 5  Analysis of amplification results of aadA in blood cells of rats fed on GM-diet for 90 days. A Clustal Omega multiple sequence alignment 
of the internal nucleotide sequences of aadA (284 bp) in a number of blood samples along with the corresponding segment from the reference 
sequence (MH973511.1). B Percent Identity Matrix created by Clustal2.1 for the internal nucleotide sequences of the PCR amplicon (F90, E90, 
and H90) obtained from the amplification of primers for aadA gene. Original is the reference sequence of the corresponding segment of aadA 
(MH973511.1). C Variable similarities percentages of number of vectors that produced significant alignment with aadA amplemers
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original Binary vector pKT pKT-NB-H2BsfGFP, com-
plete sequence (MH9735111.1).

NCBI Blast analysis for aadA (284 bp-target) sequenc-
ing results was carried out using BLASTN 2.9.0+ (Zhang 
et al. 2000). Blast analysis for F90 and E90 and H90 inter-
nal nucleotide sequences resulted in alignment with 
number of Cloning Vectors, and Binary Vector with vari-
able identity percentages as presented in Fig. 5C.

Discussion
Despite all of the benefits of GMOs, there is great con-
cern among scientists about the possible occurrence of 
horizontal gene transfer of antibiotic resistance marker 
(ARM) genes, employed in the production of transgenic 
plants, into different tissues of animal or human consum-
ing these GM products.

The present work explored the potential for horizon-
tal gene flow of ARM genes from GM-diet into enteric 
microflora and blood cells of experimental rats fed on 
the laboratory chow diet for 90  days. As reported dur-
ing the present study, the chosen laboratory diet sam-
ple used for this experiment gave positive results when 
screened for the presence of segments from CaMV-35S 
promoter, neomycin phosphotransferase II (nptII) gene 
and aminoglycoside 3″ adenyltransferase (aadA) gene. 
The presence of these segments was further confirmed 
by DNA sequencing and BLASTN analysis (Fig. 1). Anti-
biotic resistance marker genes are mostly introduced to 
GM plant as part of the bacterial vectors which are used 
for the initial gene constructions for transformation 
purposes. The nptII gene is usually used as a selectable 
marker in the initial laboratory stages to select plants 
that were genetically modified (Jelenic 2003; Turrini et al. 
2015). The choice of the selective agent is important and 
based on the plant species to be transformed. However, 
nptII is probably the most widely used selectable marker 
for plant transformation, whereas aadA gene is usu-
ally used in the laboratory prior to the production of the 
genetically modified plants to select for bacteria contain-
ing the modified DNA.

In the present work, PCR results demonstrated the 
positive occurrence of DNA transfer of the antibiotic 
resistance marker genes nptII and aadA from GM diet to 
the enteric microflora (Table 3) and blood cells (Table 4) 
of experimental animals fed on the GM-diet for 90 days. 
These results were further confirmed by performing the 
internal nucleotide sequencing of the amplified nptII 
and aadA amplimers in number of DNA purified from 
the amplification products (amplicons). Sequencing was 
followed by alignment with the corresponding segments 
from the Gene Bank and further BLASTN analysis was 
performed to test for sequences similarities percentages 

(Figs. 2A–C). As presented in Fig. 2B, blast analysis with 
the gene bank for nptII sequences gave variable similari-
ties percentages with many cloning and binary vectors. 
These results confirm the transfer of segments of nptII 
gene from the GM-diet into the bacterial cells of rats fed 
on this diet for 90 days.

Clustal Omega multiple sequence alignment among 
each of the incorporated genes (nptII or aadA) in bacte-
rial cells samples showed that they were not completely 
similar. Alignment of nptII sequences showed that simi-
larity was only 96% (Fig.  2A), where similarity among 
aadA sequences ranged from 74.91 to 100.00% (Fig. 2C). 
These similarity variations within bacterial DNA samples 
may point out to the possibility that the aadA chimeric 
gene is having high mutations rates, as in the case of bla 
recombinant gene which is characterized by having high 
mutations rates (Ho 2014).

The microbial system in the gastrointestinal tract (GIT) 
is very dynamic on the genetic level. It is capable of rapid 
response at the genetic level (Lerner et al. 2017). Its eco-
system is extremely enriched by mobile genetic elements 
(Feld et  al. 2008; Bahl et  al. 2004) that make it ideal for 
a potentially extensive gene exchange (Aminov 2011). 
Horizontal gene transfer (HGT) of antibiotic resistance 
genes is pervasive among prokaryotes, especially bacteria 
(Soucy et al. 2015).

The HGT of antibiotic resistance genes in the intes-
tines of humans (Spisak et  al. 2013) was reported. Its 
widespread in the human-associated microorganisms 
(Huddleston 2014; Liu et al. 2012; Smillie et al. 2011) was 
suggested to be due to the close physical proximity and 
increased cell-to-cell contact within the human body (e.g. 
gastrointestinal tract). Jeong et  al. (2019) also suggested 
that ‘phylogenetic effect’ can significantly increase HGT 
activity among closely-related microorganisms. Trans-
fer of these antibiotic resistance genes between these 
microorganisms, as suggested by Licht et al. (2003) may 
increase the possibility of acquisition of resistances by 
human pathogens through the use of antibiotics as addi-
tives in agricultural animal feed. Yau and Stewart (2013) 
revealed that the use of antibiotics may not only select for 
resistant populations but also may enhance the formation 
of new resistant strains by HGT.

On the contrary, transfer of transgenic DNA from 
the diet into the microflora found in GIT of rats fed on 
transgenic cucumber was not detected (Kosieradzka 
et  al. 2001). However, as Nielsen and Townsend (2004) 
and Nielsen and BøhnT (2014) clarified that the different 
methodological approaches used have many limitations 
that may reduce the possibility to estimate the occurrence 
and impact of horizontal gene transfer in limited time 
study. Methodologically, they explained, the obtained 
bacteria from plate screening are only representing a 
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tiny proportion of the bacterial populations of the tested 
habitats.

The prevalence of the transferred ARM genes in blood 
cells of each of the investigated rats has also been pursued 
all through the feeding duration (90 days). As mentioned 
above, a special approach was adopted in this investiga-
tion, during which each animal, of the second group of 
rats, was used as its own self-control (Table  2). There-
fore, each blood sample collected shortly before wean-
ing was considered as control sample (0-day samples) for 
the other three samples collected from the same animal. 
Screening results showed that nptII and aadA segments 
were not detected in DNA extracted from blood samples 
collected from the animals shortly before weaning (0-day 
samples). These finding revealed that the control samples 
(0-day samples) were free from these segments (nptII and 
aadA) before the beginning of the feeding duration.

Results also showed that nptII was detected in all DNA 
of blood samples collected from rats fed on GM-diet for 
30, 60 and 90  days except sample D90 in which nptII 
seemed to be eliminated (Fig. 3).

The aadA investigated segment was not detected in 
some of the blood DNA samples, after 90 days (A90, C90 
and D90). In view of the fact that these aadA segments 
were detected in the same samples at earlier sampling 
times (A30, C30, and D60, respectively), suggests that 
these missing transferred segments seemed to be elimi-
nated too from these samples. These findings imply that 
incorporation of both nptII and aadA segments were not 
within the nucleus of the blood cells at the earlier sam-
pling times A30, C30 and D60 (Table  4), which is sup-
ported by the fact that a foreign genetic material usually 
must be incorporated in the nucleus of the recipient cell 
in order to be permanently added to eukaryotic cells 
(Moses 1987). Our findings also suggest the possible 
occurrence of a repair mechanism which may result in 
the elimination of the transferred segment at that latter 
stage of sampling time.

More than 80% of genetically modified plants (Cankar 
et  al. 2008) contain the CaMVP-35S promoter, there-
fore, we investigated the transfer of a segment of P-35S 
(195  bp-target) into bacterial cells in rats fed for 30 
and 90 days on the GM-diet. Table 3 demonstrates that 
the rate of transfer of P-35S (195 bp-target) was 88.8% 
and 77.7% in bacterial samples after 30 and 90  days, 
respectively. We also explored the transfer of another 
segment (Cf3Cr4, 123  bp-target) from CaMV-P35S 
promoter into blood cells of rats fed on the GM-diet for 
90  days. Results (Fig.  6) indicated a 100% presence of 
this fragment in all DNA samples collected from rats 
fed on GM-diet for 90 days. In a previous study, Oraby 
et al. (2014) reported that ingested fragments from the 
CaMV-35S promoter (195 bp-target) were incorporated 

into blood, liver and brain tissues of experimental rats 
and the affinity of incorporation of different transgenic 
fragments from the ingested GM-diet into the differ-
ent tissues of rats varied from one target sequence to 
the other. In some cases, only short DNA fragments 
derived from diet containing GM-maize were detected 
in blood lymphocytes of cows (Einspanier et al. 2001). 
Variation in rate of incorporation of the two investi-
gated segments (101 bp-target and 173 bp-target) from 
nptII gene into bacterial cells were also reported in the 
present investigation.

Spisak et  al. (2013) revealed that large meal-derived 
DNA fragments carrying a complete gene can avoid 
degradation and enter the human circulation system. 
Other studies reported the presence of DNA from 
M13 virus, GFP and even ribulose-1, 5- bisphosphate 
carboxylase (Rubisco) genes in the blood and tissue of 
experimental animals (Guertler et al. 2009; Brigulla and 
Wackernagel 2010).

Jelenic (2003) suggested that the presence of frag-
ments from the diet-DNA harboring segments of CaMV 
promoter (P-35S, and Cf3Cr4) may cause a risk to the 
consumer. Studies conducted by Oraby et  al. (2015a) 
suggested health hazards accompanying the ingestion 
of GM-diets containing CaMV promoter. They reported 
deleterious histopathological and histochemical impacts 
as well as biochemical alterations in different tissues 
of rats in association with the GM-diet consumption. 
Genotoxicity of the GM diet was previously reported in 
somatic and germ cells (Oraby et al. 2015b).

It has also been reported that CaMV-P35S pro-
moter can function in a wide range of organisms (plant 
and animal). Expression of the bacterial nptII gene in 
Escherichia coli (Assaad and Signer 1999) can also be 
initiated by CaMV-P35S promoter. Despite the fact 
that, the bacterial promoter controlling the expression 
of aadA gene is not active in GM-plants (Moses 1987), 
yet CaMV-35S promoter sequence can alter the expres-
sion pattern not only in adjacent genes (Yoo et al. 2005), 
but also it can convert other specific gene promoter in 

Fig. 6  PCR amplification of Cf3Cr4 in some blood samples of rats fed 
on GM-diet for 90 days. Cf3Cr4 (123 bp-target) is another segment 
from CaMV promoter, (con) is a negative control (0-day sample)
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the adjacent tissues and organs into a globally active 
promoter (Zheng et al. 2007).

It is well known that bacteria (Prokaryotes) lack an 
organized nucleus and usually accept new DNA more 
easily than other tissues (Moses 1987), in the present 
study, the collective rate of transfer (%) for both genes 
(nptII and aadA) were unexpectedly, higher in blood 
cells than that in the bacterial cells (Table  5). This 
may be explained knowing that horizontal gene trans-
fer which occurs naturally in bacteria (OECD 2010), 
directs the bacteria to impose DNA repair mecha-
nisms in order to adapt to changing environmental 
conditions and to generate genetic diversity without 
losing too much genomic stability (Fall et  al. 2007). 
Transformation frequencies varied in association with 
the recipient strain and the position on the bacte-
rial genome (Fall et  al. 2007). Jelenic (2003) assumed 
the occurrence of a more or less significant transfer of 
foreign food DNA into some types of consumer’s cells 
depending on the animal species and the type of food. 
He concluded that in both mammals and birds, trans-
fer of food-derived DNA fragments into the resident 
microflora, in the GIT, has been indicated to occur in 
the presence of sites for homologous recombination, 
or when the exogenous fragments are part of replicat-
ing plasmids. This was the case in our results, where 
sequencing and BLAST analysis for the amplified nptII 
(173 bp-target) gene in DNA of blood or bacterial sam-
ples showed 97% alignment with some synthetic con-
struct clone Sp. (e.g. MK371206.1 and MK371204.1). 
The other amplified aadA gene in DNA of bacterial 
samples showed alignment percents ranged from 88 to 
96% with some plasmids from different bacterial strains 
complete sequences (e.g. CP031295.1, CP028419.1 and 
LN830952.1).

These results in its turn, confirm that these ampli-
fied segments were transferred into blood or bacterial 
cells horizontally from the GM-diet. Genetic engineer-
ing technology is known to depend on designing vectors 
for cloning and transferring genes involving artificially 

recombining and manipulating genes from unrelated spe-
cies and their viral pathogens, which is known to improve 
and increase the probability for horizontal gene transfer 
and recombination (Ho et al. 1998).

Conclusions
The occurrence of DNA transfer of antibiotic resistance 
marker genes nptII and aadA from GM plant material to 
blood cells and enteric microflora has been unambigu-
ously demonstrated in rats fed on GM-diet. These results 
may draw attentions to the importance of exploring the 
possible effects of transfer of ARM genes horizontally 
from GM products to consumers and to extend our 
attentions to the importance of a better understanding of 
the factors influencing HGT in the intestine of the GM-
food consumers.
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