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Abstract

Background: QSAR modelling was performed on thirty-five (35) newly discovered compounds of N-(2-phenoxy)
ethyl imidazo[1,2-a] pyridine-3-carboxamide (IPA) to predict their biological activities against Mycobacterium
tuberculosis (MTB-H37Rv strain) by using some numerical data derived from structural and chemical features
(descriptors) of the compounds.

Results: At first, the structure of the compounds was accurately drawn and optimized using the Spartan 14 software at
DFT level of theory with B3LYP/6-31G** basis set in a vacuum. The diverse chemometric descriptors were computed
from the optimized structures using the PaDEL descriptors software, and the division of the dataset into training and
test sets was done based on Kennard-Stone’s algorithm. Five (5) models were generated from the training set using
genetic function approximation, and model 1 was chosen as the best due to its robust internal and external validation
metrics (R2train = 0.8563, R2adjusted = 0.8185, PRESS = 3.5724, average R

2
m (LOO-train) = 0.6751, Q2

cv = 0.7534, R2pred ¼
0.7543, R2test = 0.6993) which passed the model criteria of acceptability. 6-Bromo-N-(2-(4-bromophenoxy) ethyl)-2-
ethylimidazo[1,2-a] pyridine-3-carboxamide (compound 13) was used as the structural template for the in silico design
due to its high pMIC, and it is within the model’s chemical space.

Conclusion: Based on the information obtained from model 1, six (6) designed compounds with higher anti-
tubercular activity were obtained. Furthermore, the ADME and drug-likeness prediction of the designed
molecules showed good pharmacokinetic properties which indicate the application prospect of these
compounds as novel MTB-H37Rv inhibitors. This research could help the medicinal chemists and pharmaceutical
practitioners in future designing and development of more potent drug candidates.

Keywords: QSAR, Template, Docking, Hydrogen bonding, Genetic algorithm, Multi-linear regression, Model,
Descriptors, Leave-one out

Background
Mycobacterium tuberculosis (MTB) is the bacterium that
causes one of the world’s most deadly respiratory com-
municable diseases called tuberculosis (TB). It was
among the ranked top 10 deadliest diseases caused by a
single infectious agent (above HIV/AIDS) (Zhai et al.

2019). In recent times, the number of persons receiving
life-saving treatment for TB in 2018 has tremendously
increased due to enhanced detection and diagnosis
(Mabhula and Singh 2019). Nigeria is among the top
seven (7) countries that account for 64% of the total bur-
den of tuberculosis worldwide (Ogbuabor and Onwu-
jekwe 2019). The Philippines Department of Health
(DOH) and the World Health Organization (WHO)
jointly called for an all-out-war against tuberculosis (TB)
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in early 2019, because it is regarded as the number one
infectious killer in the country. According to their re-
port, TB claims the lives of over 70 Filipinos every day.
There are also one million Filipinos who have active TB
disease, the third-highest global prevalence rate next to
South Africa and Lesotho (World Health Organization
(WHO) 2019). Similarly, in the global tuberculosis re-
port of WHO (2019), data were reported by 202 coun-
tries and territories that account for more than 99% of
the world’s population and estimated number of TB
cases (World Health Organization (WHO) 2019). The
existence of extensively drug-resistant (XDR) and the
evolution of multidrug-resistant (MDR) TB have
attracted the attention of drug scientists who are in
search of novel anti-tubercular agents with better bioac-
tivities (Wang et al. 2019). Researches have shown that
imidazo[1,2-a] pyridine-3-carboxamides (IPA) as an
anti-tubercular candidate is currently in the second
phase of clinical trials, and it was reported to have resili-
ent inhibitory potency or anti-mycobacterial activity
(Wang et al. 2019). It was established that the develop-
ment of more potent compounds with improved bioac-
tivities is very costly and time-consuming (Adeniji et al.
2019). In recent decades, computational chemistry tech-
niques such as computer-aided drug design (CADD)
might save the time of discovering new compounds
which also reduce the cost of synthesis (Abdullahi et al.
n.d.). The quantitative structure-activity relationship
(QSAR) technique provides a mathematical model con-
taining some structural features represented as numer-
ical data which predicts the response properties of the
compound such as activity, toxicity, and so on (Ibrahim
et al. 2018). The ultimate goal of this study was to derive
a robust QSAR model from the structures of some syn-
thesized IPAs compounds which predicts their biological
activities against Mycobacterium tuberculosis (MTB-
H37Rv strain), then utilized the model to design new
compounds with improved activity.

Methods
Dataset collection and optimization
Thirty-five (35) compounds were selected from the newly
discovered and synthesized series of N-(2-phenoxy) ethyl
imidazo[1,2-a] pyridine-3-carboxamide (IPA) as anti-
tubercular agents (Wang et al. 2019). The compound’s re-
sponse against the Mycobacterium tuberculosis (MTB-
H37Rv) was measured as minimum inhibitory concentra-
tion (MIC) which is the lowest concentration affecting a
decrease in fluorescence of greater than 90% relative to
the mean of replicate bacterium-only controls in micro-
gram per milliliter (Wang et al. 2019). These values were
converted into logarithmic MIC values (pMIC) in order to
reduce skewness using Eq. 1

pMIC ¼ − log
MIC μg=mLð Þ
Mw gmol − 1� �� 10 − 3

 !
ð1Þ

where Mw is the molar weight of the compound in
grams per mole and MIC is the minimum inhibitory
concentration of the compound. The IPAs core structure
and the substitution arrangement of the compounds
based on R1, R2, and R3 along with their anti-tubercular
activities were presented in Table 1. The molecular
structure of the IPAs showed above were accurately
drawn using the ChemDraw Ultra level software
V12.0.2, then saved in (*cdx) format. Consequently, the
drawn compounds were exported to the Spartan 14 wave
function program for equilibrium geometry optimization
at ground state with density functional theory calcula-
tions (DFT/B3LYP/6-31G**) in a vacuum, starting from
the initial molecular geometry (Adedirin et al. 2018a). In
principle, geometry optimization is an iterative process
whereby the energy and its first derivative with respect
to all geometrical coordinates are calculated from a
guess geometry, then used the information to project
new geometry (Adedirin et al. 2018a). Thus, the process
continues until the lowest energy or optimized structure
of the molecule is achieved.

Descriptors computation
The thirty-five (35) optimized structures of IPAs from
Spartan 14 were accordingly saved as SD file format,
then exported to the PaDEL descriptors software which
is a product of Pharmaceutical Data Exploration Labora-
tory, created by Yap Chun Wai (Sanyal et al. 2019). This
software allows QSAR users to compute diverse molecu-
lar descriptors and fingerprints of a molecule, including
electrostatic, topological, spatial, autocorrelation, geo-
metrical, constitutional, and thermodynamic descriptors
(Abdullahi et al. 2018).

Data pretreatment and division
PaDEL descriptors output in MS Excel sheet was sub-
jected to a variable reduction method so as to eliminate
constant and highly inter-correlated descriptors based
on user-specified variance and correlation coefficient
cut-off value using Data Pre-treatment GUI 1.2, down-
loaded from Drug Theoretics and Cheminformatics
(DTC) Laboratory. In order to have a rational selection
of training set and test set, the Dataset Division GUI 1.0
software was used by engaging Kennard-Stone’s algo-
rithm division technique (Adeniji et al. 2019).

QSAR Model generation and Validation
Internal validation
The training set compounds were used to build the five
(5) multi-linear regression (MLR) models using Material
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Table 1 Substitution arrangement of the imidazo[1,2-a] pyridine-3-carboxamide (IPA) core and their anti-tubercular properties

aTraining set
bTest set
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Studio Software (Version 8.0) based on genetic function
approximation (GFA) as the variable selection technique
where the dependent variable is the logarithmic values
of the minimum inhibitory concentration (pMIC) and
the independent variables are the descriptors generated
from PaDEL program (Tropsha 2010). Numerous in-
ternal validation metrics of the models were also gener-
ated using MLR-plus validation program such as:

a. Friedman lack-of-fit parameter (LOF) from the ma-
terial studio is defined as

LOF ¼ SEE

j 1 − β aþb�c
j

� �h i2 ð2Þ

where a = number of the terms in the model, b =
scaled smoothing factor, c = corresponds to the entire
number of descriptors in the model, j = total number of
compounds in the training set, and β = a safety factor
with a value of 0.99 which guarantee that the denomin-
ator of the equation can never be equal to zero.

b. Cross-validated parameter (Q2
cv)

Q2cv ¼ 1 -

P
Y − Y pred

� �2
P

Y − Y tr
� �2

" #

¼ 1 −
PRESSP
Y − Ytr
� �2 ¼ ð3Þ

Y tr = average observed concentrations of the train-
ing set, Y = observed concentration, and Ypred =
predicted concentration in the training set,
respectively.

c. Regression coefficient squared (R2train and test)

R2 ¼
P

Y − Y tr
� �

Y pred − Y pred
� �� �� 	2P

Y − Y tr
� �2P

Y pred − Y pred
� �2 ð4Þ

Ypred and Y were predicted and observed training set
concentration (experimental), respectively. Y tr and Y pred

were the average observed (experimental) and predicted
training set response, respectively

d. Coefficient of determination adjusted (R2adjusted)

R2
adj ¼

R2 − p n − 1ð Þ
n − 1 − p

ð5Þ

where p = number of the descriptor in the model, n =
number of compounds in the training set, R2 is the
correlation coefficient, and n − 1 − p is the degree of
freedom.

e. Variance ratio F (Fischer’s value)

F ¼

P
Y pred − Y tr
� �2

pP
Y − Y pred
� �2
n − p − 1

ð6Þ

f. Standard errors of estimate (SEE)

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y − Y pred
� �2
n − p − 1

s
ð7Þ

g. Average modified square of correlation coefficient ð
R
2
m)

R
2
m ¼ r

02
m þ r2m

2
ð8Þ

where r
02
m and r2m represent the reverse and modified

square of correlation coefficient computed according to
the expressions below:

r
02
m ¼ r2 � 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r020

q� �
ð9Þ

r2m ¼ r2 � 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2o

q� �
ð10Þ

where r2 and r2o represent the correlation coefficients of
the plot of observed against predicted training set
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concentrations with and without intercept, respectively.

r
02
0 is a squared correlation coefficient of the plot of pre-
dicted versus observed training set response without
intercept (Veerasamy et al. 2011).

h. Delta modified square of correlation coefficient
(Δr2m)

Δr2m ¼ r2m − r
02
m



 

 ð11Þ

i. Y randomization parameters (CR2
pÞ

CR2
p ¼ R2 � R2 − AverageRrð Þ2� �1=2 ð12Þ

where cR2
p = coefficient of determination, R = correlation

of coefficient, and Rr = average “R” of random models.

External validation
The QSAR models predictive competency were exam-
ined by using independent test set compounds for ex-
ternal validation, and the metrics proposed by
Golbraikh and Tropsha (Tropsha 2010) were also
computed using MLRplusValidation 1.3 program as
follows:

i. Predicted determination coefficient for test set data
R2
Pred expressed as:

R2
pred ¼ 1 −

P
Ypredtest − Y testð Þ2P

Y test − �Y trð Þ2
ð13Þ

where Ypredtest and Ytest are the predicted and observed
concentration of test set compounds respectively. �Y tr ¼
average values of observed concentration of the training
set compounds.

ii. r2 − r
02
0

r2 < 0:1 or r2 − r20
r2 < 0:1 and |r20 − r

02
0 | < 0.3

where r2 = squared correlation coefficient between
the observed and predicted activities with intercept
and r20 = squared correlation coefficient between the
predicted and observed concentration without inter-
cept (Tropsha 2010).
iii. Root mean square error of prediction RMSEP is

defined as:

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
�
X

Y test − Y pred testð Þ
� �2r

ð14Þ

where Y(test) and Ypred(test) are the observed and predicted
test set concentrations, respectively.

iv. The slope of the plot of observed against the
predicted concentration of test set compounds
without intercept (k) and plot of predicted against
the observed concentration of test set compounds
without intercept (k′) are expressed as:

k ¼
P

Y testð Þ � Y pred testð Þ
� �
P

Y pred testð Þ
� �2 ð15Þ

k
0 ¼

P
Y obs testð Þ � Y pred testð Þ
� �
P

Y obs testð Þ
� �2 ð16Þ

However, an acceptable and predictive QSAR model
should have 0.85 < k < 1.15 or 0.85 < k′ < 1.15 (Tropsha
2010)

Applicability domain (AD)
The applicability domain (AD) of the developed model
is defined as the chemical space of compound structure
and response where the model predictions are highly re-
liable (Veerasamy et al. 2011). This technique is used to
detect the presence of response and structural outliers in
the test set and training set compounds, respectively
(Tropsha 2010; Veerasamy et al. 2011; Gramatica 2007).
The leverage approach of evaluating the model’s applic-
ability domain based on models distance measure can be
utilized by plotting a scatter plot of standardized residual
response and leverage values (f) of both training set and
test set (Williams plot). The leverage of compound (f)
can be determined as follows:

f ¼ x xTx
� � − 1

xT ð17Þ
where x is the model’s descriptors matrix, xT represents
the transpose matrix x, and F is the diagonal element of
the hat matrix. In this study, AD of the QSAR model
was evaluated as the square area with vertical boundary
0 < fi < f* and horizontal boundary − 3 < standardized
residual < 3, where fi is leverage values of compounds
and f* is the threshold leverage expressed as:

f � ¼ 3∙ mþ 1ð Þ
p

ð18Þ

where p is the number of molecules in the training set
and m is the number of molecular descriptors used in
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the model. In addition, compounds with higher leverage
scores which are greater than threshold leverage (fi > f*)
tend to have unreliable predictions. However, com-
pounds whose leverage scores are less than the threshold
score (fi < f*) and the standardized residuals are not
greater than ± 3α (3 standard deviation units) are said to
fall within the applicability domain (Adedirin et al.
2018b). Similarly, the Euclidean approach of the applic-
ability domain was also determined based on mean dis-
tance scores computed by the euclidean distance. As
such, the Uzairu plot was determined by plotting the
standardized residuals against normalized mean distance
scores whose ranges are from 0 to 1 (Arthur et al. 2018).
The normalized mean distance score for training set
ranges from 0 which is for least diverse and 1 which is
for the most diverse training set. However, the normal-
ized mean distance scores for test compounds with
scores outside 0 to 1 are regarded as outliers which are
outside the applicability domain (Arthur et al. 2018)

In silico ADME prediction
The designed hypothetical molecules in SMILES format
(Simplified Molecular Input Line Entry System) were
exported to SwissADME online webserver to predict
their absorption, distribution, metabolism, and excretion
(ADME) properties (Pan et al. 2019).

Results
Model 1

pMIC ¼ 0:549089725�AATS1i − 17:773108385�ATSC4c
− 0:002133080�ATSC3vþ 28:701878113�MATS5p
þ4:867881082�GATS6c − 79:733701170

ð19Þ

Model 2

Table 2 Internal validation of the five (5) QSAR models

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Threshold

Friedman (LOF) 0.8669 0.9431 0.9408 0.9376 1.4731 –

R-squared (training set) 0.8563 0.8436 0.8440 0.8446 0.7234 > 0.6

Adjusted R-squared 0.8185 0.8025 0.8030 0.8037 0.6542 > 0.6

Cross validated (Q2
cv) 0.7543 0.7315 0.7423 0.6620 0.5781 > 0.5

Standard error of estimation (SEE) 0.4336 0.4522 0.4517 0.4509 0.5671 –

Variance ratio (F value) 22.648 20.5100 20.5700 20.6538 10.4625 –

PRESS 3.5724 3.8866 3.8775 3.8638 6.4323 > 0.5

Average R
2
m (LOO-train) 0.6751 0.6501 0.6564 0.5721 0.4771 > 0.5

Delta R
2
m (LOO-train) 0.0898 0.0680 0.1184 0.0971 0.0755 –

Computed experimental error 0.1044 0.1044 0.1044 0.1044 0.1 –

RMSEP 1.0657 1.1101 1.1320 0.9995 0.3388 –

Y randomization (CR2pÞ 0.7609 0.7392 0.7468 0.7516 0.6296 > 0.5

Table 3 External validation of the models generated

Parameter Threshold score Model 1 Model 2 Model 3 Model 4 Model 5

R2pred R2pred > 0.5 0.7543 0.7315 0.7423 0.6620 0.5781

R2test R2test > 0.6 0.6993 0.6858 0.6656 0.2745 0.8572

Average R
2
m (test) > 0.5 0.5954 0.6501 0.5530 0.0776 0.7284

ΔR2m (test) < 0.5 0.0244 0.0680 0.1295 0.3724 0.1310

RMSEP – 1.0657 1.1101 1.132 0.9995 0.3388

r20 > 0.5 0.5246 0.4725 0.3121 0.26839 0.8556

r′20 > 0.5 0.6975 0.6825 0.6531 − 0.98759 0.8168

jr20 − r00j jr20 − r00j < 0.3 0.1728 0.2100 0.3409 1.25598 0.0388

k 0.85 < k < 1.15 0.8674 0.8631 0.8671 0.89299 0.98011

k′ 0.85 < k′ < 1.15 1.1419 1.1464 1.1374 1.10363 1.0164

(r2 − r0
2)/r2 (r2 − r0

2)/r2 < 0.1 0.2497 0.3109 0.5308 0.0225 0.0018

(r2 − r′20)/r
2 (r2 − r′20)/r

2 < 0.1 0.0026 0.0047 0.0187 4.59689 0.0471
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pMIC ¼ − 14:169744187�AATS4i
þ 3:834886578�ATSC1v
þ 31:519004609�MATS1c
− 5:211789063�MATS1s
þ0:978391331�SM1Dziþ 12:391321643

ð20Þ
Model 3

pMIC ¼ 0:394587981�AATS6p
− 18:951952930�AATS4i
− 0:002471214�ATSC3c
þ29:595804745�MATS1c
þ5:833470377�MATS2e − 64:610615353

ð21Þ

Model 4

pMIC ¼ 12:944502696�AATS2i
þ 0:713555545�ATSC5s
− 8:188486787�AATSC4p
− 21:641364078�AATSC0s
− 1:244294688�GATS6i þ 9:131873810

ð22Þ
Model 5

pMIC ¼ 0:004102352�ATS4e
þ 14:864143471�AATSC6v
− 19:476022072�AATSC3e
þ13:552890779�MATS7s
þ6:735482707�GATS5c − 19:644784827

ð23Þ

Discussion
QSAR modelling analysis
The logic behind the development of a QSAR model is
to arrive at relevant molecular descriptors that describe
changes in the structural features of a compound. Mo-
lecular descriptors of all compounds in this study were
generated using the PaDEL software as mentioned earl-
ier. A total sum of 625 diverse descriptors was generated
in MS Excel (.csv) format, and the result was exported
to the DTC lab software for the pretreatment and div-
ision. In the data pretreatment process, non-informative
and highly inter-correlated descriptors with correlation
cutoff greater than 0.8 were removed, which reduces
about 24.32% of the total descriptors computed by the
PaDEL program amounting to 152 descriptors. The pre-
treated data were divided into the training set and test
set based on Kennard-Stone permutation, where 70% of
the dataset (25 compounds) are the training set and the
remaining 30% (10 compounds) are the test set. Based
on the genetic function approximation of the descriptors
from the Material Studio software, five (5) multilinear
regression models (Eqs.19, 20, 21, 22 and 23) were

Table 4 Predicted descriptors score values for training set
compounds (model 1)

Compd ID AATS1i ATSC4c ATSC3v MATS5p GATS6c

1 149.9963 − 0.13352 − 1.64514 − 0.15433 1.029607

2 148.4884 − 0.23029 6.144138 − 0.15996 0.884163

5 147.9648 − 0.27276 − 24.5695 − 0.09900 0.811955

6 147.2553 − 0.07817 − 252.455 − 0.07509 1.078683

7 147.294 − 0.04072 − 9.00586 − 0.08356 1.097935

8 147.2553 − 0.19434 − 176.800 − 0.17680 1.010072

9 147.294 − 0.15973 76.07726 − 0.11515 0.947924

10 147.294 − 0.22815 244.1761 − 0.17113 1.093596

11 147.0975 − 0.2269 305.2975 − 0.11890 1.187731

12 148.2123 − 0.25337 387.6355 − 0.17959 1.133481

13 146.8087 − 0.21656 266.3534 − 0.07808 1.208384

14 147.0975 − 0.06399 389.3469 − 0.11307 1.345093

15 147.0975 − 0.18486 474.4300 − 0.14108 1.189836

16 147.0735 − 0.19866 42.37038 − 0.15855 1.311779

17 146.9131 − 0.17938 128.5620 − 0.14213 1.316857

18 146.2623 − 0.21964 227.8612 − 0.15131 1.403673

19 147.9707 − 0.23392 477.2540 − 0.16200 1.138185

20 147.3009 − 0.27328 589.0215 − 0.17161 1.227496

21 146.9255 − 0.20751 406.1632 − 0.10696 1.192311

23 146.2335 − 0.08422 592.4304 − 0.11019 1.438241

27 148.7978 − 0.24243 27.51959 − 0.19152 0.878249

26 148.7978 − 0.24243 27.51959 − 0.19152 0.878249

28 147.3862 − 0.23904 322.5570 − 0.13408 1.178039

33 147.1508 − 0.28249 267.0596 − 0.15284 1.27758

34 147.9338 − 0.26151 96.44824 − 0.16756 1.197733

Table 5 Predicted descriptors score values for external test set
compounds (model 1)

Test set AATS1i ATSC4c ATSC3v MATS5p GATS6c

22 146.2335 − 0.24714 508.3810 − 0.11640 1.283596

24 146.2623 − 0.12293 302.5973 − 0.09294 1.426912

25 147.1679 − 0.19151 140.3329 − 0.15875 1.305459

35 148.1172 − 0.36160 396.3149 − 0.12156 1.016583

29 147.1962 − 0.21965 418.3325 − 0.1166 1.182565

3 147.2940 − 0.20363 − 93.0553 − 0.09084 0.930660

30 148.2413 − 0.24606 486.5724 − 0.18462 1.129426

31 146.5099 − 0.09636 608.9053 − 0.12294 1.425727

32 148.0084 − 0.28975 324.8536 − 0.11810 1.091907
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developed containing five (5) optimum descriptors, and
model 1 was selected as the best model due to its statis-
tical significance of the internal and external validation
metrics. The experimental pMIC reported in the litera-
ture, the predicted pMIC computed by model 1 for all
the 35 anti-tubercular agents, the residual scores, and
the leverage values are shown in Table 1. The residual
score is the difference between the experimental pMIC
and predicted pMIC, and the lower residual score signi-
fies that the developed model has good predictive poten-
tials. The internal validation parameters of the models
generated are presented in Table 2, and model 1 re-
vealed the most significant descriptors. The external val-
idations of the models generated are shown in Table 3,
and model 1 has also passed the external validation met-
rics proposed by Golbraikh and Tropsha including the
error-based judgment of test set compounds (Tropsha
2010). In addition, the validation metrics reported in this
study are in agreement with the metrics from literature
and for the purpose of reproducibility; all the computed
descriptors for both the training and test set in model 1
are reported in Tables 4 and 5, respectively.
Table 6 provides a comprehensive description of the

molecular descriptors in the model 1. Furthermore, the
model showed a positive contribution of MATS5p,
GATS6c, and AATS1i descriptors, while a negative contri-
bution for descriptors ATSC4c and ATSC3v, respectively.
This means that the increment in the magnitude of
MATS5p, GATS6c, and AATS1i descriptors will positively
influence the prediction of pMIC with the negative influ-
ence of ATSC4c and ATSC3v descriptors. However, the
MATS5p descriptor has the highest contribution which is
the most significant descriptor to be considered for

designing new hypothetical compounds. The regression
coefficient squared (R2train = 0.8536 and R2test = 0.7543)
indicates good extrapolation between the training set and
test set. In addition, the models generated are robust due
to the small differences in R2 and Q2

cv (< 0.3).
The regression statistics (Table 7) show P value and t

values of the model which suggests that the coefficients
of the descriptors are statistically significant at a 95%
confidence level. Furthermore, inter-correlated descrip-
tors in model 1 were assessed based on their multi-
collinearity computed as the variation inflation factor
(VIF):

VIF ¼ 1 − R2
� � − 1 ð24Þ

where R2 represents the correlation coefficient. VIF
values corresponding to unity depict no inter-correlation
among each variable; if the VIF scores ranging from 1 to
5, as such the model is acceptable and stable. But if the
VIF scores larger than 10, it means that the model in
question is unstable and unacceptable (Driouche and
Messadi 2019). Table 8 shows the correlation analysis
and VIF values of the descriptors in model 1. The non-
existence of inter-correlation among the descriptors
could be observed between descriptors pair, and the VIF
values of each descriptor do not exceed 4 depicting that
the descriptors in the model are stable. The plot of pre-
dicted pMIC against experimental pMIC values is shown
in Fig. 1. It could be seen that the values of the test sets
are in close agreement with the training set values. The
scatter plot of standardized residual against experimental
pMIC values (Fig. 2) showed a random scattering of data

Table 6 Definition of the descriptors in the QSAR model 1

Descriptor java class Descriptor Description Class Contribution

Autocorrelation descriptor AATS1i Average Broto-Moreau autocorrelation–lag 1/weighted by first ionization potential 2D Positive

Autocorrelation descriptor ATSC4c Centered Broto-Moreau autocorrelation–lag 4/weighted by charges 2D Negative

Autocorrelation descriptor ATSC3v Centered Broto-Moreau autocorrelation–lag 3/weighted by van der Waals volumes 2D Negative

Autocorrelation descriptor MATS5p Moran autocorrelation–lag 5/weighted by polarizabilities 2D Positive

Autocorrelation descriptor GATS6c Geary autocorrelation–lag 6/weighted by charges 2D Positive

Table 7 Regression statistics of the descriptors in model 1

Coefficients Standard error t stat P value Lower 95% Upper 95%

Intercept − 79.7337 26.01779 − 3.06458 0.006379 − 134.19 − 25.2778

AATS1i 0.54909 0.172825 3.177139 0.004962 0.187362 0.910817

ATSC4c − 17.7731 1.752082 − 10.144 4.18E− 09 − 21.4403 − 14.106

ATSC3v − 0.00213 0.000515 − 4.14019 0.000556 − 0.00321 − 0.00105

MATS5p 28.70188 3.637264 7.891062 2.05E− 07 21.089 36.31476

GATS6c 4.867881 0.924533 5.26523 4.41E− 05 2.93281 6.802952
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above and below the baseline of the standardized re-
sidual of zero which signified the non-existence of sys-
tematic error. The Williams plot (Fig. 3) which is the
scatter plot of standardized residuals versus leverages re-
vealed two (2) response outliers (compounds 22 and 25).
This is because their leverage scores are greater than the
threshold (f*) of 0.72 which may be due to the changes
in substitution arrangement of the substituents on the
parent structure. However, the remaining compounds
whose leverage score less than the threshold score are
within the applicability domain of square area of ± 2.5.
Also, the Uzairu plot (Fig. 4) showed that all compounds
fall within the chemical space of the model which con-
firmed its predictive capabilities.

In silico design of new compounds
In order to explore newly hypothetical compounds with
improved anti-tubercular activity, the QSAR model 1
was utilized due to its robust statistical metrics as men-
tioned earlier. In silico screening reduced cost and time
of identifying new hits or lead compounds. This is done
by substitution, deletion, insertions, or addition of sub-
stituents to the scaffold (template) or lead compound.
Compound 13 was chosen as the template due to its
relatively higher pMIC of 7.2704, a low absolute residual

score of 0.5291, and it is within the chemical space or
applicability domain of the model with leverage score of
0.2905. The alteration was successfully done around its
benzene ring and imidazo[1,2-a] pyridine moiety as
shown in Table 9. Subsequently, modifications were
done by inserting different amino-N analogs such as –
N(CH3)2, –NO2, –NHCH3, and sulfur (S) containing
substituents, and –OCH3 which enhances the molecular
polarizability as suggested by the MATS5p descriptor.
On this note, six (6) newly designed compounds were
obtained with excellent predicted MIC value greater
than the experimental MIC value for the template
(7.2704) and also having leverage scores less than the
threshold leverage (0.72) which indicated that the de-
signed compounds are within the chemical space of the
model used for predicting the anti-tubercular response.

In silico ADME prediction of designed compounds
The ADME and drug-likeness analysis are very important
in the drug discovery which helps to make a rational deci-
sion on whether inhibitors can be administered to a bio-
logical system or not (Attique et al. 2019). Furthermore,
the inhibitors with poor ADME properties and high tox-
icity effects on the biological systems are often the major
cause of most failed medicines in the clinical phase of

Table 8 Correlation matrix of the descriptors from the built model 1

Descriptors AATS1i ATSC4c ATSC3v MATS5p GATS6c VIF

AATS1i 1 − 0.20028 − 0.36769 − 0.45573 − 0.69559 2.713443

ATSC4c 1 − 0.15354 0.569614 0.222739 1.832864

ATSC3v 1 − 0.0374 0.58439 1.754699

MATS5p 1 0.172072 2.068945

GATS6c 1 3.130259

Fig. 1 The plot of predicted against experimental pMIC for training and test set
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experiments (Attique et al. 2019). In an effort to improve
the success rate of our QSAR modelling analysis, the
pharmacokinetics properties of the designed compounds
were predicted and assessed using the SwissADME online
software as mentioned earlier, revealing that D1, D2, D3,
D4, D5, and D6 obey Linpinski’s rule of five (5), which in-
dicates the claim prospect of these compounds as novel
MTB inhibitors. The Lipinski’s rule of five (5) is a thumb-
rule for evaluating drug-likeness and to decide if an inhibi-
tor with a certain pharmacological or biological properties
would be an orally active drug in the human body (Daina
et al. 2017). The rule states that a molecule or an inhibitor
can be orally absorbed/active if two (2) or more of these
thresholds, molecular weight (Mw) of molecule ˂ 500,
octanol/water partition coefficient (iLOGP) ≤ 5, number

of hydrogen bond acceptors (nHBA) ≤ 10, number of
hydrogen bond donors (nHBD) ≤ 5, and topological polar
surface area (TPSA ˂ 140 Å2), are not violated (Daina et al.
2017). From the output of some ADME and drug-likeness
properties shown in Table 10, it was observed that only
D1 molecule has zero violation of the Lipinski’s rule, but
D2, D3, D4, D5, and D6 respectfully violated molecular
weight rule.

Conclusion
In this research, chemometric modelling analysis has been
thoroughly used on 35 IPA molecules as potential anti-
tubercular agents. As such, a regression-dependent quan-
titative structure-activity relationship (QSAR) model was
fabricated and defended with multiple statistical

Fig. 2 The scatter plot of standardized residual versus experimental pMIC

Fig. 3 The scatter plot of standardized residuals and leverages (Williams plot)
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parameters according to Golbraikh and Tropsha (Tropsha
2010). The internal and external validation confirmed the
robustness and reliability of the built QSAR model. Mo-
lecular descriptors, MATS5p, GATS6c, AATS1i, ATSC4c,
and ATSC3v, from the results (model 1) are the optimum
descriptors needed to predict the bioactivities of the com-
pounds. Based on the information obtained from model 1,
compound 13 was used as a template for the in silico de-
sign due to its high pMIC, and it is within the chemical

space of the model. Thereafter, six (6) newly designed
compounds with better anti-tubercular activity and good
ADME/drug-likeness properties were obtained. According
to the above work, the designed compounds have shown
substantial prospective therapy against Mycobacterium tu-
berculosis. However, the research encouraged further ex-
perimental validation of the designed compounds against
Mycobacterium tuberculosis through in vivo and in vitro
considerations.

Fig. 4 The scatter plot of standardized residuals and normalized mean distance (Uzairu’s plot)

Table 9 In silico designed IPAs and their predicted anti-tubercular activities

Template
Compd R1 R2 R3 AATS1i ATSC4c ATSC3v MATS5p GATS6c Predicted. p MIC Leverage Score

D1 H NH(CH3) H 148.7519 -0.22086 377.9094 -0.08605 1.04392 7.6757 0.3896

D2 S(CH3)3 NH(CH3) H 147.2452 -0.15159 -603.332 0.053355 0.922259 11.1192 0.3658

D3
NH(CH3) S(CH3)3 H 147.2452 -0.17844 -567.192 -0.02876 0.903645 9.0717 0.2947

D4
OCH3 S(CH3)3 H 146.0809 -0.14582 -676.493 -0.0034 0.883605 8.7161 0.4310

D5
S(CH3)3 H NO2 148.4825 -0.05314 -353.443 -0.13867 1.043886 11.2328 0.6642

D6
NH(CH3) SCH3 H 146.8828 -0.12767 -592.93 0.085611 0.888175 9.6034 0.4324
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Table 10 ADME and drug-likeness parameters of the designed IPA molecules

Properties BS MW nHBA nHBD TPSA iLOGP nLV Bio

D1 0.55 496.2 3 2 67.66 3.85 0

D2 0.55 572.36 3 2 92.96 0 1

D3 0.55 572.36 3 2 92.96 0 1

D4 0.55 573.34 4 1 90.16 0 1

D5 0.55 588.31 5 1 126.75 0 1

D6
0.55 543.28 4 2 105.85 4.44 1

Key: Synthetic Accessibility (SA), Molecular weight (MW), Number of hydrogen bond donor (nHBD), Number of hydrogen 
bond acceptor (nHBA), Topological polar surface area (TPSA),   octanol/water partition coefficient (iLOGP), Number of 
Lipinski violation (nLV)

Key: SA synthetic accessibility, MW molecular weight, nHBD number of hydrogen bond donor, nHBA number of hydrogen bond acceptor, TPSA topological polar
surface area, iLOGP octanol/water partition coefficient, nLV number of Lipinski violation
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