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Computational analysis uncovers 
the deleterious SNPs along with the mutational 
spectrum of p53 gene and its differential 
expression pattern in pan‑cancer
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Abstract 

Background:  A variety of accessible data, including those of single-nucleotide polymorphisms (SNPs) on the 
human p53 gene, are made widely available on a global scale. Owing to this, our investigation aimed to deal with the 
detrimental SNPs in the p53 gene by executing various valid computational tools, including—Filter, SIFT, PredictSNP, 
Fathmm, UTRScan, ConSurf, SWISS-MODEL, Amber 16 package, Tm-Adjust, I-Mutant, Task Seek, GEPIA2 after practical 
and basic appraisal, dissolvable openness, atomic progression, analyzing the energy minimization and assessing the 
gene expression pattern.

Results:  Out of the total 581 p53 SNPs, 420 SNPs were found to be missense or non-synonymous, 435 SNPs were in 
the three prime UTR, and 112 SNPs were in the five prime UTR from which 16 non-synonymous SNPs (nsSNPs) were 
predicted to be non-tolerable while PredictSNP package predicted 14. Concentrating on six bioinformatics tools of 
various dimensions, a combined output was generated, where 14 nsSNPs could exert a deleterious effect. We found 
5 missense SNPs in the DNA binding domain’s three crucial amino acid positions, using diverse SNP analyzing tools. 
The underlying discoveries were fortified by microsecond molecular dynamics (MD) simulations, TM-align, I-Mutant, 
and Project HOPE. The ExPASy-PROSITE tools characterized whether the mutations were located in the functional part 
of the protein or not. This study provides a decisive outcome, concluding the accessible SNPs’ information by recog-
nizing the five unfavorable nsSNPs—rs28934573 (S241F), rs11540652 (R248Q), rs121913342 (R248W), rs121913343 
(R273C), and rs28934576 (R273H). By utilizing Heatmapper and GEPIA2, several visualization plots, including heat 
maps, box plots, and survival plots, were produced.

Conclusions:  These plots disclosed differential expression patterns of the p53 gene in humans. The investigation 
focused on recognizing the detrimental nsSNPs, which augmented the danger posed by various oncogenesis in 
patients of different populations, including within the genome-wide studies (GWS).
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Background
Single Nucleotide Polymorphism (SNP) is marked as 
the most prevalent form of genetic mutation in humans. 
About 93% of the human genes include at least a sin-
gle SNP (Chakravarti 2001). SNPs contribute to most 
of the variations among individuals, making each per-
son unique. SNPs can be in the coding, non-coding, and 
intergenic regions between two genes (Carninci et  al. 
2005; Liu et  al. 2006). Although non-coding SNPs are 
phenotypically neutral, nsSNPs can influence phenotype 
by altering protein sequences (Chakravarti 2001; Carn-
inci et  al. 2005; Liu et  al. 2006; Ng and Henikoff 2006). 
Moreover, nsSNPs alter the amino acids in their corre-
sponding protein, which could have a deleterious effect 
on the structure and function (Dryja et  al. 1990; Smith 
et  al. 1994; Singh et  al. 2020). They are associated with 
various human diseases and disorders. Several studies 
confirm the association of nsSNPs with their suscep-
tibility to infection and the progression of autoimmune 
diseases and inflammatory disorders (Dryja et  al. 1990; 
Smith et al. 1994; Singh et al. 2020; Barroso et al. 1999; 
Chasman and Adams 2001; Lander 1996). About 50% 
of the mutations implicated with hereditary genetic dis-
orders are nsSNPs (Kelly and Barr 2014; Radivojac et al. 
2010). As a result, many researchers focus on nsSNPs in 
cancer biology, precisely, cancer-causing genes.

Mutations in the tumor suppressor gene, p53, account 
for ~ 50% of human cancers (Doniger et  al. 2008; Finlay 
et  al. 1989; Baker et  al. 1990; Hamzehloie et  al. 2012; 
Zhang et  al. 2020). p53 is a critical regulator of tissue 
homeostasis (Baugh et  al. 2018; Diller et  al. 1990; Chng 
et  al. 2007), which further binds to stabilize DNA as 
a tetramer, leading to the regulation of genes. Conse-
quently, this helps mediate critical cellular processes, 
including cell-cycle arrest, DNA repair, senescence, and 
apoptosis (Kastenhuber and Lowe 2017; Riley et al. 2008). 
The regular allele of p53 encodes a 53-kD nuclear phos-
phoprotein that plays an important role in controlling 
cell proliferation (Eliyahu et  al. 1989; Ahuja et  al. 1989; 
Takahashi et al. 1989; Bressac et al. 1990; Matsuda et al. 
2005). However, in human tumors, point mutations, rear-
rangements, allelic loss, and deletions are found in the 
p53 gene (Hamosh et al. 2004; Sherry et al. 2001; UniProt 
Consortium 2007). Together with the changes in onco-
genes and tumor suppressor genes, these abnormalities 
consist of a network of mutations that leads to malig-
nancy. Despite the importance of p53, no computational 
studies have been reported that detect the deleterious 

nsSNPs in the p53 gene. Therefore, we carried out an in 
silico analysis of the p53 gene to characterize the delete-
rious mutations in this current investigation. Our study 
encompasses- (1) retrieving SNPs in the p53 gene from 
available databases, (2) allocating deleterious nsSNPs to 
their phenotypic effects based on the sequence and struc-
ture-based homology, and identifying the regulatory nsS-
NPs responsible for altering the patterns of splicing and 
gene expression, (3) predicting the role of the substitu-
tion of the amino acid on the secondary structures based 
on solvent stability and accessibility, and (4) predicting 
the effect of mutations in the domain structures.

Methods
The flowchart expounds on our study’s process of iden-
tifying and characterizing detrimental SNPs in the p53 
gene. The structural and functional consequences have 
been analyzed upon missense mutation (Fig.  1). The 
workflow is given in Fig. 2.

Retrieval of SNP datasets
The human p53 gene was retrieved from web-based data 
sources, such as the Online Mendelian Inheritance in 
Man (OMIM)  (http://​www.​ncbi.​nlm.​nih.​gov/​omim/). 
The SNPs’ information, both protein accession num-
ber and SNP ID of the p53 gene, was retrieved from the 
NCBI dbSNP (Database of Single Nucleotide Polymor-
phism) (Hamosh et  al. 2004), and the protein FASTA 
sequence was retrieved from UniProt (http://​www.​unipr​
ot.​org/) (Sherry et al. 2001).

Analysis of functional consequences of nsSNPs
An online tool known as Sorting Intolerant From Toler-
ant (SIFT) was employed to identify the deleterious non-
synonymous SNPs of the p53 gene (UniProt Consortium 
2007). This program assumes that primary amino acids 
will be conserved in the protein family and that changes 
at particular positions are potentially harmful (Ng and 
Henikoff 2003; fathmm - Analyze Cancer-Associated 
Variants 2018). During mutagenesis studies in humans, 
SIFT can easily differentiate between functionally neutral 
or innocuous and detrimental polymorphisms (UniProt 
Consortium 2007). The SIFT program’s algorithm uses 
SWISSPROT, nr, and TrEMBL databases to find homol-
ogous sequences with a query. The rsIDs (identification 
number) of each SNP of the human p53 gene obtained 
from NCBI were submitted to SIFT as a query for homol-
ogy searching. The SIFT score ≤ 0.05 was set to indicate 

Keywords:  Single-nucleotide polymorphism, nsSNPs, Deleterious, Molecular dynamics, Gene expression analysis, 
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the deleterious effect of a non-synonymous mutation on 
protein function.

Characterization of functional nsSNPs
For characterization of functional nsSNPs, we used Pre-
dictSNP web server (Ashkenazy et al. 2010). It was con-
structed from three independent datasets by eliminating 
all inconsistencies, duplicities, and mutations before 
assessment. The standard dataset comprising over 43,000 
mutations was taken for the impartial assessment of eight 
well-known prediction tools: nsSNPAnalyzer, MAPP, 
PANTHER, PolyPhen-1, PhD-SNP, PolyPhen-2, SIFT, 
and SNAP. The six best-performing tools were shared 
into an accord classifier PredictSNP, resulting in drasti-
cally better prediction implementation and simultaneous 
time returned results for all mutations, therefore corrob-
orating that the unanimity prediction denotes an accu-
rate and vigorous alternative compared to the predictions 
delivered by individual tools (Ashkenazy et al. 2010).

Prediction of cancer‑promoting mutations
Some mutations may have an association with can-
cer. To predict the cancer-associated SNPs of the p53 
gene, we used the Functional Analysis through Hidden 
Markov Models (Fathmm) webserver  (http://​fathmm.​
bioco​mpute.​org.​uk/​cancer.​html). Fathmm allows com-
bining sequence conservation within hidden Markov 
models (HMMs). Fathmm server is a high-throughput 
web server often employed to identify phenotypic, 
molecular, and functional consequences of protein 

variants on coding and non-coding regions. Fathmm 
employs unweighted, sequence/conservation-based, 
and weighted algorithms combined with sequence con-
servation with pathogenicity weights. In the Fathmm 
server, the default prediction threshold is set at − 0.75, 
where a prediction with a score less than this value pre-
dicts that the mutation is considered to be potentially 
associated with cancer. Cancer-promoting mutations 
are detrimental to our bodies. These types of mutations 
play a critical role in cell-cycle regulation, and muta-
tions falling in the conserved region can also depress 
the nature of the domain.

Identification of functional SNPs in conserved regions
Functional amino acids remain conserved throughout 
evolution. Evolutionarily conserved amino acid resi-
dues in the p53 protein were identified by the ConSurf 
web server (http://​consu​rf.​tau.​ac.​il/​2016/​index_​prote​
ins.​php) by using a Bayesian algorithm (conservation 
scores: 1–4 variable, 5–6 intermediate, and 7–9 con-
served) (Bendl et  al. 2014; Pesole et  al. 2002). Protein 
FASTA sequence was submitted, and the conserved 
regions were predicted, shown by means of coloring 
scheme and conservation score of the amino acids. It 
also predicts the functional and structural residues 
of the protein. For further analysis, highly conserved 
amino acids at high-risk nsSNP sites were selected.

Fig. 1  Role of P53 in maintaining genomic integrity

http://fathmm.biocompute.org.uk/cancer.html
http://fathmm.biocompute.org.uk/cancer.html
http://consurf.tau.ac.il/2016/index_proteins.php
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Fig. 2  Flowchart of the method and materials
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Scanning of UTR SNPs
Untranslated regions (UTRs) play vital roles in the post-
transcriptional instruction and regulation of gene expres-
sion, which comprise the modulation of the transport of 
mRNAs out of the nucleus and translation competence, 
subcellular localization, and constancy (EMBL-EBI 2018). 
To find the functional SNPs, we employed UTRScan, a 
web server (Pesole et  al. 2001) for alignment matching. 
UTRScan searches nucleotide (RNA, tRNA, DNA) or 
protein sequences to find UTR motifs and locate motifs 
that distinguish 3′UTR and 5′UTR sequences (in specific 
sequences). The UTRSite Database defines such motifs as 
a compilation of functional sequence arrangements in the 
5′- or 3′-UTR sequences (Grillo et  al. 2010; Zhang et  al. 
2013). If an SNP with a different nucleotide at each UTR 
is found to have dissimilar working patterns, this UTR 
SNP is expected to impact the mRNA stability. To perform 
this, 5′- and 3′-UTR SNPs from NCBI were submitted in 
FASTA format, and the results showed predicted UTRs at 
the specific region.

Identification of a deleterious mutation in the functional 
domain
The functional domain of the product of the p53 gene 
was identified using InterProScan  (http://​www.​ebi.​ac.​
uk/​Inter​ProSc​an/). InterProScan connects diverse pro-
tein signature identification methods from the Inter-
Pro consortium associate databases into one resource. 
A web-based version of InterPro is accessible for aca-
demic and profitable organizations from the EBI. The 
InterProScan tool allows scanning protein sequences 
received in FASTA format for matches against the 
InterPro protein signature databases. After analyz-
ing the deleterious mutation from the SIFT mutation 
among them, it was identified in the functional domain 
of the p53 protein.

Modeling of the mutated protein
The three-dimensional structure (3D) of p53 was 
obtained from the Protein Data Bank (PDB entry 
6XRE), and the missing region was constructed using 
the SWISS-MODEL server (Waterhouse et  al. 2018). 
The p53 model was submitted to molecular dynam-
ics (MD) simulations through 500  ns (ns). The most 
populated conformer through MD simulations was 
employed to construct mutants, and the mutations 
were implemented using PyMOL (Discovery Stu-
dio 2018). MD simulations were carried out using 
the Amber 16 package (DeLano 2002) and the ff14SB 
force field (Case et al. 2005). Systems were inserted in 
a dodecahedral box of 1  nm between the protein and 
the edge of the box using the TIP3P water model and 

neutralized utilizing Cl− and Na+ counter-ions. The 
solvated protein was submitted through energetic mini-
mization using the steepest descent method through 
1000 steps. Following this, the system was equilibrated 
by 1 ns at 300 K, where the solvent was kept to desist, 
but the protein atoms were restrained. MD simulations 
of 500 ns were performed for the wild-type protein and 
100 ns for all the mutants created from the p53 protein. 
MD simulations were run considering an NPT ensem-
ble, and the time step for the MD simulations was 2 
femtoseconds (fs). The temperature was set at 310  K 
using the V-rescale algorithm (Duan et  al. 2003), and 
the pressure was set at 1 bar using Parrinello-Rahman 
(Duan et  al. 2003). The LINCS algorithm (Pronk et  al. 
2013; Hess et  al. 1998) and the SETTLE algorithm 
(Krieger and Vriend 2015; Miyamoto and Kollman 
1992) constrain all bonds, including hydrogen atoms 
and water molecules. The particle mesh Ewald method 
(Eastman and Pande 2010; Darden et al. 1993) was used 
to treat the long-range electrostatic forces, whereas van 
der Waals forces were treated using a cutoff of 1.2 nm. 
Trajectories were analyzed with the cpptraj module of 
Amber 16 (DeLano 2002).

Energy minimization and RMSD calculation of the protein 
models
Using the TM-align algorithm, most populated conform-
ers obtained through clustering analysis were used to esti-
mate RMSD between wild type and mutants. TM-align 
combines the TM-score rotation matrix and dynamic 
programming (DP) to identify the best structural align-
ment between protein pairs. This server was used for the 
RMSD calculation of the protein structures (Baker 2017). 
YASARA-minimization server was employed to perform 
the energy minimization of the most populated conform-
ers of both wild type and mutants obtained through MD 
simulations. YASARA (Yet Another Scientific Artificial 
Reality Application) is a modeling and simulation soft-
ware with multiple applications. YASARA-minimization 
server uses YASARA force field for energy minimization 
that can optimize the damage of the mutant proteins and 
thus precisely calculates the reliable energy. To perform 
this task, the PDB file of the wild-type and mutant pro-
teins was inserted as input data, and the result was also 
additionally examined (Zhang and Skolnick 2005).

Effect of mutation in protein stability
I- Mutant 3.0 server was employed to predict the altera-
tion in stability upon representative mutations. I-Mutant 
is a high-throughput support vector machine (SVM)-
based tool server. The server can automatically predict 
the alteration in the stability of the structure by examin-
ing the structure of the protein sequence. I-Mutant 3.0 

http://www.ebi.ac.uk/InterProScan/
http://www.ebi.ac.uk/InterProScan/
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can be utilized as a classifier to predict the sign of stabil-
ity with mutations and a regression calculator to predict 
the distinction in Gibbs free energy. The resulting DDG 
value indicates the difference between the Gibbs free 
energy of mutated protein and the wild-type protein in 
kcal/mol (Krieger et al. 2009).

Prediction of structural effects upon mutation
Project HOPE (Project Have your Protein Explained) 
was employed to understand the effect of the amino acid 
substitutions (Capriotti et  al. 2005). HOPE server was 
utilized for molecular dynamics simulation to observe 
the effect of the mutations on the structure of p53. This 
web server performed a BLAST against the PDB, built a 
homology model of the query protein through YASARA 
(if applicable), and collected 3D structure data from 
WHAT IF web services. Subsequently, the sequence from 
the UniProt database was retrieved, and features like 
an active site, motifs, domains, and so forth were also 
shown. Finally, to predict the protein features, Distrib-
uted Annotation System (DAS) servers were utilized to 
exchange annotations on genomic and protein sequences 
(HOPE 2018).

Mutational spectrum analysis
Several analysis techniques, e.g., heat map, differen-
tial analysis, and survival analysis, were performed to 
retrieve the gene expression level of P53 in different types 
of cancer. For mutational spectrum analysis, data regard-
ing mutation type in P53 were retrieved from cBioPor-
tal for Cancer Genomics  (https://​www.​cbiop​ortal.​org/). 
cBioPortal is an open-access resource for exploring large-
scale datasets, where data were from both extensive con-
sortium efforts (e.g., TCGA) and individual laboratories. 
Those data were organized in Microsoft Excel, and the 
heat map was generated in Heatmapper (Venselaar et al. 
2010). The heat map used column Z score to compare the 
expression level among p53 mutation types in specific 
cancers, where + 4 was the highest expression (red), and 
− 4 was the lowest expression (blue).

Differential analysis and survival analysis
We employed GEPIA2 (Gene Expression Profiling Inter-
active Analysis) datasets for differential analysis, inves-
tigating a gene’s differential expression patterns and 
comparing those with TCGA and GTEx data (Babicki 
et  al. 2016). Here, the signature score, generated by 
GEPIA2, was gauged by the mean value of log2 (TPM + 1) 
of each gene of Th-1 like signature gene set, with a cutoff 
of 1 and p value cutoff of 0.01. Data were normalized by 
the overall survival method, with a 95% confidence inter-
val. The group cutoff was selected median with a cutoff 

high of 50% and a cutoff low of 50%. The statistical sig-
nificance level was considered as p value ≤ 0.05.

Results
SNP database from for p53
The polymorphism data are available in several data-
bases. NCBI dbSNP houses extensive data for different 
genes, and NCBI has the largest database that helps ana-
lyze single nucleotide polymorphisms. 581 SNPs have 
been found for cellular tumor antigen p53 (NCBI Refer-
ence Sequence: NP_000537.3). Among them, 420 SNPs 
were found to be missense or non-synonymous. Among 
581, there were 435 SNPs in 3′UTR and 112 in 5′UTR 
regions. Only the missense, 3′ (3 prime), and 5′ (5 prime) 
UTR SNPs have been selected for further analysis.

Prediction of detrimental non‑synonymous SNP
An online tool, SIFT, was employed to analyze an amino 
acid’s conservancy by sequence homology; this helps 
to determine the conservation of a specific position of 
an amino acid in a protein. SIFT aligns paralogous and 
orthologous proteins’ amino acid sequences while deter-
mining the effect of an amino acid replacement, which 
helps to analyze its functional importance and physical 
characteristics. SIFT takes rsIDs as input. Our analysis 
found 16 missense SNPs among 420 to be predicted del-
eterious using the SIFT web server (Table 1).

Table 1  Prediction of deleterious SNP by SIFT tool

SNP Position Amino 
acid 
change

Prediction Score Median

rs11540652 248 R248Q Damaging 0.00 2.11

rs11540654 110 R110L Damaging 0.04 2.13

rs11540654 110 R110P Damaging 0.04 2.13

rs17849781 278 P278A Damaging 0.00 2.11

rs28934571 249 R249S Damaging 0.00 2.11

rs28934573 241 S241F Damaging 0.00 2.11

rs28934574 282 R282W Damaging 0.00 2.14

rs28934576 273 R273H Damaging 0.00 2.11

rs28934577 257 L257Q Damaging 0.00 2.11

rs28934578 175 R175H Damaging 0.00 2.11

rs28934873 133 M133T Damaging 0.00 2.13

rs28934874 151 P151T Damaging 0.02 2.11

rs55832599 267 R267W Damaging 0.00 2.11

rs112431538 285 E285K Damaging 0.01 2.14

rs121913343 273 R273C Damaging 0.00 2.11

rs121913342 248 R248W Damaging 0.00 2.11

https://www.cbioportal.org/
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Analysis of SIFT predicted deleterious SNPs
In SIFT analysis, 16 SNPs were found to be detrimental. 
These 16 SNPs were also analyzed in an online SNP ana-
lyzing tool known as PredictSNP, a package system where 
other SNP analyzing methods have been assembled. Pro-
tein sequences in FASTA formats were used as inputs in 

PredictSNP, and following this, the SIFT result mutation 
was done in the PredictSNP. The impact of the muta-
tion was analyzed by choosing nsSNPAnalyzer, MAPP, 
PANTHER, PolyPhen-1, PhD-SNP, PolyPhen-2, SNAP, 
and SIFT tools. PredictSNP shows the result of differ-
ent SNPs, mentioning which percentage are either char-
acterized as detrimental or neutral; the percentage value 
indicates the confidence of the result. SNPs predicted as 
neutral by more than one tool have been excluded from 
our study (Table 2).

Identification of cancer‑associated SNPs from predicted 
deleterious SNPs
SNPs predicted as deleterious were then analyzed 
using Fathmm to determine whether they were associ-
ated with cancer. Our analysis revealed that every SNP 
predicted as detrimental was also predicted as having 
their association with cancer. In the Fathmm server, the 
default prediction threshold is − 0.75, where a predic-
tion with a score less than this indicates that the muta-
tion is potentially associated with cancer (Table 3). Our 
result finds that the predicted score is much lower than 
the threshold, indicating a much higher potentiality of 
relating these SNPs to cancer (Table 3).

Identification of functionally important SNPs 
in the conserved regions
Some amino acids are crucial for the function of a pro-
tein. Essential amino acids contributing toward spe-
cific functions tend to be evolutionarily conserved. To 
identify the evolutionarily conserved amino acids and 

Table 2  Further analysis of 16 SIFT predicted nsSNPs by PredictSNP (online tool)

SNP Mutation Predict
SNP (%)

MAPP (%) PhD-SNP (%) PolyPhen-1 
(%)

Polyphen-2 
(%)

SIFT (%) SNAP (%) nsSNPAnalyzer 
(%)

PANTHER (%)

rs11540654 R110L 76 72 82 59 47 46 50 63 48

rs11540654 R110P 87 59 88 59 63 46 56 63 57

rs28934873 M133T 51 77 61 67 76 79 50 63 56

rs28934874 P151T 87 48 88 59 55 79 72 63 –

rs28934578 R175H 87 63 88 59 56 79 72 63 –

rs28934573 S241F 87 77 88 74 81 79 89 63 –

rs11540652 R248Q 87 59 88 59 81 53 81 65 –

rs121913342 R248W 87 77 88 74 81 79 85 65 –

rs28934571 R249S 87 77 88 74 81 53 81 63 –

rs28934577 L257Q 87 78 88 74 81 79 72 63 –

rs55832599 R267W 87 77 88 74 65 79 81 63 –

rs121913343 R273C 87 91 88 74 81 79 85 63 –

rs28934576 R273H 87 77 88 59 65 53 62 65 –

rs17849781 P278A 87 77 88 59 81 53 81 63 –

rs28934574 R282W 87 77 88 74 81 79 72 63 –

rs112431538 E285K 87 84 77 74 68 79 62 65 –

Table 3  Cancer-associated SNP where the threshold value 
is − 0.75. Scores having − 0.75 predicted as having their 
association with cancer

SNP Position Substitution Prediction Score

rs11540652 248 R248Q Cancer − 9.67

rs11540654 110 R110L Cancer − 9.06

rs11540654 110 R110P Cancer − 9.05

rs17849781 278 P278A Cancer − 9.85

rs28934571 249 R249S Cancer − 9.67

rs28934573 241 S241F Cancer − 9.61

rs28934574 282 R282W Cancer − 9.73

rs28934576 273 R273H Cancer − 9.71

rs28934577 257 L257Q Cancer − 10.07

rs28934578 175 R175H Cancer − 9.93

rs28934873 133 M133T Cancer − 9.08

rs28934874 151 P151T Cancer − 9.88

rs55832599 267 R267W Cancer − 9.73

rs112431538 285 E285K Cancer − 9.29

rs121913343 273 R273C Cancer − 9.73

rs121913342 248 R248W Cancer − 9.73
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the proteins, we used the online tool ConSurf. ConSurf 
results are tabulated, where conserved amino acids in 
a specific position are shown with CS and color value, 
where the lower the CS and the higher the color value, 
the higher the conservancy (Table 4).

Functional SNPs in UTR identification
3′UTR regions significantly affect gene expression due 
to the defective ribosomal RNA translation or RNA 
half-life. 5′UTR also plays an important role in mRNA 
stabilization. The UTRscan server analyzed 77 3′UTR 

SNPs and 129 5′UTR SNPs of the p53 gene (Table  5). 
The UTRscan server looks for patterns in the UTR 
database for regulatory region motifs and, according 
to the given SNP information, predicts if any matched 
regulatory region is damaged (Tang et al. 2019; Pesole 
and Liuni 1999). UTRscan found 8 UTRsite motif 
matches in the p53 transcript. A total of 141 matches 
were found for 5 motifs.

Prediction of a deleterious mutation in the functional 
domain of p53
InterProScan tool analysis found 3 functional domains 
within the p53 gene. InterProScan takes the FASTA 
format of protein sequences as input and scans for 
matching protein sequences against the InterPro pro-
tein signature databases. InterProScan also predicts the 
function of the residues, provides the consensus amino 
acid for protein function, and determines whether the 
predicted deleterious mutation SNP is necessary for a 
function or not. We can authenticate our prediction if 

Table 4  Summary of amino acids (conservation profile) in that 
corresponds to region with high-risk nsSNPs. CS: conservation 
score, color (6–9 = conserved, 5 = average and 1–4 = variable); 
(s): predicted structural site; (f ): predicted functional site

Residue 
position

Amino acid CS Color B/E function

110 R 1.057 1 E S

133 M − 1.019 9 B S

151 P − 0.801 8 E F

175 R − 0.989 9 E F

241 S − 1.162 9 E F

248 R − -1.070 9 E F

249 R − 0.990 9 E F

257 L − 0.951 9 B S

267 R − 0.944 9 E F

273 R − 1.073 9 E F

278 P − 1.030 9 E F

282 R − 1.029 9 E F

285 E − 0.878 8 E F

Table 5  Result shows UTR regions in the p53 transcript from the UTRScan server

Signal name UTR region Match total Position in 
transcript

uORF (Upstream open reading frames) 5′ 44 –

3′ 25 –

GY-BOX 5′ 9 –

3′ 6 –

IRES
(Internal ribosome entry site)

5′ 17 –

3′ 11 –

TOP
(Terminal oligopyrimidine)

5′ 4 –

3′ 9 –

UNR-bs 3′ 7 –

PAS
(Polyadenylation Signal)

3′ 6 –

K-BOX 5′ 2 13–70
1–8

ARE2 3′ 1 409–444

Table 6  Functional domains and their position in p53 protein

Amino acid position in the 
protein

Domain name

5–29 p53 transactivation domain (p53_TAD)

95–288 p53 DNA binding domain

319–357 p53 tetramerization domain
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the predicted deleterious SNP is found in the amino 
acid in the functional domain or functioning residue in 
Table 6. The InterProScan result is tabulated in Table 7.

Comparative modeling of high‑risk Non‑synonymous SNPs 
and MD simulations
We used SWISS-MODEL to get the 3D structure of 
human p53 protein with the predicted SNPs. Initially, the 
stability of the p53 protein was evaluated through one 
microsecond (µs). Analysis of root-mean-squared devia-
tion (RMSD) and radius of gyration (Rg) values consid-
ering backbone atoms showed that p53 protein reached 
constant RMSD (Fig.  3A) and Rg (Fig.  3B) values after 
0.6  µs with an average Rg value of 22.3 ± 0.3. Based on 
this result, clustering analysis was performed over the 
equilibrated simulation time (last 0.4  µs) to obtain the 
most populated conformer. Subsequently, the following 
non-synonymous mutations in the DNA binding domain 
were introduced: S241F, R248Q, R248W, R273H, and 
R273C using PyMOL, to obtain the p53 mutants. Anal-
ysis of the mutants shows that the five mutants reached 
stable RMSD (Fig. 3C) and Rg (Fig. 3D) values between 
20 and 30  ns. Average Rg values showed the following 
values R248Q (23.9 ± 0.2), R273C (22.2 ± 0.2), R273H 
(23.6 ± 0.3), S241F (23.4 ± 0.2), and R248W (21.5 ± 0.2). 
This analysis indicates that R248Q, R273H, and S241F 
systems experience an increment of the hydrodynamic 
radius compared with the wild-type protein, whereas the 
R248W showed a small decrease and R273C maintained 
a similar radius to the wild-type protein.

Root-mean-square fluctuation (RMSF) analysis over 
the equilibrated simulation time (Fig. 3C) showed that the 
regions with the highest mobility are localized between 
the N-terminal region and residue 40 and between resi-
dues 60 and 90. Both these regions correspond to a long 
loop with four small α-helices. The lowest mobility of the 
region between the N-terminal region and residue 40 was 
observed for R248W, which also showed the lowest aver-
age Rg value, suggesting that this region could be respon-
sible for the differences in Rg values.

Clustering analysis was performed over the equili-
brated simulation time (last 70  ns) to obtain the most 
populated conformers. Wild type and mutants were then 

subjected to the YASARA energy minimization server 
for energy minimization. Energy minimization results 
showed decreased free energy for all mutant models 
compared to the wild-type models. The results are shown 
in Table  8. RMSD was calculated using the Tm-align 
tool, where the results were shown to be between 3.0 and 
4.0 Å. These outcomes demonstrate a critical change in 
the protein structure that can alter its natural function.

After mutation of the wild type, it was found that in 
every case, energy after minimization was much higher 
(more positive) for the mutants than the conventional 
wild type, indicating that these mutations destabilize 
the structure of the protein. In case of a mutation in the 
R273H and R273C domains, changing the position of the 
amino acid arginine by histidine or cysteine affects the 
structure of the protein more than the other mutations.

Prediction of protein structural stability
We used the neural network-based routine tool 
I-Mutant 3.0 to study the potential change in protein 
stability upon mutations. This tool took the input of 
the mutated protein models derived from the PHYRE-2 
server in PDB format. I-Mutant 3.0 creates results tak-
ing the help of the ProTherm database. This database 
housed extensive experimental data on free energy 
alterations due to mutations. In addition, this tool pre-
dicts the score of free energy change due to mutations, 
incorporating the energy-based online tool FOLD-X. 
This increases the precision to 93% on one-third of the 
database if the FOLD-X analysis is incorporated with 
I-Mutant (Datta et al. 2015). Models with the following 
mutations: S241F, R248Q, R248W, R273H, and R273C 
were subjected to the server to predict DDG stabil-
ity and RSA calculation. The result shows that every 
mutation decreased the stability of the protein. Muta-
tion R273H was responsible for the lowest DDG value 
(− 1.62  kcal/mol), followed by R273C (− 1.52  kcal/
mol). DDG values for other mutations ranged 
from − 0.51 kcal/mol to − 0.93 kcal/mol; these negative 
DDG values decreased protein stability. The results are 
shown in Table 9.

Analysis of structural effect upon mutation in DNA binding 
domain
The InterProScan tool was used to find the functional 
domain in p53 protein and map the predicted del-
eterious mutations in these domains to speculate the 
changes they might cause in the domain structures. 
Among the predicted 14 detrimental SNPs revealed 
by different SNP analyzer tools, we found 5 missense 
SNPs in the 3 crucial amino acids located in a domain 
responsible for DNA binding. These amino acids are 

Table 7  Functional residues in different functioning sites of p53 
protein

Functioning site Functioning residue with position

Zinc binding site 176C, 179H, 238C, 242C

Dimerization site 177P, 178H, 179H, 181R

DNA binding site 239N, 241S, 248R, 273R, 275C, 276A, 277C, 280R
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Fig. 3  RMSD, Rg, and RMSF analysis of the wild-type and mutant p53 protein. RMSD (A) and Rg (B) analysis of wild-type p53. RMSD (C), Rg (D), and 
RMSF (E) analysis of the wild type and mutants of p53 protein
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essential for the functional activity of the domain. 
Therefore, a mutation in this amino acid position could 
change the protein structure and function. We observe 
the effect on the structure of p53 due to these 5 mis-
sense SNPs using an online tool, HOPE.

In Fig.  4A, the wild-type residue has positively 
charged arginine (R). However, the mutation from argi-
nine to glutamine (Q) at the 248th position makes the 
mutant neutral. In Fig. 4B, serine (S) mutated into phe-
nylalanine (F) at 241th. The mutant residue is bigger 
and more hydrophobic than the wild type. In Fig.  4C, 
arginine (R) mutated into histidine (H) at 273rd posi-
tion, and the mutant residue is more minor and neutral, 
whereas the wild type is positively charged. In Fig. 4D, 
the arginine (R) mutated into cysteine (C) at the 273rd 
position, and the mutant residue is more minor and 
neutral, but the wild type is positively charged. In 
Fig.  4E, arginine (R) mutated into tryptophan (W) at 
the 248th position. The mutant residue is more consid-
erable and neutral, whereas the wild type is more sig-
nificant and positively charged.

Table 8  RMSD (Å) values and total free energy after energy 
minimization of both wild-type and mutated protein models

Mutated models Energy after minimization 
(kj/mol)

RMSD (Å)

Wild Type − 161,568.4

S241F − 157,568.4 4.32

R248Q − 159,349.4 4.27

R248W − 158,244.0 3.74

R273H − 156,160.6 4.68

R273C − 155,923.0 3.60

Table 9  I-mutant predictions for selected nsSNPs

Mutation Sign of DDG DDG value 
prediction Kcal/mol

RI RSA

S241F Decrease − 0.51 7 47.8

R248Q Decrease − 0.93 9 88.6

R248W Decrease − 0.58 5 88.6

R273H Decrease − 1.62 9 20.5

R273C Decrease − 1.52 8 20.5

Fig. 4  Effect in the structure due to mutation A R248Q, B S241F, C R273H, D R273C, E 248W (The protein is colored gray, green indicates the side 
chains of wild type, and mutant residue is shown in red)
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Evaluation of p53 gene mutation level in various cancer
For the mutational spectrum analysis, we investigated 
the expression of six mutation types of p53—missense, 
synonymous, in-frame indel, nonsense, splice site, 
and frameshift in 33 cancer subtypes including ACC 
(Adrenocortical carcinoma), BLCA (bladder urothelial 
carcinoma), BRCA (breast invasive carcinoma), CESC 
(cervical squamous cell carcinoma and endocervi-
cal adenocarcinoma), CHOL (cholangiocarcinoma), 
COAD (colon adenocarcinoma), DLBC (lymphoid neo-
plasm diffuse large B cell lymphoma), ESCA (esopha-
geal carcinoma), GBM (glioblastoma multiforme), 
HNSC (head and neck squamous cell carcinoma), 
KICK (kidney chromophobe), KIRC (kidney renal 
clear cell carcinoma), KIRP (kidney renal papillary cell 
carcinoma), LAML (acute myeloid leukemia), LGG 
(brain lower grade glioma), LIHC (liver hepatocellular 

carcinoma), LUAD (lung adenocarcinoma), LUSC (lung 
squamous cell carcinoma), MESO (mesothelioma), OV 
(ovarian serous cystadenocarcinoma), PAAD (pancre-
atic adenocarcinoma), PCPG (pheochromocytoma and 
paraganglioma), PRAD (prostate adenocarcinoma), 
READ (rectum adenocarcinoma), SARC (sarcoma), 
SKMC (skin cutaneous melanoma), STAD (stomach 
adenocarcinoma), TGCT (testicular germ cell tumors), 
THCA (thyroid carcinoma), THYM (thymoma), UCEC 
(uterine corpus endometrial carcinoma), UCS (uterine 
carcinosarcoma), and UVM (uveal melanoma) (Fig. 5). 
Employing column Z score, significant upregulation 
was represented in red and downregulation in blue. The 
heat map generated the hierarchical clustering of can-
cer subtypes based on their level of similarity. COAD-
READ to ESCA subtypes were assorted in one cluster 
and PRAD to GBMLGG in another, leaving out UCS. 

Fig. 5  Mutational spectrum analysis of 33 cancer subtypes
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GBMLGG and UCS showed different expression pat-
terns despite being in adjacent positions. Significant 
upregulation of missense and frameshift mutation had 
been perceived in the UCS cancer subtype, which sup-
ports the findings that the highest mutation rates in p53 
results in UCS (91.2%), followed by OV (83%) (Bhagwat 
2010).

Differential gene expression analysis and correlation 
of p53 with the survival rate of patients
The investigation was proceeded further by assessing 
the transcription level of p53 in normal and tumor cells, 
where the blue box denoted normal cells, and cancer cells 
were marked by the orange box in the box plot. The result 
showed a significant difference between the expres-
sion level of standard and tumor cells in CHOL, COAD, 
DLBC, GBM, LAML, LGG, LUSC, OV, PAAD, READ, 
STAD, TGCT, THYM, and UCEC subtypes (Fig.  6). In 
these subtypes, the expression of p53 was upregulated 
in tumor cells, implying that p53 mutation has a strong 
association with the occurrence of malignancy. Accord-
ing to Perri et  al., 2016, more than 50% of human car-
cinogenesis arises from the genetic alteration of the p53 
gene (Wang and Sun 2017).

Survival analysis estimates the statistical probability 
of the survival period on-time event for cancer patients. 
The Kaplan–Meier method approximates the sur-
vival probability and visualizes the survival plots (Perri 
et al. 2016; Susmi et al. 2021). We compared the overall 

survival period between the high p53 and low p53 groups 
in different cancer subtypes. Only BRCA, COAD, LGG, 
and PRAD exhibited statistically significant outputs 
among the subtypes. The survival plots disclosed that 
the high expression of P53 was directly correlated with 
the high survival rate in LGG and COAD. Conversely, a 
higher survival rate was associated with low levels of P53 
expression in BRCA and PRAD (Fig. 7).

Discussion
Single Nucleotide Polymorphisms or SNPs are the most 
common nucleic acid variations that result in differ-
ences among humans; SNPs are also responsible for 
many hereditary disorders due to amino acid substitu-
tions. Though approximately 4 million SNPs could be 
found in the database, many SNPs do not cause disease-
causing alterations to protein structure due to amino acid 
degeneracy, which consummately dispels mutations in 
critical functional regions. Genetic studies to differenti-
ate the functionally neutral nature and disease-associ-
ated polymorphism have become a significant concern. 
Henceforth, SNPs that become dispersed throughout the 
genome often become excellent genetic markers. Most 
non-synonymous SNPs associated with the diseases are 
generally found in the exonic regions, but SNPs that 
occur in the intrinsic sites of gene disrupting regulatory 
regions ultimately affect the splicing process. With the 
increasing rate of reported SNPs in different databases, 
extensive population-based study becomes difficult due 

Fig. 6  Differential expression analysis of P53 in CHOL, COAD, DLBC, GBM, LAML, LGG, LUSC, OV, PAAD, READ, STAD, TGCT, THYM, and UCEC
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to the cost, and it remains tough to select a target SNP 
for the investigation while identifying the ones most 
prone to cause diseases. However, an in silico approach 
to detecting detrimental SNPs can be more helpful.

This study analyzed the SNP databases to seek SNPs 
that might be detrimental to p53, following data-driven 
methods. Search for nsSNPs against p53 resulted in 420 
hits. The rsIDs were submitted to SIFT and PolyPhen-2 
servers. SIFT and PolyPhen found 16 nsSNPs as non-
tolerable and most likely damaging (Tables 1, 2). By per-
forming the Fathmm test, we found 14 cancer-associated 

SNPs. ConSurf helps to predict evolutionarily conserved 
amino acids and found 12 SNPs. We found three func-
tional domains and their position in the p53 gene by 
analyzing them through the InterPro scan server. SWISS-
MODEL allowed predicting the 3D structure, which was 
refined through one µs of MD simulations. Clustering 
analysis allowed obtaining the most populated conformer 
over the equilibrated simulation time, including muta-
tions. The 5 non-synonymous SNPs in the DNA bind-
ing domain (S241F, R248Q, R248W, R273H, and R273C) 
were predicted with PyMOL. These mutants were also 

Fig. 7  Survival analysis plot of p53 in LGG, BRCA, COAD, and PRAD expressing the correlation of p53 expression with patients’ survival period 
(months)
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submitted through MD simulations to obtain the most 
populated conformers over the equilibrated simula-
tion time. YASARA energy minimization server showed 
decreased free energy for all the mutant models com-
pared to the wild-type models. The least energy was min-
imized in case of mutation in the 273rd arginine amino 
acid position by histidine and cysteine, which affects the 
protein structure more than the other mutations.

Regarding human cancer, the p53 gene becomes the 
most frequently mutated gene, and the predominance 
of missense mutations is scattered over 200 codons (Fer-
reira and Patino 2016). p53 receives inputs from stress 
and abnormality sensors that function within the cell’s 
intracellular operating systems; if the degree of damage 
to the genome is excessive or if the levels of nucleotide 
pools, growth-promoting signals, glucose, or oxygenation 
are suboptimal, p53 can potentially halt further cell-cycle 
progression until these conditions have been normalized 
(Vogelstein et al. 2000). Alternatively, in the face of alarm 
signals, indicating overwhelming or irreparable dam-
age to such cellular subsystems, p53 can also trigger the 
process of apoptosis. Mutation in p53 results in the loss 
of regulation or over-proliferation (Fridman and Lowe 
2003). Tumor cells evolve various strategies to limit or 
circumvent apoptosis. The most common one includes 
the loss of p53 tumor suppressor function, eliminating 
this critical damage sensor from the apoptosis-inducing 
circuitry (Vogelstein et al. 2000).

The functional domains of p53 have been subjected 
to extensive analysis. We found 5 different SNPs in the 
functional domains of the p53 gene that are deleterious 
by analyzing with different dry-laboratory tools. R248 
and R273 residue have a role in the structural integrity 
of the functional domain (Greenblatt et al. 1994; Hainaut 
et al. 1997). The tetrameric p53 protein (which is a dimer 
of a dimer) binds to four repeats of a consensus DNA 
sequence. S241 connects with the phosphate backbone 
in the major groove (Greenblatt et al. 1994). Amino acid 
substitution in the sequence of the functional domain 
may lead to alterations of the protein structures (Cho 
et al. 1994).

Mutations of the p53 gene cause diverse types of can-
cer in humans. The research found that 70% of mutations 
occurred in the p53 gene in lung cancer-affected patients. 
45%, 60%, 20%, 10–30%, 60%, 40%, 10%, 30%, 60%, and 
60% of mutations found in p53 gene, respectively, in 
stomach, colon, liver, prostate, head/neck, esophagus, 
leukocytes, lymphocytes, ovary, and bladder cancer-
affected patients (Walker and Levine 1996).

p53 was allowed to go through extensive gene expres-
sion analysis. Utilizing Heatmapper, the heat map was 
engendered to assess the expression level of different 
mutations of p53 in 33 cancer subtypes. GEPIA2 was 

employed for differential analysis and survival analysis. 
Differential analysis revealed a substantial upregula-
tion of p53 in the tumor cells in CHOL, COAD, DLBC, 
GBM, LAML, LGG, LUSC, OV, PAAD, READ, STAD, 
TGCT, THYM, and UCEC. Most P53 mutations lead 
to oncogenic progression (Wang and Sun 2017; IARC 
TP53 Database 2018). Additionally, survival analysis esti-
mated the interconnection of the survival period with 
the gene expression. In the case of LGG and COAD, the 
expression level is positively interrelated with survival 
probability, whereas BRCA and PRAD demonstrate a 
negative correlation of survival period with the gene 
expression. This study revealed that despite some correct 
assumptions, web-based tools need to be more precise in 
detecting deleterious SNPs, and population-based stud-
ies are necessary to identify and further test the predicted 
SNPs in different populations.

Conclusions
In this study, different SNP analyzing tools have been 
employed to analyze the available data from the NCBI 
dbSNP database for the tumor suppressor gene p53. 
The predicted deleterious SNPs were evaluated for their 
potentially detrimental effects on protein function and 
stability. Five SNPs were predicted to be deleterious—
rs28934573 (S241F), rs11540652 (R248Q), rs121913342 
(R248W), rs121913343 (R273C), and rs28934576 
(R273H); they have the highest probability to make  p53 
functional  by changing their structure  and functional 
residues involved in the active site formation. Hence-
forth, it is very likely that there are unreported nsSNPs 
that increase disease predisposition by altering protein 
function or structure. The findings of this study may help 
in the early diagnosis of the detrimental SNPs that have 
the probability of increasing the risk of different types of 
cancers. Individuals diagnosed with the above nsSNPs 
can take precautions to avoid other risk factors associ-
ated with cancer development as they are susceptible to 
cancer due to these nsSNPs in p53, a significant tumor 
suppressor gene. However, population-based studies and 
wet-laboratory experiments are beyond our scope for 
verifying the current study’s findings. Therefore, exten-
sive clinical studies are required to characterize the vastly 
available SNP data.

Abbreviation
SNPs: Single-nucleotide polymorphisms.

Acknowledgements
Not applicable.

Author contributions
SA, MS, and MKH conceptualized the study. SA, MS, MKH, and MB developed 
the methodology of the study. SA, MS, MB, NAF, MKH, and FH validated and 
scrutinized the study. SA, MS, MB, SIM, MKH, and FH investigated the study. 



Page 16 of 17Alam et al. Bulletin of the National Research Centre          (2022) 46:191 

SA, MS, MB, and SIM wrote the original draft. SA, NAF, MKH, and FH critically 
reviewed and edited the manuscript. All authors have read and agreed to the 
current version of the manuscript.

Funding
No funding from any public, private, or non-profit research agency was 
received for this study.

Availability of data materials
Dataset used in this study will be available as per request (mailing to the cor-
responding author).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors report no competing interests. The authors alone are responsible 
for the content and writing of this article.

Author details
1 Department of Biochemistry and Molecular Biology, University of Dhaka, 
Dhaka 1000, Bangladesh. 2 Department of Mathematics and Natural Sciences, 
BRAC University, Dhaka 1212, Bangladesh. 3 Laboratorio de Diseño y Desarrollo 
de Nuevos Fármacos E Innovación Biotecnológica de La Escuela Superior de 
Medicina, Instituto Politécnico Nacional, Mexico City, Mexico. 4 Department 
of Mathematics and Natural Sciences, Biotechnology Program, School of Data 
and Sciences, BRAC University, Dhaka, Bangladesh. 5 Department of Biologi-
cal Sciences, St John’s University, Queens, NY 11439, USA. 6 Department 
of Biochemistry and Molecular Biology, Tejgaon College, National University 
of Bangladesh, Gazipur 1704, Bangladesh. 7 Department of Public Health, 
North South University, Bashundhara, Dhaka 1229, Bangladesh. 

Received: 23 March 2022   Accepted: 5 June 2022

References
Ahuja H, Bar-Eli M, Advani SH et al (1989) Alterations in the p53 gene and the 

clonal evolution of the blast crisis of chronic myelocytic leukemia. Proc 
Natl Acad Sci USA 86:6783–6787

Ashkenazy H, Erez E, Martz E et al (2010) ConSurf 2010: calculating evolution-
ary conservation in sequence and structure of proteins and nucleic acids. 
Nucleic Acids Res 38:W529–W533. https://​doi.​org/​10.​1093/​nar/​gkq399

Babicki S, Arndt D, Marcu A et al (2016) Heatmapper: web-enabled heat map-
ping for all. Nucleic Acids Res 44:W147–W153. https://​doi.​org/​10.​1093/​
NAR/​GKW419

Baker SJ, Markowitz S, Fearon ER et al (1990) Suppression of human colorectal 
carcinoma cell growth by wild-type p53. Science 249:912–915

Baker T (2017) Molecular computer simulations of graphene oxide intercalated 
with methanol: swelling properties and interlayer structure.

Barroso I, Gurnell M, Crowley VEF et al (1999) Dominant negative mutations in 
human PPARγ associated with severe insulin resistance, diabetes mellitus 
and hypertension. Nature 402:880–883. https://​doi.​org/​10.​1038/​47254

Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS (2018) Why are there 
hotspot mutations in the TP53 gene in human cancers? Cell Death Differ 
25(1):154–160. https://​doi.​org/​10.​1038/​cdd.​2017.​180

Bendl J, Stourac J, Salanda O et al (2014) PredictSNP: robust and accurate 
consensus classifier for prediction of disease-related mutations. PLoS 
Comput Biol 10:e1003440. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10034​40

Bhagwat M (2010) Searching NCBI’s dbSNP database. Curr Protoc Bioinform 
Chap. https://​doi.​org/​10.​1002/​04712​50953.​BI011​9S32

Bressac B, Galvin KM, Liang TJ et al (1990) Abnormal structure and expression 
of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci USA 
87:1973–1977

Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes 
upon mutation from the protein sequence or structure. Nucleic Acids Res 
33:W306. https://​doi.​org/​10.​1093/​NAR/​GKI375

Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape 
of the mammalian genome. Science (80-) 309:1559–1563. https://​doi.​
org/​10.​1126/​SCIEN​CE.​11120​14

Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simula-
tion programs. J Comput Chem 26:1668–1688. https://​doi.​org/​10.​1002/​
JCC.​20290

Chakravarti A (2001) Single nucleotide polymorphisms to a future of genetic 
medicine. Nature 409:822–823. https://​doi.​org/​10.​1038/​35057​281

Chasman D, Adams RM (2001) Predicting the functional consequences of 
non-synonymous single nucleotide polymorphisms: structure-based 
assessment of amino acid variation11Edited by F. Cohen J Mol Biol 
307:683–706. https://​doi.​org/​10.​1006/​jmbi.​2001.​4510

Chng WJ, Price-Troska T, Gonzalez-Paz N, Van Wier S, Jacobus S, Blood E, 
Henderson K, Oken M, Van Ness B, Greipp P, Rajkumar SV (2007) Clinical 
significance of TP53 mutation in myeloma. Leukemia 21(3):582–584. 
https://​doi.​org/​10.​1038/​sj.​leu.​24045​24

Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor 
suppressor-DNA complex: understanding tumorigenic mutations. Sci 
265:346–355. https://​doi.​org/​10.​1126/​SCIEN​CE.​80231​57

Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N·log(N) method 
for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://​
doi.​org/​10.​1063/1.​464397

Datta A, Mazumder M, Hasan H, Chowdhury AS, Hasan M (2015) Functional 
and structural consequences of damaging single nucleotide polymor-
phisms in human prostate cancer predisposition gene RNASEL. Biomed 
Res Int 8:2015. https://​doi.​org/​10.​1155/​2015/​271458

DeLano WL (2002) The PyMOL molecular graphics system. https://​www.​scirp.​
org/​(S(vtj3f​a45qm​1ean4​5vvff​cz55))/​refer​ence/​Refer​ences​Papers.​aspx?​
Refer​enceID=​19589​92. Accessed 20 Sep 2020

Diller L, Kassel J, Nelson CE et al (1990) p53 functions as a cell cycle control 
protein in osteosarcomas. Mol Cell Biol 10:5772–5781

Discovery Studio 4.0 - Updates. http://​accel​rys.​com/​resou​rce-​center/​downl​
oads/​updat​es/​disco​very-​studio/​dstud​io40/​latest.​html. Accessed 21 May 
2018

Doniger SW, Kim HS, Swain D et al (2008) A catalog of neutral and deleterious 
polymorphism in yeast. PLoS Genet 4:e1000183. https://​doi.​org/​10.​1371/​
journ​al.​pgen.​10001​83

Dryja TP, McGee TL, Hahn LB et al (1990) Mutations within the rhodopsin gene 
in patients with autosomal dominant retinitis pigmentosa. N Engl J Med 
323:1302–1307. https://​doi.​org/​10.​1056/​NEJM1​99011​08323​1903

Duan Y, Wu C, Chowdhury S et al (2003) A point-charge force field for molecu-
lar mechanics simulations of proteins based on condensed-phase quan-
tum mechanical calculations. J Comput Chem 24:1999–2012. https://​doi.​
org/​10.​1002/​jcc.​10349

Eastman P, Pande VS (2010) Constant constraint matrix approximation: a 
robust, parallelizable constraint method for molecular simulations. J 
Chem Theory Comput 6(2):434–437. https://​doi.​org/​10.​1021/​ct900​463w

Eliyahu D, Michalovitz D, Eliyahu S et al (1989) Wild-type p53 can inhibit onco-
gene-mediated focus formation. Proc Natl Acad Sci U S A 86:8763–8767

fathmm - Analyze Cancer-Associated Variants. http://​fathmm.​bioco​mpute.​org.​
uk/​cancer.​html. Accessed 21 May 2018

Ferreira JC, Patino CM (2016) What is survival analysis, and when should I use 
it? J Bras Pneumol 42:77. https://​doi.​org/​10.​1590/​S1806-​37562​01600​
00000​13

Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a 
suppressor of transformation. Cell 57:1083–1093

Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–
9040. https://​doi.​org/​10.​1038/​sj.​onc.​12071​16

Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 
tumor suppressor gene: clues to cancer etiology and molecular patho-
genesis - PubMed. Cancer Res 54:4855–4878

Grillo G, Turi A, Licciulli F et al (2010) UTRdb and UTRsite (RELEASE 2010): a col-
lection of sequences and regulatory motifs of the untranslated regions 
of eukaryotic mRNAs. Nucleic Acids Res 38:D75–D80. https://​doi.​org/​10.​
1093/​nar/​gkp902

Hainaut P, Soussi T, Shomer B et al (1997) Database of p53 gene somatic muta-
tions in human tumors and cell lines: updated compilation and future 
prospects. Nucleic Acids Res 25:151

https://doi.org/10.1093/nar/gkq399
https://doi.org/10.1093/NAR/GKW419
https://doi.org/10.1093/NAR/GKW419
https://doi.org/10.1038/47254
https://doi.org/10.1038/cdd.2017.180
https://doi.org/10.1371/journal.pcbi.1003440
https://doi.org/10.1002/0471250953.BI0119S32
https://doi.org/10.1093/NAR/GKI375
https://doi.org/10.1126/SCIENCE.1112014
https://doi.org/10.1126/SCIENCE.1112014
https://doi.org/10.1002/JCC.20290
https://doi.org/10.1002/JCC.20290
https://doi.org/10.1038/35057281
https://doi.org/10.1006/jmbi.2001.4510
https://doi.org/10.1038/sj.leu.2404524
https://doi.org/10.1126/SCIENCE.8023157
https://doi.org/10.1063/1.464397
https://doi.org/10.1063/1.464397
https://doi.org/10.1155/2015/271458
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1958992
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1958992
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1958992
http://accelrys.com/resource-center/downloads/updates/discovery-studio/dstudio40/latest.html
http://accelrys.com/resource-center/downloads/updates/discovery-studio/dstudio40/latest.html
https://doi.org/10.1371/journal.pgen.1000183
https://doi.org/10.1371/journal.pgen.1000183
https://doi.org/10.1056/NEJM199011083231903
https://doi.org/10.1002/jcc.10349
https://doi.org/10.1002/jcc.10349
https://doi.org/10.1021/ct900463w
http://fathmm.biocompute.org.uk/cancer.html
http://fathmm.biocompute.org.uk/cancer.html
https://doi.org/10.1590/S1806-37562016000000013
https://doi.org/10.1590/S1806-37562016000000013
https://doi.org/10.1038/sj.onc.1207116
https://doi.org/10.1093/nar/gkp902
https://doi.org/10.1093/nar/gkp902


Page 17 of 17Alam et al. Bulletin of the National Research Centre          (2022) 46:191 	

Hamosh A, Scott AF, Amberger JS et al (2004) Online Mendelian Inheritance in 
Man (OMIM), a knowledgebase of human genes and genetic disorders. 
Nucleic Acids Res 33:D514–D517. https://​doi.​org/​10.​1093/​nar/​gki033

Hamzehloie T, Mojarrad M, Hasanzadeh Nazarabadi M, Shekouhi S (2012) The 
role of tumor protein 53 mutations in common human cancers and tar-
geting the murine double minute 2–p53 interaction for cancer therapy. 
Iran J Med Sci 37(1):3

Hess B, Bekker H, Berendsen HJC, GEM. Fraaije J (1998) LINCS: a linear con-
straint solver for molecular simulations - Hess – 1997. J Comput Chem 18

HOPE (2018) http://​www.​cmbi.​ru.​nl/​hope/​input/. Accessed 21 May 2018
IARC TP53 Database. http://​p53.​iarc.​fr/. Accessed 4 Oct 2018
Kastenhuber ER, Lowe SW (2017) Putting p53 in context. Cell 170(6):1062–

1078. https://​doi.​org/​10.​1016/j.​cell.​2017.​08.​028
Kelly JN, Barr SD (2014) In silico analysis of functional single nucleotide poly-

morphisms in the human TRIM22 gene. PLoS ONE 9(7):e101436. https://​
doi.​org/​10.​1371/​journ​al.​pone.​01014​36

Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. 
J Comput Chem 36(13):996–1007. https://​doi.​org/​10.​1002/​jcc.​23899

Krieger E, Joo K, Lee J et al (2009) Improving physical realism, stereochemistry, 
and side-chain accuracy in homology modeling: Four approaches that 
performed well in CASP8. Proteins Struct Funct Bioinforma 77:114–122. 
https://​doi.​org/​10.​1002/​prot.​22570

Lander ES (1996) The new genomics: global views of biology. Science 
274:536–539

Liu J, Gough J, Rost B (2006) Distinguishing protein-coding from non-coding 
RNAs through support vector machines. PLoS Genet 2:e29. https://​doi.​
org/​10.​1371/​journ​al.​pgen.​00200​29

Matsuda T, Tomita M, Uchihara J-N et al (2005) Human T cell leukemia virus 
Type I-infected patients with Hashimoto’s thyroiditis and Graves’ disease. 
J Clin Endocrinol Metab 90:5704–5710. https://​doi.​org/​10.​1210/​jc.​
2005-​0679

Miyamoto S, Kollman PA (1992) Settle: An analytical version of the SHAKE and 
RATTLE algorithm for rigid water models. J Comput Chem 13:952–962. 
https://​doi.​org/​10.​1002/​JCC.​54013​0805

Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect 
protein function. Nucleic Acids Res 31:3812–3814

Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on 
protein function. Annu Rev Genomics Hum Genet 7:61–80. https://​doi.​
org/​10.​1146/​annur​ev.​genom.7.​080505.​115630

Perri F, Pisconti S, Vittoria Scarpati GD (2016) P53 mutations and cancer: a tight 
linkage. Ann Transl Med. https://​doi.​org/​10.​21037/​ATM.​2016.​12.​40

Pesole G, Liuni S (1999) Internet resources for the functional analysis of 5’ 
and 3’ untranslated regions of eukaryotic mRNAs. Trends Genet 15:378. 
https://​doi.​org/​10.​1016/​S0168-​9525(99)​01795-3

Pesole G, Mignone F, Gissi C et al (2001) Structural and functional features of 
eukaryotic mRNA untranslated regions. Gene 276:73–81

Pesole G, Liuni S, Grillo G et al (2002) UTRdb and UTRsite: specialized databases 
of sequences and functional elements of 5’ and 3’ untranslated regions of 
eukaryotic mRNAs. Update 2002. Nucleic Acids Res 30:335–340

Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and 
highly parallel open source molecular simulation toolkit. Bioinformatics 
29:845–854. https://​doi.​org/​10.​1093/​BIOIN​FORMA​TICS/​BTT055

Radivojac P, Vacic V, Haynes C et al (2010) Identification, analysis, and predic-
tion of protein ubiquitination sites. Proteins Struct Funct Bioinform 
78:365–380. https://​doi.​org/​10.​1002/​prot.​22555

Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human 
p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412. https://​doi.​org/​10.​
1038/​nrm23​95

Sequence search using InterProScan < InterPro < EMBL-EBI. http://​www.​ebi.​ac.​
uk/​inter​pro/​search/​seque​nce-​search. Accessed 21 May 2018

Sherry ST, Ward MH, Kholodov M et al (2001) dbSNP: the NCBI database of 
genetic variation. Nucleic Acids Res 29:308–311

Singh A, Thakur M, Singh SK, Sharma LK, Chandra K (2020) Exploring the effect 
of nsSNPs in human YPEL3 gene in cellular senescence. Sci Rep 10(1):1. 
https://​doi.​org/​10.​1038/​s41598-​020-​72333-8

Smith EP, Boyd J, Frank GR et al (1994) Estrogen resistance caused by a muta-
tion in the estrogen-receptor gene in a man. N Engl J Med 331:1056–
1061. https://​doi.​org/​10.​1056/​NEJM1​99410​20331​1604

Susmi TF, Rahman A, Khan MMR et al (2021) Prognostic and clinicopathologi-
cal insights of phosphodiesterase 9A gene as novel biomarker in human 

colorectal cancer. BMC Cancer 21:1–18. https://​doi.​org/​10.​1186/​S12885-​
021-​08332-3/​FIGUR​ES/​12

Takahashi T, Nau MM, Chiba I et al (1989) p53: a frequent target for genetic 
abnormalities in lung cancer. Science 246:491–494

Tang Z, Kang B, Li C et al (2019) GEPIA2: an enhanced web server for large-
scale expression profiling and interactive analysis. Nucleic Acids Res 
47:W556. https://​doi.​org/​10.​1093/​NAR/​GKZ430

UniProt Consortium (2007) The Universal Protein Resource (UniProt). Nucleic 
Acids Res 35:D193–D197. https://​doi.​org/​10.​1093/​nar/​gkl929

Venselaar H, te Beek TA, Kuipers RK et al (2010) Protein structure analysis of 
mutations causing inheritable diseases. An e-Science approach with life 
scientist friendly interfaces. BMC Bioinform 11:548. https://​doi.​org/​10.​
1186/​1471-​2105-​11-​548

Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 
408:307–310. https://​doi.​org/​10.​1038/​35042​675

Walker KK, Levine AJ (1996) Identification of a novel p53 functional domain 
that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 
93:15335–15340. https://​doi.​org/​10.​1073/​PNAS.​93.​26.​15335

Wang X, Sun Q (2017) TP53 mutations, expression and interaction networks 
in human cancers. Oncotarget 8:624. https://​doi.​org/​10.​18632/​ONCOT​
ARGET.​13483

Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm 
based on the TM-score. Nucleic Acids Res 33:2302–2309. https://​doi.​org/​
10.​1093/​nar/​gki524

Zhang D, Chen C-F, Zhao B-B et al (2013) A novel antibody humanization 
method based on epitopes scanning and molecular dynamics simula-
tion. PLoS ONE 8:e80636. https://​doi.​org/​10.​1371/​journ​al.​pone.​00806​36

Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z (2020) Gain-of-function mutant 
p53 in cancer progression and therapy. J Mol Cell Biol 12(9):674–687. 
https://​doi.​org/​10.​1093/​jmcb/​mjaa0​40

Zhu G, Pan C, Bei JX et al (2020) Mutant p53 in cancer progression and 
targeted therapies. Front Oncol 10:2418. https://​doi.​org/​10.​3389/​FONC.​
2020.​595187/​BIBTEX

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/nar/gki033
http://www.cmbi.ru.nl/hope/input/
http://p53.iarc.fr/
https://doi.org/10.1016/j.cell.2017.08.028
https://doi.org/10.1371/journal.pone.0101436
https://doi.org/10.1371/journal.pone.0101436
https://doi.org/10.1002/jcc.23899
https://doi.org/10.1002/prot.22570
https://doi.org/10.1371/journal.pgen.0020029
https://doi.org/10.1371/journal.pgen.0020029
https://doi.org/10.1210/jc.2005-0679
https://doi.org/10.1210/jc.2005-0679
https://doi.org/10.1002/JCC.540130805
https://doi.org/10.1146/annurev.genom.7.080505.115630
https://doi.org/10.1146/annurev.genom.7.080505.115630
https://doi.org/10.21037/ATM.2016.12.40
https://doi.org/10.1016/S0168-9525(99)01795-3
https://doi.org/10.1093/BIOINFORMATICS/BTT055
https://doi.org/10.1002/prot.22555
https://doi.org/10.1038/nrm2395
https://doi.org/10.1038/nrm2395
http://www.ebi.ac.uk/interpro/search/sequence-search
http://www.ebi.ac.uk/interpro/search/sequence-search
https://doi.org/10.1038/s41598-020-72333-8
https://doi.org/10.1056/NEJM199410203311604
https://doi.org/10.1186/S12885-021-08332-3/FIGURES/12
https://doi.org/10.1186/S12885-021-08332-3/FIGURES/12
https://doi.org/10.1093/NAR/GKZ430
https://doi.org/10.1093/nar/gkl929
https://doi.org/10.1186/1471-2105-11-548
https://doi.org/10.1186/1471-2105-11-548
https://doi.org/10.1038/35042675
https://doi.org/10.1073/PNAS.93.26.15335
https://doi.org/10.18632/ONCOTARGET.13483
https://doi.org/10.18632/ONCOTARGET.13483
https://doi.org/10.1093/nar/gki524
https://doi.org/10.1093/nar/gki524
https://doi.org/10.1371/journal.pone.0080636
https://doi.org/10.1093/jmcb/mjaa040
https://doi.org/10.3389/FONC.2020.595187/BIBTEX
https://doi.org/10.3389/FONC.2020.595187/BIBTEX

	Computational analysis uncovers the deleterious SNPs along with the mutational spectrum of p53 gene and its differential expression pattern in pan-cancer
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Retrieval of SNP datasets
	Analysis of functional consequences of nsSNPs
	Characterization of functional nsSNPs
	Prediction of cancer-promoting mutations
	Identification of functional SNPs in conserved regions
	Scanning of UTR SNPs
	Identification of a deleterious mutation in the functional domain
	Modeling of the mutated protein
	Energy minimization and RMSD calculation of the protein models
	Effect of mutation in protein stability
	Prediction of structural effects upon mutation
	Mutational spectrum analysis
	Differential analysis and survival analysis

	Results
	SNP database from for p53
	Prediction of detrimental non-synonymous SNP
	Analysis of SIFT predicted deleterious SNPs
	Identification of cancer-associated SNPs from predicted deleterious SNPs
	Identification of functionally important SNPs in the conserved regions
	Functional SNPs in UTR identification
	Prediction of a deleterious mutation in the functional domain of p53
	Comparative modeling of high-risk Non-synonymous SNPs and MD simulations
	Prediction of protein structural stability
	Analysis of structural effect upon mutation in DNA binding domain
	Evaluation of p53 gene mutation level in various cancer
	Differential gene expression analysis and correlation of p53 with the survival rate of patients

	Discussion
	Conclusions
	Acknowledgements
	References


