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Protective and therapeutic potentials of HDL 
and ApoA1 in COVID‑19 elderly and chronic 
illness patients
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Abstract 

Background:  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus dis-
ease-2019 (COVID-19). Elderly subjects, obese, and patients with chronic illnesses, are the most affected group. HDL 
has pleiotropic physiological functions that are affected with alteration(s) in its structure.

Main text:  Inflammation whether septic, immune, or other affects HDL structure and function. COVID-19 is associ-
ated with systemic immune-inflammation due to cytokine surge. Viral interaction with erythrocytes and hemoglobin-
related compounds (may cause anemia and hypoxia) and other factors may affect HDL function. Trials have been 
conducted to resume HDL functions using peptide preparation, nutritional, and herbal elements.

Conclusions:  In this review article, I’ll discuss the use of reconstituted HDL (rHDL), Apo-A1 mimetic peptide D-4F, ω-3 
polyunsaturated fatty acids, and the powdered roots and/or extract of Saussurea lappa (costus) to avoid comorbidity 
and mortality of COVID-19 in patients with chronic illness or elderly-age mortality.

Keywords:  COVID-19, HDL-Apo-lipoprotein A1, Elderly subjects, Chronic illness, Hemoglobin-haptoglobin-
hemopexin, Apo-A1 mimetic peptide D-4F, ω-3 polyunsaturated fatty acids, Saussurea lappa (costus), ApoM-
sphingosine-1-phosphate
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Background
HDL has multiple physiological functions; i.e. reverse 
cholesterol transport, anti-inflammatory, anti-throm-
botic, anti-oxidative, anti-apoptotic in addition to protec-
tion of vascular endothelium against damage and leakage 
of small particles like LDL to pass through. Apo-lipopro-
tein A1 (Apo-A1) is the main apo-lipoprotein component 
and plays an axial role in HDL function. Alterations of 
HDL disturb its functions. Elderly subjects, obese patiens, 
and patients with chronic illness such as diabetes, cardio-
vascular disease (CVD) or chronic inflammatory diseases 
have bad comorbidity among COVID19 patients. Inflam-
mation affect HDL structure and function. COVID-19 

causes systemic immune-inflammation due to cytokine 
explosion, viral interaction with erythrocytes and its 
hemoglobin content and other factors influencing HDL 
function. Clinical and experimental trials suggest that 
resuming the HDL function by administration of recon-
stituted HDL, Apo-A1 mimetic peptide D-4F, ω-3 poly-
unsaturated fatty acids, and/or the powdered roots of 
Saussurea costus ameliorates the clinical outcome. We 
recommend application of these to regain HDL protec-
tive function in the fore-mentioned cases.

Main text
HDL structure and function
Reverse cholesterol transport (RCT)
Apolipoprotein Apo A-1 interacts with ATP-binding 
cassette-1 (ABCA1) in various cell types (hepatocytes, 
enterocytes, and macrophages). Cholesterol and phos-
pholipids are combined in this interaction to form 
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nascent HDL particles (pre-HDL, or HDL3), which are 
discoid HDL. Other apolipoproteins may be added, 
except for Apo-B.

Cholesterol is esterified with unsaturated fatty acid 
of lethicin to form a mature molecule of HDL (α-HDL 
or HDL2); catalyzed by lecithin-cholesterol acyltrans-
ferase (LCAT). Cholesterol ester is transferred to Apo 
B-100-containing lipoproteins, especially to the low-den-
sity lipoprotein (LDL), in exchange for triacylglycerol to 
form spheroid HDL. Apo B-100-containing lipoprotein 
binds to LDL-receptor on the hepatocyte surface and 
undergoes endocytosis to eliminate its cholesterol con-
tent. Mature HDL interacts with scavenger receptor-B1 
(SR-B1) in the liver, this allows the transfer of its choles-
terol content as well as triacylglycerol (TG). By release of 
TG, the remained HDL molecule, the pre-β HDL (HDL3) 
circulates and repeat the RCT process (Steck and Lange 
2010).

In addition to Apo A-1, HDL particles contain ApoM, 
enzymes involved in antioxidative mechanisms such as 
paraoxonase-1, lecithin-cholesterol acyltransferase, and 
diverse lipid species, including cholesterol esters, triglyc-
erides, phospholipids, and bioactive sphingolipids such as 
sphingosine 1-phosphate (S1P) (Nofer et al. 2004). In the 
systemic circulation, about 60% of plasma S1P is bound 
to apolipoprotein M (apoM) (Kurano and Yatomi 2018). 
S1P signals through specific G proteins. It inhibits vascu-
lar permeability and is required for vascular development 
as well as immune cell trafficking (Liu et al. 2000). ApoM 
is involved in an anti-inflammatory signalling complex 
that inhibits NF-B-dependent inflammatory pathways. 
The NF-κB pathway is a key inflammatory signaling path-
way induced by TNFα (Galvani et al. 2015).

Disturbed HDL protective function against oxidation 
and inflammation
HDL anti-oxidant function is attributed to paraoxonase-1 
(PON-1) enzyme (James et al. 2010). Variation in paraox-
onase-1 activity is recorded in atherosclerosis and other 
inflammatory states (Soran et al. 2009).

Exposure of HDL to oxidation stress, e.g. at sites of 
inflammation, diminishes Apo A1 activity (Zheng et  al. 
2004), and the LCAT biological function (Shao et  al. 
2008) resulting in disturbed HDL turnover.

Systemic inflammation can also contribute to the 
observed hypoxia-mediated HDL impaired activity (Biolo 
et  al. 2018). Owing to their small particle size, LDL get 
access into extracellular fluid to be in direct contact with 
tissue cells. Reactive oxygen species (ROS) are gener-
ated in tissues owing to cycloxogenase, lipooxygenase, 
myeloperoxidase, and/or NADPH oxidase exagger-
ated activity during inflammatory process. LDL is oxi-
dized into oxy-LDL. HDL3 (pre-β-HDL), protect LDL 

from oxidative damage by free radicals (Kontush and 
Chapman 2010). Native Apo A-I inhibits the proinflam-
matory effect of oxidized lipids (Navab et  al. 2000). At 
sites of inflammation, myeloperoxidase bound to HDL, 
catalyzes its oxidation to a proinflammatory particle 
(Undurti et  al. 2009) as evidenced by elevation of CRP 
(Corsetti et al. 2010). Fatty acids moieties of phospholip-
ids in plasma membranes and lipoproteins are oxidized 
to lipid hydroperoxides. Lipid hydroperoxides migrate 
from the surface of LDL to be transfered to the liver via 
SR-B1 and/or to be carried by HDLs (Bowry et al. 1992). 
The imbalance in the antioxidant system causes oxHDL 
modification. Oxidized lipids enhance circulating mac-
rophages to release pro‐inflammatory cytokines (Van 
Lenten et  al. 1995). Cytokines decrease synthesis and/
or secretion of lipoproteins including Apo-AI which are 
steadily decreased as the disease progress to critically ill 
state.

Inflamattory cytokines increase the activity of secre-
tory phospholipase A2 (sPLA2) and endothelial cell 
lipase, enzymes that metabolize key HDL constituents 
(Filippas-Ntekouanet et  al. 2017). Insulin resistance 
reduces lipoprotein lipase (LPL) activity (Popko et  al. 
2010). Clearance of triglyceride content of chylomicrons 
and VLDL is blunted. Transfer of cholesteryl-esters from 
HDL to ApoB-lipoprotein series is inhibited. Hence, 
cholesterol efflux from peripheral tissues is retarded. 
Altered HDL-apolipoprotein structure inhibits release 
and activation of hepatic lipase with elevation of plasma 
TG (Chatterjee and Sparks 2011). Hypertriglyceridemia 
is among the factors potentiating cardiometabolic risk 
(Moriyama and Takahashi 2016). Plasma levels of apoM 
in diabetics is reduced as compared with euglycemic con-
trol subjects. ApoA-I, apoM, and S1P in insulin resist-
ance are decreased (Kurano et al. 2020).

Serum amyloid A (SAA) may displace ApoA-I in 
HDL particles, leading to increased catabolism of HDL 
(McEneny et al. 2016). This is an additional factor respon-
sible for shifting the function of HDL from a vasoprotec-
tive to a pro-atherosclerotic lipoprotein (Zewinger et al. 
2015). SAA plasma levels are progressively elevated with 
COVID‐19 disease severity, so a prognosis of the disease 
could be evaluated (Li et al. 2020).

Low HDL-C levels consist a poor prognostic factor for 
COVID-19 severity (Agouridis et al. 2021). High HDL-C 
levels were associated with a lower risk of hospitalization 
due to COVID19 infection (Lassale et  al. 2021). Serum 
ApoA1 is reduced with the progress of illness in COVID-
19 patients (Yang et al. 2020).

Interaction of hemoglobin and related molecules with HDL
Normally, HDL is bound at low levels of hemoglobin 
associated to its Apo A-I fraction. Hemoglobin / HDL is 
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increased in inflammatory states. Haptoglobin is a pro-
tein synthesized by the liver to bind circulating plasma 
free hemoglobin and facilitate its association to HDL 
(Watanabe et  al. 2009). Hemopexin, a protein involved 
in iron transport, is identified among HDL proteins. The 
interaction of hemoglobin, haptoglobin, and hemopexin 
with HDL is positively correlated with the proinflamma-
tory properties of HDL during systemic inflammation so 
that it reduces the activity of Apo A1 (Spagnuolo et  al. 
2005). Accordingly, increased HDL linked hemoglobin 
may contribute for higher levels of lipid hydroperox-
ides besides acquiring proinflammatory characteristics 
(Watanabe et al. 2007).

Interaction of SARS‑CoV‑2 infection with erythrocytes
The viral effect on heme metabolism is due to bind-
ing of viral surface glycoprotein with the beta-chains 
of hemoglobin (Wenzhong and Hualan. 2020a) result-
ing in hemoglobin denaturation (Wenzhong and Hua-
lan. 2020b). Hence, SARS-CoV-2 may induce hemolysis. 
During the course of the disease, anemia progresses and 
hemoglobin-related pathology also progresses. Hemo-
globin/iron interrelation may result in multi-organ disor-
ders and systemic hypoxia.

An additional receptor, CD147, was identified besides 
angiotensin converting enzyme 2 (ACE2) on erythrocytes 
and other cells (Wang et  al. 2020). CD147 may be the 
routes through which the virus get access into the eryth-
rocytes, bone marrow immature cells (Ulrich and Pillat 
2020). Cardiac pericytes, vascular smooth muscles and 
probably vascular endothelium may be invaded by the 
virus through CD147 (Robinson et al. 2020).

Hypoxia, which develops as a sequence of erythrocytic 
hemoglobin and cardiovascular affection, may upregu-
late CD147 expression. Obese and diabetics overexpress 
CD147 receptors in erythrocytes (Radzikowska et  al. 
2020). This finding may add an explanation of comorbid-
ity of COVID-19 in obese and diabetic subjects.

Dysorganisation of iron metabolism in SARS‑CoV‑2 
infection
Infection with SARS-CoV-2 has hepcidin-like activ-
ity, probably mediated by IL-6 induced gene expression. 
Hepcidin facilitates iron accumulation in cells via down-
regulation of ferroportin (Means Jr 2022). The latter is 
the key transporter of iron outside the cells. Plasma iron 
is decreased (hypoferremia) with higher ferritin concen-
tration (hyperferritinemia) (Nemeth et  al. 2004). Eryth-
ropoiesis becomes inadequate resulting in anemia of 
inflammation (Ganz and Nemeth 2011). Since blood S1P, 
bound to HDL-apoM, is linked to number of erythrocytes 
(Hänel et  al. 2007), anemia is associated with decrease 
in plasma S1P and the circulating S1P is prognostic and 

predictive biomarker in COVID-19 patients (Marfia et al. 
2021). Serum iron ensues contributing to hypoferremia 
(Drakesmith and Prentice 2012). Increased intracellu-
lar iron content potentiates SARS-CoV-2 replication in 
affected cells (Kalyanaraman 2020). Early in COVID-19 
patients, cell iron overload is tolerated without appar-
ent hypoxia. According to Fenton reaction, iron is a 
potent pro-oxidant; that increases reactive oxygen spe-
cies (ROS) creating oxidation stress state. ROS activates 
nuclear factor-kappa B kinase (Lingappan 2018); potenti-
ating the inflammatory response. Furthermore, increased 
intracellular iron upregulates the expression of inflam-
matory factors such as IL-6, IL-8, and TNF-α, which in 
turn, aggravate cytokine surge (Girelli et al. 2021). Con-
currently, anemia caused by lower hemoglobin level and 
hyperferritinemia, besides hemoglobinopathy (caused by 
SARS-Cov-2 binding to β-chain of hemoglobin) are risk 
factors contributing to bad comorbidity of mild case to 
critically-ill condition (Zhou et al. 2020).

Effect of hypoxia
Hypoxia changes lipoprotein pattern in an atherogenic 
direction by lowering HDL-C particularly, HDL2-C 
(Biolo et al. 2018).

Hypoxia induces release of hypoxia inducible factor-1 
(HIF-1). Hypoxia and HIF-1α can either stimulate or 
inhibit cytokine-mediated inflammatory response. The 
stimulation process depends on upregulation of vas-
cular endothelial growth factor (VEGF) from vascular 
endothelium. VEGF is among factors that contributes for 
pathogenicity of severe COVID-19 (Teuwen et al. 2020), 
by recruiting circulating neutrophils, macrophages, mast 
cells, and dendritic cells. These cells as well as vascu-
lar endothelial cells release ROS and proteases besides 
cytokines, adhesive molecules, and chemoattractants 
(monocyte chemo-attractant protein-1, interleukin-1 
β, and chemical cytokine-2). VEGF increases cytokine 
expression and vascular permeability (Shibuya 2011). 
These factors are responsible for progress of the patho-
logical critical–ill status.

Hypoxia, in addition, triggers mitochondrial dysor-
ganization, altering the mitochondrial membrane per-
meability so that ROS generation increases and ATP 
generation is depressed. Post-inflammatory cell damage 
releases its content of ATP into the extracellular matrix 
that increases tissue content of adenosine. Adenosine is 
an anti-inflammatory factor (Rajasundaram 2018). On 
the other hand, hypoxia induced HIF-1α switches metab-
olism to anerobic glycolysis which promotes the accumu-
lation of adenosine in an attempt to combat inflammation 
(Sitkovsky et al. 2014). This might be a protective meas-
ure in the course of the disease.
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Resolving mediators in COVID‑19
Persistence and continuity of the inflammatory response 
is driven by the “cytokine storm,” which is triggered by 
release of the pro‐inflammatory cytokines throughout 
the course of the disease. Other influencing factors are 
oxidation stress, altered lipoprotein structure and func-
tion, hypoxia, and changes in hemoglobin-interacting 
compounds.

Recovery from the disease condition is not a passive 
mechanism that depends just on elimination of these fac-
tors. Rather, it is an active process initiated by what are so-
called specialized pro-resolving mediators (SPMs).These 
are lipid mediators derived from ω3-polyunsturated 
fatty acids linked to phospholipids of plasma membrane 
of macrophages and neutrophils as well as lipoprotein 
phospholipids (Serhan et  al. 2008). There are two series 
of SPMs, E-series derived from eicosapentaenoic acid 
(EPA); resolvins, and D‐series derived from docosahex-
aenoic acid (DHA); protectins and maresins. ω3-Fatty 
acids (EPA and DHA) compete with ω6-polyunsaturated 
fatty acid; arachidonic acid (the precursor of proinflam-
matory mediators) for cyclooxygenase and lipooxygenase 
enzymes, thus inhibiting biosynthesis of prostaglandins, 
leukotrienes, thromboxaneA2, and lipoxins. SPMs poten-
tiate phagocytosis of apoptotic cells and cell debris left 
in the inflammatory process by phagocytic cells (the so-
called “efferocytosis”) (Serhan et  al. 2008). This process 
pivots on recovery from the inflammatory state (El Kebir 
et al. 2012). It has been reported that DHA‐derived pro-
tectin D1, is a suppressor of influenza virus replication 
and regresses its severe symptoms (Morita et  al. 2013). 
Combination of acetyl salicylic acid with EPA and/or 
DHA ameliorate severe respiratory symptoms and coag-
ulopathy features in patients with COVID-19 (Das 2020). 
Obese subjects have SPM deficits. This may be respon-
sible for the worse morbidity of their COVID‐19 course 
owing to lack of these resolution factors (Pal et al. 2020). 
EPA- and DHA-linked HDL improves it antioxidant and 
enzyme functions (Cartolano et al 2022).

Saussurea lappa (costus); phytotherapeutic agent
Saussurea lappa (costus) is a plant well-known about 
2,500 years ago and used traditionally in the Indian and 
Arab systems of medicine. Mostly the essential root oil 
and root powder were used for the medicinal purposes 
(Nikhat and Fazil 2020). Saussurea lappa (SL) has anti-
inflammatory activity as documented by reduction of 
RNA expression of inflammatory cytokines: TNF-α, GM-
CSF and IL1β and metalloprotease-9 activity (Lammari 
et al. 2021). It inhibits protein and mRNA expression of 
interleukin-1b (IL-1b) as well as inhibition of phospho-
rylation of mitogen activated protein kinases (MAPK) 

(Kang et  al. 2004). It suppresses expression of hepatitis 
B surface antigen (HBsAg) in human hepatoma Hep3B 
cells in a dose-dependent manner (Chen et al. 1995) and 
ameliorates chronic hepatitis B (Ansari et al. 2018) sug-
gesting anti-viral activity. Besides, SL components have 
anti-diabetic, and anti-lipidemic activities (Gomaa et  al 
2020) raising the possibility of improving HDL levels and 
functions. It has been reported to be effective in preven-
tion and treatment of COVID-19 by a research group 
in Upper Egypt. Their findings were published in a local 
Periodical by Saif-Al-Islam M, and colleagues (Sohag 
Med J. 2020; 24(3): 6–1).

Targeting therapeutic and preventive potentials 
of HDL
It is essentially important for healthy elderly who poten-
tially have low levels of healthy functioning HDL-ApA1 
to protect them from caching this life-threatening dis-
ease; covid-19. Elderly subjects with chronic Illnesses 
(diabetes mellitus, obesity, chronic CVD, obstructive 
airway diseases, hematological diseases, autoimmune 
diseases), or immune-compromised subjects are also 
candidates of applying preventive measures.

Considering the functions of HDL and its composition 
that is altered during acute-phase response; the oxida-
tive status at a site of inflammation modifies HDL pro-
teins, making them proinflammatory besides loss of its 
anti-oxidant property. The increased association of HDL-
hemoglobin-haptoglobin-hemopexin potentiates these 
changes in addition to inflammatory anemia and increas-
ing hypoxia. HDLs from patients with COVID-19 are 
less protective in endothelial cells stimulated by TNFα. 
In these conditions, HDL inhibition of apoptosis was 
blunted in COVID-19 (Begue et al. 2021).

Reconstituted HDL (rHDL) containing pre-β HDL 
(HDL3) supplementation, could be a preventive and/
or therapeutic target against COVID-19. Difficulties in 
preparation and supply are a limitation to achieve this 
purpose. Some investigators have been used Apo A-I 
mimetic peptide D-4F. D-4F is N-terminal acetylated 
and C-terminal amidated apoA-I mimetic peptide, Ac-
D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2 that is 
synthesized from 18 D-amino acids (Navab et  al. 2005). 
D-4F potentiates the anti-inflammatory function of HDL 
and recover the reverse cholesterol transport (Bloedon 
et  al. 2008). It recovers anti-oxidant function of HDL 
by increasing the PON-1 activity in mice leading to 
decreased plasma levels of oxidized fatty acids (Navab 
et  al. 2004). Many physiological functions of HDL were 
regained in experimental animals by using D-4F peptide 
(Dai et al. 2010; Smythies et al. 2010).

Inclusion of ω3-fatty acids EPA and DHA (as pre-
cursors of resolvins, protectins and maresins), in the 
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therapeutic protocol of COVID-19 may be valuable in 
suppressing the inflammatory process. Their use early 
in the disease is recommended to suppress the inflam-
matory reactions and to eliminate the tissue debris left 
by necrobiosis (Sorokin et  al. 2020). They, in addition, 
enhance viral clearance through interrupting the viral 
enveloped protein formation (Pal et  al. 2020). Arachi-
donic acid being the precursor of pro-inflammatory 
prostanoids; its use is not recommended in this respect.

Conclusions
Apo-A1 mimetic peptide D-4F, ω-3 polyunsaturated 
fatty acids, and the powdered roots and/or extract 
of Saussurea lappa (costus) are suggested means for 
resuming HDL-ApA1 physiological activity aiming 
at protecting elderly and chronically ill patients and 
reducing the morbidity of COVID-19. More investiga-
tions may be recommended for safety and efficacy.
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