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Abstract 

Background:  The world today is faced with the humongous challenge of removing the numerous plastic wastes 
in our environment. Efforts in the removal or remediation of these materials from the ecosystem are presently at the 
budding stage. Some researchers have shown that certain bacterial enzymes have the ability to hydrolyze and further 
degrade these plastic compounds. In this study, the ability of PET hydrolase enzyme to hydrolyze polyvinylchloride, 
polyurethane, polymethyl methacrylate, polyamide, polyethylene terephthalate, and polycarbonate was investigated 
in silico.

Results:  The binding affinity values of polycarbonate (− 5.7 kcal/mol) and polyethylene terephthalate (− 5.2 kcal/
mol) on the enzyme targets were the highest and showed that they are likely to be efficiently hydrolyzed by this bac-
teria in the environment. The binding affinity of polyvinylchloride was the lowest (− 2.2 kcal/mol) and suggested that 
it would show resistance to hydrolysis by the PET hydrolase enzyme.

Conclusion:  The findings from this study showed that PET hydrolase enzyme from Ideonella sakaiensis could be effi-
cient in the hydrolysis of plastic wastes composed mainly of polycarbonate and polyethylene terephthalate.
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Background
The global production of plastic is on continual growth 
and rose from 335 million tons in 2016 to 348 million 
tons in 2017 (Verla et al. 2019a, b; Poerio et al. 2019). The 
rapid growth has been accompanied by the high waste 
plastic generation because of specific properties includ-
ing their light-weight, versatility and durability (Jambeck 
et  al. 2015; Diaz-Torres et  al. 2017). These properties 
also present the key problem with plastic waste being 
persistent in the environment and so many countries 
have tried to reverse the situation by banning single-use 
and encouraged recycling of waste plastics (Verla et  al. 

2019a, b). Current data suggests that 10% of plastic pro-
duced annually ended up as waste in the environment 
(Enyoh et al. 2020). Some plastic materials found in the 
environment include polypropylene (PP), polycarbon-
ate (PC), expanded polystyrene (PSE), polyarylsulfone 
(PSU), polystyrene (PS), thermoplastic elastomers (TPE), 
polyethylene terephthalate (PET), polymethyl meth-
acrylate (PMMA), polyvinyl chloride (PVC), polypro-
pylene (PP), polyamides (PA), fluoropolymer, etc. These 
are thermoplastics, which are easily reversed by altering 
temperature while types such as epoxy resins, vinyl ester, 
polyurethane (PUR), urea–formaldehyde, acrylic resin, 
silicone, melamine resin, phenolic resins, phenol–formal-
dehyde and unsaturated polyester are thermosets and not 
easily reversed (Verla et al. 2019a, b).

The negative effects of having plastic in the environ-
ment are numerous. Plastic pollution can lead to the 
death of big sea animals such as whales, turtles, etc. from 
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ingestion or entanglement (Enyoh et  al. 2020). Plastics 
often distribute organisms to areas that are less biologi-
cally diverse and not their original habitat as they are 
transported by wind and ocean current. Furthermore, 
plastics can also lead to climate change due to emissions 
from production, transportation, incineration. A recent 
report showed that about 850 million tons of carbon 
dioxide is emitted to the atmosphere from plastic pro-
duction and incineration (CIEL 2019a, b). This estimate is 
expected to reach 1.34, 56 and 260 billion tons of green-
house gas emissions by 2030, 2050 and 2100 respectively, 
exceeding 14–50% of the global carbon budget in 2050 
and 2100 (CIEL 2019a, b). On land, they pose threat to 
plants by blocking sunlight and thus restricting their 
growth (Enyoh et al. 2019a, b). Chlorinated plastics may 
release harmful chemicals into the surrounding soil, 
which could then flow into groundwater or other nearby 
bodies of water and into the world’s environment (Aggar-
wal 2019), which can cause serious harm to the water-
drinking animals.

Plastics could be broken down by the action of light 
or mechanically into smaller size particles called micro 
(MPs: 0.1 µm to  < 5 mm) and nano (NP: < 100 nm) plas-
tics and pose further threat to the ecosystems. The pri-
mary risks of MPs and NPs to the ecosystems are their 
ubiquity and bioavailability for ingestion, entangle-
ment or inhalation (Enyoh et al. 2020). There are multi-
ple reports of their ingestion by marine, soil organisms 
and plants from polluted soils (Li et al. 2019). They have 
been found in table salts and potable water (Karami et al. 
2017). The health implications of MPs and NPs may be 
physical by blocking the digestive system due to particle 
localization, a chemical with associated toxic chemical 
effects and biological involving toxins (Wright and Kelly 
2017; Li et al. 2018; Wang et al. 2020). At the cellular and 
molecular levels, some studies have demonstrated that 
MPs or NPs can induce reactive oxygen species (ROS) 
as well as inhibiting the efflux pump and mitochondria 
depolarization (Claudia et  al. 2020; Wang et  al. 2020). 
Furthermore, they can also affect several signaling path-
ways, causing fibrosis, autophagy, and even DNA muta-
tions (Wang et  al. 2020). Therefore, there is a need to 
reduce the amount or quantity of plastic waste emitted to 
safeguard environmental and human health.

River-dominated coastal environments receive 52% of 
plastic pollution delivered by rivers and streams (Har-
ris et  al. 2021). A wide range of pollutants including 
organic such polyaromatic hydrocarbons, polychlorin-
ated biphenyls, dichlorodiphenyltrichloroethanes, anti-
biotics, dyes, oil etc. and inorganic pollutants such as 
heavy and radioactive metals can be adsorbed by plastic 
waste in the marine environment (Narciso-Ortiz et  al. 
2020; Li et al. 2018; Abd-Aziz et al. 2019). The adsorption 

of pollutants by plastics make them vectors for pollut-
ants over long distances within the marine environment 
(Verla et al. 2019a, b; Zhang et al. 2020) and in the atmos-
phere (Enyoh et al. 2019a, b) conferring double danger to 
humans and animals from exposure. Studies have shown 
that the release of treated effluent from Wastewater 
Treatment Plants (WWTPs) contributed to the majority 
of MPs found in the water bodies (Arimi 2018; Sabbah 
et  al. 2019; Freeman et  al. 2020). According to Sabbah 
et al. (2019) and Freeman et al. (2020), there is high vari-
ation in MPs concentration obtained per litre (0.005–91 
MP particles L−1 and 0–447 MP particles L−1) in final 
effluents from different WWTPs around the world. This 
has led to strict regulations and standards by most envi-
ronmental regulatory bodies regarding the discharge of 
effluent from wastewater treatment plants into the envi-
ronment (Visvanathan et  al. 2000; Arimi 2018; Sabbah 
et  al. 2019; Cuartucci 2020; Paredes et  al. 2021). Thus, 
there is need for improving the existing technologies or 
the use of advance technology that is capable of removing 
MPs of different sizes, shapes, polymer and densities from 
the influent and effluent at all stages of wastewater treat-
ment to meet the effluent discharge and reuse standards 
(Arimi 2018; Cuartucci 2020; and Rathilal 2020). There is 
currently no restriction in any regulation worldwide and 
neither is there any technique that is standardized for the 
elimination of MPs (Shen et al. 2020). However, there are 
several methods such as dissolved air flotation, electro-
coagulation, metal-based coagulation, membrane bio-
logical reactor, rapid sand filter, inorganic–organic hybrid 
silica gels, reverse osmosis etc. that have been applied in 
many studies. Recent development in the membrane bio-
reactor technique involves the use of bacteria to degrade 
the plastic. Dawson et  al. (2018) demonstrated that the 
exposure of MPs to Antartic Krill (Euphasiasuperba) was 
able to reduce MPs from 31.5 to less than 1 µm. Poerio 
et  al. (2019) in their review explained that the isolation 
of a novel bacterium (Ideonella sakaiensis) was able to 
efficiently convert PET in the less dangerous monomers 
(terephthalic acid and ethylene glycol).

Ideonella sakaiensis is a gram-negative, aerobic, and 
rod-shaped bacteria that grow optimally at pH 7–7.5 and 
a temperature of 30–37 °C (Yoshida et al. 2016). Recently, 
the bacterial strain I. sakaiensis 201-F6 was discovered 
and shown to grow on low-crystallinity PET films (Palm 
et al. 2019). The bacteria cells hold fast to the PET sur-
face and utilize an emitted PET hydrolase, or PETase, to 
reduce the PET into mono(2-hydroxyethyl)terephthalic 
corrosive (MHET), a heterodimer made out of tereph-
thalic acid (TPA) and ethylene glycol. The I. sakaiensis 
PETase works by hydrolyzing the ester bonds present in 
PET with high particularity. The subsequent MHET is 
then reduced into its two monomeric constituents by a 
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lipid-moored MHET hydrolase chemical, or MHETase, 
on the cell’s external membrane. Ethylene glycol is 
promptly taken up and utilized by I. sakaiensis and 
numerous other bacteria (Pearce and Heydeman 1980). 
Terephthalic acid, a more obstinate compound, is 
brought into the I. sakaiensis cell through the TPA carrier 
protein. Once in the cell, the sweet-smelling TPA particle 
is oxidized by TPA-1,2-dioxygenase and 1,2-dihydroxy-
3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase 
into an intermediate of catechol. The catechol ring is then 
divided by PCA 3,4-dioxygenase before the compound is 
incorporated into other metabolic pathways (for example 
TCA cycle). Thus, both particles obtained from the PET 
are utilized by the cell to create energy and to construct 
vital biomolecules. In the long run, the acclimatized car-
bon might be mineralized to carbon dioxide and deliv-
ered into the atmosphere (Yoshida et al. 2016).

Natural enzymes have been shown to have the ability 
to catalyze the hydrolysis of microplastics as an environ-
mentally friendly alternative to chemical recycling meth-
ods (Wei et al. 2014; Wei and Zimmermann 2017). These 
enzymes occur in several saprotrophic organisms, includ-
ing fungi (Dimarogona et  al. 2015) and bacteria (Fecker 
et al. 2018), and often inhabit environments enriched in 
plant-based organic matter or plastic debris which when 
required can be used as a main carbon source for cell 
growth activities (Yoshida et  al. 2016). The degradation 
of MPs by bacteria is made possible by the production 
of these enzymes which reduce the plastics to simpler 
compounds. In this study, in silico analysis of the bind-
ing affinity of some MP compounds on PET hydrolase 
enzyme of I. sakaiensis was performed. The selectivity 
of the MPs by the enzyme was evaluated from the bind-
ing free energy values of the compounds. The data from 
this study would significantly advance the current under-
standing of the action of PET hydrolase enzyme on the 
selected MPs.

Methods
Identification and preparation of ligands
Microplastic compounds were downloaded from the 
PubChem database and used for the study. Their 3D 
structure-data files (SDF) were downloaded, and used for 
the docking analysis.

Identification and preparation of enzyme target
The enzyme PET hydrolase of I. sakaiensis (PDB ID: 
6ANE) with resolution 2.02 Å was identified from litera-
ture and used as a target in this study. The enzyme was 
retrieved from the Protein Data Bank (PDB) and con-
sisted of three chains, A, B, and C. Chain A of the pro-
tein was used for the docking studies in other to improve 
the accuracy of the ligand binding (Sasikala and Meena 

2016). The interfering crystallographic water mol-
ecules and minimization of the protein was done using 
UCSF Chimera 1.14 (Pettersen et  al. 2004; Duru et  al. 
2020,2021a). The active sites on the enzyme were identi-
fied using Biovia Discovery studio 4.5 (BIOVIA 2020).

Docking studies
The multiple ligand docking of the microplastic com-
pounds on the enzyme targets was done with Autodock 
Vina in PyRx software version 0.8 (Tsao et al. 2020; Duru 
and Duru 2020; Duru et al. 2021b). Blind docking of the 
microplastic compounds at the enzyme cavities was per-
formed to give the ligands unhindered access to interact 
with sites where they had minimum energy. The center 
grid box was set to the dimension center x: −  22.083, 
center y: − 18.658, center z: − 22.040, and size x: 48.492, 
size y: 55.549, size z: 52.328. The results in terms of bind-
ing free energy (ΔG) for each compound were obtained.

Analysis of protein–ligand interactions
Hydrogen bonding and other hydrophobic interactions 
between the enzyme-ligand complex of the compounds 
was visualized using Biovia Discovery studio 4.5.

Results
The binding affinity of the microplastic compounds on 
the PET hydrolase enzyme of this bacterium is shown in 
Table 1.

The binding positions of the microplastic compounds 
relative to the active sites on I. sakaiensis are shown in 
Fig.  1 and the interactions of the compounds with the 
amino acid residues on the enzyme target are shown in 
Table 2.

Table 1  Binding affinity of microplastic compounds on the 
enzyme target of I. sakaiensis 

Compound PubChem 
CID

Structure ΔG Energy 
(Kcal/mol)

Polyamide 36070 –4.4

Polyvinyl chloride 6338 –2.2

Polycarbonate 6623 –5.7

Polyethylene 
terephthalate 

18721140 –5.2

Polymethyl 
methacrylate

6658 –3.8

Polyurethane 12254 –3.5
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Fig. 1  Binding of microplastic compounds at different sites on I. sakaiensis 
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Table 2  Interactions of microplastic compounds with protein residues on I. sakaiensis enzyme

Polyvinyl chloride TYR60; SER133; MET134; TRP158; 
ILE181; ALA182

Polycarbonate PHE28; THR29; VAL30; SER31; 
ARG32; PRO33; GLN106; LEU110; 
SER115; SER116; PRO117

Polyethylene terephthalate TYR60; THR61; ALA62; TPR132; 
SER133; MET134; TRP158; ILE181; 
ALA182; HIS210

Polymethyl methacrylate PRO44; ASN46; ALA47; GLY48; 
GLY49; GLY120; LYS121

Polyurethane PRO44; THR45; ASN46; ALA47; 
GLY49; THR50; VAL51; GLY120; 
LYS121

Compound Protein–ligand interactions Interacting amino-acid residues

Polyamide TYR60; MET134; TRP158; ILE181
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Discussions
Enzymes are biocatalysts which participate in a reaction, 
act on a particular substrate, and accelerate the process of 
conversion of that substrate into a valuable product. The 
possibility of degradation of plastic that pollutes our envi-
ronment by microorganisms lead to an increased interest 
towards the basic mechanism by which microorganism 
are able to degrade this very tough polymer. The chain A 
of I. sakaiensis (Fig. 2) had three active sites which were 
labeled as site 1, site 2, and site 3. The binding free energy 
of the compounds increased in the order polyvinylchlo-
ride < polyurethane < polymethyl methacrylate < polyam-
ide < polyethylene terephthalate < polycarbonate.

Polycarbonates (PC) are thermoplastic polymers that 
contain the carbonate group in their chemical structure. 
They are strong and tough, and some grades are opti-
cally transparent. They are easily worked, molded, and 
thermoformed, which make them to find many applica-
tions like in the production of water dispenser bottles, 
laboratory safety goggles, compact discs, etc. At slightly 
high temperature and humidity, they can be hydrolyzed 
to bis-phenol A (BPA), a compound that is currently on 
the list of potential environmental hazardous chemicals 
(Mazhandu et al. 2020). The binding free energy of poly-
carbonate on the PET hydrolase enzyme was the highest 
with value −  5.7  kcal/mol and showed that its hydroly-
sis by the bacterial enzyme was the most energy efficient 
of all the studied microplastic compounds. The binding 

of the compound occurred in active site 2 of the enzyme 
and was the only compound that interacted with an 
active site on the enzyme.

Polyethylene terephthalate (PET) is a thermoplastic 
polymer resin of the polyester family, commonly used in 
fibres for clothing, to manufacture bottles for water and 
soft drinks, as well as packaging material used for selling 
fruits, hardware etc. About 18% of the world’s polymer 
production is made up of PET and it is the fourth most 
produced polymer after polyethylene, polypropylene, and 
polyvinyl chloride (Ji 2013). When PET is dumped in the 
environment after use, it discolours after sometime, fol-
lowed by chain scission resulting to reduced molecular 
weight and deposition in the environment (Tournier et al. 
2020). The binding free energy of the compound on the 
enzyme was − 5.2 kcal/mol, and the second highest of all 
the studied compounds. Its interaction with the enzyme 
occurred at an allosteric site close to active site 3.

Polyamides (PA) are proteins which occur naturally as 
wool and silk. Synthetic polyamides can occur as sodium 
poly(aspartate), nylons, and aramids, which are used in 
textiles, carpets, sportswear, and in automotive indus-
try due to their high strength and durability (Machado 
et al. 2019). The transportation industry consumes about 
35% of all manufactured polyamides. These plastics are 
deposited in the environment in large amounts around 
automobile junk yards where many condemned vehi-
cles are allowed to degrade naturally. The binding free 
energy of the compound on the enzyme was − 4.4 kcal/
mol which is significantly lower than the values for poly-
carbonate and polyethylene terephthalate. The binding 
of the compound occurred at an allosteric site close to 
active site 3 and similar to the binding position of poly-
ethylene terephthalate as both interacted with TYR60, 
MET134, TRP158, and ILE181 residues.

Polymethyl methacrylate (PMMA) also known as 
acrylic is a transparent thermoplastic often used in sheet 
form as a light weight or shatter-resistant substitute to 
glass. It is an economical alternative to polycarbonate 
when transparency, tensile strength, impact strength, 
chemical and heat resistance are required. The bind-
ing free energy of this compound to the enzyme was 
−  3.8  kcal/mol and its binding position was close to 
active site 1.

Polyurethane (PUR) is a thermosetting polymer com-
posed of organic units joined by urethane links. They are 
used in the manufacture of rigid foam insulation panels, 
high-resilience foam seating, hoses, and condoms (Fig-
ovsky et al. 2016). Over time, polyurethane crumbles to 
lower molecular weight forms due to hydrolysis. Its bind-
ing free energy was − 3.5 kcal/mol and occurred close to 
active site 1, in the same binding pocket as polymethyl 
methacrylate. The interacting amino acid residues for 

Fig. 2  PET hydrolase enzyme of I. sakaiensis (Chain A) showing active 
sites
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the two plastics were PRO44, ASN46, ALA47, GLY49, 
GLY120, and LYS121, suggesting that the action of the 
enzyme on the two plastics follow the same mechanism, 
with polymethyl methacrylate having a higher selectivity 
than polyurethane.

Polyvinyl chloride (PVC) is the world’s third-most 
widely produced synthetic plastic polymer. It is used in 
construction for pipes, food-covering sheets, flooring, 
electrical cables, imitation leather, signage,  inflatable 
products, and many others (Wilkes et al. 2005). Its deg-
radation drastically reduces its average molecular weight, 
thereby weakening the material. Weathering degradation 
results in their surface embrittlement yielding micro-
plastics that continue on in the environment. The bind-
ing free energy of this plastic was − 2.2 kcal/mol and the 
lowest of all the studied plastics. The very low affinity of 
this plastic suggested that it cannot be easily degraded in 
the environment by PET hydrolase of I. sakaiensis.

Conclusions
Computation investigation of the hydrolysis potentials of 
some selected microplastic compounds by the chain A 
of PET hydrolase enzyme of I. sakaiensis was performed. 
The binding affinity of polycarbonate was the highest 
with value − 5.7 kcal/mol and occurred at an active site 
in the enzyme. Polyethylene terephthalate and polyamide 
were the next highest with binding affinities − 5.2 kcal/
mol and −  4.4  kcal/mol respectively, and their interac-
tions occurred at the same allosteric site in the enzyme. 
The binding affinity of polyvinyl chloride was the low-
est, with value −  2.2  kcal/mol and indicated that the 
hydrolysis of this plastic by the enzyme could be ineffi-
cient. These findings suggest that the use of PET hydro-
lase enzyme in microplactic hydrolysis would serve well 
in areas such as soil and marine environments where the 
plastic deposits are majorly composed of polycarbonate 
and polyethylene terephthalate.
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