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Abstract

Background: β-glucuronidase enzyme is mostly found in plants and animals. It plays a vital role in detoxification of
reactive metabolites that are interrelated to several illnesses and the growth of colon cancer. It speeds up the
breaking down of β-glucuronosyl-O-bonds. Lack of β-glucuronidase enzyme leads to Sly syndrome in humans, and
overexpression of this enzyme leads to many diseases. Therefore, it becomes necessary to mediate the effect of this
enzyme.

Result: Theoretical investigation via QSAR modeling on 30 indole derivatives was performed to build a model
which could be used to predict the activity of the indole derivatives. QSAR was carried out using multi-linear
regression (MLR) method utilizing genetic function approximation (GFA) to develop the QSAR models. A very high
predictive QSAR model was reported based on its statistical fitness with good internal and external validation
parameters: R2trng = 0.954942, Qcv

2 = 0.925462, R2test = 0.855393, and LOF = 0.042924. Molecular docking on the 30
indole derivatives was also performed to screen and identify the lead compound that would be used as template
for designing new indole compounds. The docking investigation reveals that ligand 10 binds very tight in the
binding pocket of β-glucuronidase enzyme with binding energy of − 9.5 kcal/mol. The ligand (10) was chosen as a
template for designing new β-glucuronidase inhibitors. The four design compounds were found to be better than
the template and the standard drug (D-saccharic acid 1, 4-lactone) with binding energies of − 9.6, − 9.7, − 9.8, and
− 9.9 kcal/mol.

Conclusion: A very high predictive QSAR model with good internal and external validation parameters: R2trng
= 0.954942, Qcv

2 = 0.925462, R2test = 0.855393, and LOF = 0.042924, was built and reported in this study.
Molecular docking investigation reveals that the most potent compound among all the data set was
compound 10 with binding energy of − 9.5 kcal/mole. It bound to the binding pocket of β-glucuronidase
enzyme via hydrophobic, electrostatic, and hydrogen bond, and it was retained as template for designing
new indole compounds. The design compound with serial number ID 4 was identified to have the highest
binding energy of − 9.9 kcal/mole among the designed compounds. It bound to the binding site of the β-
glucuronidase enzyme via halogen, hydrophobic, electrostatic, and hydrogen bond. The design compounds
were discovered to be better than the template used in the design and the standard drug.
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Background
Indole is a heterocyclic aromatic organic compound
consisting of a six-membered benzene ring fused to a
five-membered pyrrole ring (Bouchikhi et al. 2008) with
numerous physiological activities which include anti-
inflammatory, anticancer, antiulcer, antimalarial, antioxi-
dant, antibiotic, antimicrobial, and anticonvulsant (Patil
and Dandagvhal 2016). Indole is broadly disseminated in
the real environment and can be generated by different
species of bacteria (Lee and Lee 2010). The synthesis of
indole has been performed utilizing different starting
materials in the literature of organic chemistry (Chadha
and Silakari 2017).
β-Glucuronidase enzyme is mostly found in plant in the

Escherichia, anaerobic bacteroides, and Clostridia. β-
Glucuronidase enzyme is also found in human fluids,
serum, blood cells, gastric juice, bile, urine, spleen, and it
can also be found in organs like the kidney, liver, lung,
and muscles (Ali et al. 2016; Gloux et al. 2011). It plays a
vital role in detoxification of reactive metabolites that are
interrelated to several illnesses and the growth of colon
cancer (De Moreno de LeBlanc and Perdigón 2005). β-
Glucuronidase enzyme speeds up the breaking down of β-
glucuronosyl-O-bonds. Lack of β-glucuronidase enzyme
leads to Sly syndrome in animals (humans) that is related
to the high level of glycosaminoglycans in cells, and over-
expression of this enzyme leads to many diseases which
include urinary tract infections, active pyelonephritis,
acute renal necrosis, and some pathological conditions in-
cluding epilepsy, cancer, AIDS, renal diseases, neoplasm
of the breast, larynx, bladder, and testes, and inflammation
in joints and hepatic. Therefore, it becomes necessary to
mediate the effect of this enzyme (Salar et al. 2015;
Sharma et al. 2014; Taha et al. 2015).
Ibrahim et al. performed quantitative structure-activity

relationship (QSAR) modeling, molecular docking, and
pharmacokinetic study on 30 N-Arylidenequinoline-3-
carbohydrazides analogs utilizing multi-linear regression
analysis adopting genetic function algorithm method.
Semi empirical method using PM6 basis set was used for
complete geometry optimization of the data set. The
molecular docking study showed that the most active
chemical in the data set was better than the standard β-
glucuronidase inhibitor both in terms of binding scores
and the amino acid residues that interacted with the
drug and β-glucuronidase enzyme. The pharmacokinetic
studies indicated that none of the chemicals violated any
of the condition set by the Lipinski’s Rule of five which
confirm the bioavailability of these chemicals (Ibrahim
et al. 2020a).
Theoretical modeling is a unique area of interest in

computer-aided drug design which provides computa-
tional software and tools that are utilized in the design
and development of novel compounds of medicinal

benefit (Jorgensen 2004). Quantitative structure-activity
relationship (QSAR) is a computational modeling tech-
nique used to study the connection between the experi-
mental activities with different physicochemical properties
associated with the structures of a particular molecule
(Ibrahim et al. 2020b; Ojha Lokendra et al. 2013). Molecu-
lar docking is also a computational modeling technique
used to predict the binding energy of intermolecular com-
plexes based on their 3D structures when one bind to the
other (Abdullahi et al. 2020; Kitchen et al. 2004). This
study is aimed at carrying out QSAR and docking simula-
tion on indole derivatives against β-glucuronidase enzyme
and design new β-glucuronidase inhibitors using
structure-based drug design.

Methods
QSAR modeling methodology
Data retrieving, activity normalization, and structure
drawing
Thirty set of indole derivatives and their corresponding
β-glucuronidase inhibitory activities (IC50) were re-
trieved from the work of (Baharudin et al. 2017) for the
purpose of this study. After the data were collected from
the literature, the inhibitory activities (IC50) of these
compounds were transformed to their corresponding
negative logarithm (pIC50) using Eq. 1. The Chemdraw
software Ultra version 12.0 was employed for drawing of
the structures of all the data set prior to optimization as
shown in Fig. 1 (Ibrahim et al. 2019). Figure 1 shows the
2D general structure of the studied compounds.

pIC50 ¼ log 1=IC50ð Þ ð1Þ

Searching for optimum geometry and descriptor
computations
In order to search the structure of all the data set at glo-
bal minima on potential energy surface (PES), semi-
empirical method using PM6 basis set was used for the
searching of the most optimum geometry of all the data
set on the PES (Amin and Gayen 2016). For the compu-
tation of physicochemical parameters (descriptors),
Pharmaceutical Data Exploration Laboratory (PaDEL)
descriptor tool kit was used to generate all the descrip-
tors used in this research (Yap 2011).

Dataset pretreatment and division
Before dataset division, the data were pre-treated using
data pre-treatment software retrieved from drug theor-
etic and cheminformatics (DTC) laboratory to remove
redundant values (Ambure et al. 2015). Data division
software was further employed to separate the data into
model building set (70%) and validation set (30%) based
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on the Kennard-Stone algorithm also gotten from DTC
laboratory (Kennard and Stone 1969).

Model generation and validation
The model building set was subjected for further ana-
lysis (regression analysis) adopting genetic function algo-
rithm (GFA) method in material studio software to
generate the models.
The equation for the regression analysis is shown in

Eq. (2).

Y ¼ B1Z1 þ B2Z2 þ B3Z3 þ C ð2Þ
where Y is the pIC50, “B’s” are coefficients for the corre-
sponding “Z’s” which are the descriptors, and the last
variable “C” is the regression constant (Ibrahim et al.
2020c).
After model development, the model must be sub-

jected to validation assessments, in order to ascertain
the model’s quality, reliability, and predictive ability. The
most widely used methods for the assessments of QSAR
models were the internal validations, external valida-
tions, and applicability domain. The square correlation
coefficients (R2) of both the training and test sets are
used alongside with (Tropsha 2015) cross-validation co-
efficient (Qcv

2) as the assessment parameters. Cross-
validation is the statistical theory of separating of data
into subsets such that the analysis is first performed on
a single subset, while the other subset(s) are retained for
subsequent use to confirm and validate the first analysis
(Jalali-Heravi and Kyani 2004) and are defined as:

R2test ¼ 1 −

P
Y prd − Y obs
� �

2

P Ç
Y obs − Ymntrng
� �

ð3Þ

Qcv2 ¼ 1 −

P Ç
Y prd − Y obs
� �

P Ç
Y obs − Ymntrng
� �

ð4Þ

where Yprd and Yobs are the predicted and observed ac-
tivity (pIC50) respectively of the validation set, and
Ymntrng is the mean activity value of the model building
set.

The multi-collinearity between the descriptors can be
detected using their variation inflation factors (VIF),
which can be calculated as follows:

VIF ¼ 1

1 − R2 ð5Þ

where R2 is the correlation coefficient of the model. If
VIF is equal to 1, it means there is no inter-correlation
between the descriptors; if it is with the range of 1–5,
the model is acceptable; and if greater than 10, the
model is bad and therefore rejected and must be
rechecked (Beheshti et al. 2016).
In order to confirm the predictability, strength, reli-

ability, and accuracy of the QSAR model developed and
also identify influential and outlier compounds, the
mechanistic space of the model must be exploited (ap-
plicability domain) (Tropsha et al. 2003). In exploiting
the applicability domain of the studied model, leverage
approach was employed and is given as hi:

hi ¼ yi Y T Y
� � − K

yi
T i ¼ K ;…; Pð Þ ð6Þ

where yi is the model building compound matrix I, Y is
n × k descriptor matrix of the model building set com-
pounds, and YT is the transpose matrix Y used to de-
velop the model. As a prediction tool, the thresh-hold
value (h*) which is the limit for Y values and is given as:

h� ¼ 3 q þ 1ð Þ=z ð7Þ

where q is the number of descriptors in the model, and z
is the number of model building compounds. For any
QSAR model to be considered as valid and used, it must
pass both the internal and external validations as recom-
mended by Veerasamy et al. (Veerasamy et al. 2011) (see
Table 1).

Docking methodology
Docking studies was conducted on personal Dell com-
puter system, with Intel ® Core™ i7, 8GB of RAM using
the Auto dock vina of Pyrex virtual screening software,
UCSF Chimera version 1.10.2, and Discovery Studio
Visualizer software.

Fig. 1 The 2D general structure of the studied compounds
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Preparation of ligands and the enzyme β-glucuronidase
Before docking commences, the optimum geometry op-
timized using Spartan’14 was saved as protein data bank
file format (ligand preparations) (Abdulfatai et al. 2017).
Figure 2a presents the 3D structure of the prepared of
the most potent ligand.
3D crystal structure of human β-glucuronidase was re-

trieved from protein data bank (with PDB ID 1bhg). Dis-
covery Studio Visualizer was used to prepare the human
β-glucuronidase enzyme for the docking studies; in the

course of the preparation, chain B, heteroatoms, and co-
ligands were deleted from the dimer structure and saved
as protein data bank file format (Veerasamy et al. 2011).
Figure 2b shows the prepared structure of the human β-
glucuronidase.

Docking simulation
Vina of Pyrex virtual screening software was used to
dock the ligands with human β-glucuronidase (Trott and
Olson 2010). Vina of Pyrex virtual screening software
has a short-coming of separating the receptor and the
ligand after performing the docking. As a result of that,
the UCSF Chimera 1.10.2 software was utilized to re-
build the complexes (ligand-receptor) for further investi-
gation. Discovery Studio Visualizer was used to visualize
the ligand-receptor to show the interactions.

Design
Structure-based drug design also called direct drug de-
sign was used to design new β-glucuronidase inhibitors.

Table 1 The minimum recommended value for QSAR models

Symbol Name Value

R2 Co-efficient of determination ≥ 0.60

P(95%) Confidence interval at 95% confidence level < 0.05

Q2 Cross-validation coefficient ≥ 0.50

R2 − Q2 Difference between R2 and Q2 ≤ 0.30

N(test set) Minimum number of test set ≥05

R2ext. Co-efficient of determination of external and test set ≥ 0.50

Fig. 2 The a 3D structure of the prepared ligand and b 3D structure of the prepared β-glucuronidase
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Table 2 The structures of the designed compounds
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Ligand 10 was chosen as the template as it has the high-
est binding energy of − 9.5 kcal/mol. Structural modifi-
cation was carried out on the C-4 of the indole moiety
by adding halo-substituted phenyl ring. Table 2 shows
the structures of the design compounds

Results
The results of the QSAR modeling is given below:

Model 1
pIC50 = − 0.250653769 * AATS4i − 0.007819193 *

ATSC2m + 0.001714704 * ATSC8v + 0.949838372 *
SpMAD_Dzs − 0.050437194 * SpMax_Dt +
36.58388647.
R2

trng = 0.954942, R2
adj = 0.93885, Qcv

2 = 0.925462,
Ntrng = 20, R2test = 0.855393, Ntest = 10, R2 − Q2 =
0.016092, and LOF = 0.042924.

Table 3 The symbols, description, and classes of the descriptors of the selected model

S/No Symbols Description Class

1 AATS4i Average Broto-Moreau autocorrelation—lag 4/weighted by first ionization potential 2D

2 ATSC2m Centered Broto-Moreau autocorrelation—lag 2/weighted by mass 2D

3 ATSC8v Centered Broto-Moreau autocorrelation—lag 8/weighted by van der Waals volumes 2D

4 SpMAD_Dzs Spectral mean absolute deviation from Barysz matrix/weighted by I-state 2D

5 SpMax_Dt Leading eigenvalue from detour matrix 2D

Fig. 3 a Plot of actual pIC50 against predicted pIC50. b Plot of predicted pIC50 against standardized residuals
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Results of docking studies
The results of the docking studies are shown below in
Table 6 and Fig. 5.

Results of the design compounds
The result of the newly designed β-glucuronidase inhibi-
tors is given in Table 7 and Fig. 6 a and b.

Discussion
QSAR modeling results
Three QSAR models were built; out of these built
models, the best reported model was based on its statis-
tical fitness with R2 value of 0.954942, R2adj value of
0.93885, Qcv

2 value of 0.925462, and the R2
pred value of

0.855393 and also lowest Friedman’s Lack of fit value of
0.042924. On taking the comparison of the statistical pa-
rameters of the reported model with those reported by
Veerasamy et al. (Veerasamy et al. 2011) shown in Table
1, it can be seen clearly that the statistical parameters of
the reported model were all greater than the minimum
recommended values which confirmed the reliability of
the model. Table 3 presents the symbols, descriptions,
and the classes of descriptors that appear in the reported
model. The physicochemical parameters responsible for
the inhibitory activities of the β-glucuronidase inhibitors
were identified to be AATS4i, ATSC2m, ATSC8v,
SpMAD_Dzs and SpMax_Dt. Among these descriptors
as seen in the model, SpMAD_Dzs has the highest coef-
ficient of + 0.949838372 which gave the highest contri-
bution in the model followed by ATSC8v. ATSC2m gave
the lowest contribution in the model as it has the lowest
coefficient of − 0.007819193. Either increase or decrease
in these physicochemical parameters, the inhibitory ac-
tivities of these compounds may increase or decrease.
Predicted activities of both the model building set and

that of the validation set were plotted against the actual
activities (Fig. 3a) in order to affirm the strength of the
reported model. The tool used in this case is R2 value of
both the plot and that of the internal validation. The
strength of the reported model was confirmed by the
corroboration of R2 value of the plot (0.9963) and that of
the internal validation (0.954942).
Every good QSAR model is expected to be free from

systematic error. In order to determine whether the
selected model is free from systematic error, predicted
activity was plotted against standardized residuals (Fig.
3b). The random propagation of the standardized resid-
uals on either side of zero on the plot confirmed that
the reported model is free from systematic error.
The observed activities were seen to have good corre-

lations with the predicted activities. Table 4 represents
the structures, IC50, pIC50, predicted pIC50, and residual
values of the data set. The low residual values observed

Table 4 The structures, pIC50, predicted pIC50, and residuals of
the data set

XTest set
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in the table further confirmed the stability and reliability
of the reported model.
The correlation analysis of descriptors in the model

building set of the reported model in Table 5 shows the
importance of descriptors in the model. From the table,
no correlation exists between the descriptors that appear
in the reported model. The computed VIF values for all
descriptors were obtained to be less than 5 (Table 5) in-
dicating that the reported model was statistically signifi-
cant and the descriptors were orthogonal (no multi-
collinearity between the descriptors).
To confirm the quality of the reported model, it is

subjected to applicability domain as shown in Fig. 4 (the
plot of leverage value calculated for all the data set vs.
standardized residuals or Williams plot), which permit a
graphical identification of both the outliers and influen-
tial compounds in the chosen model (Beheshti et al.
2016). It can be seen from the plot that all the com-
pounds of the model building set and the validation set
were in the square area (mechanistic space). Also, there
were no outliers or influential compounds with standard
residuals > 3d for both model building set and the valid-
ation set. This confirmed the quality of the reported

model which means the model can make good predic-
tion of activities of new compounds.

Results of docking analysis
Docking analysis on the four highly potent indole deriva-
tives and the standard drug was performed to investigate
the nature of interactions between them and their target
receptor (β-glucuronidase). Table 6 gives the results of
the docking analysis. It was seen from the docking re-
sults that ligand 10 being the most active compound has
the highest binding free energy of − 9.5 kcal/mol. The
most active ligand bound to the active site of β-
glucuronidase enzyme by hydrophobic, electrostatic, and
hydrogen bond. Furthermore, it bound via hydrophobic
with TYR29, LEU300, PRO323, MET393, CYS396,
ARG436, and LEU322 amino acid residues and bound
through electrostatic with HIS440 amino acid residue.
More so, it bound via hydrogen bond with TYR29
(1.93247 Å), HIS440 (2.3299 Å), and GLU390 (3.68037
Å) amino acid residues. Looking at ligand 2 having the
docking scores of − 8.8 kcal/mol, it forms hydrophobic
interactions with TYR29, PRO148, LEU322, PRO323,
MET393, ARG436, and ARG436; electrostatic interac-
tions with CYS396; and hydrogen bond interactions with

Table 5 The correlation analysis and VIF of descriptors in the model building set

AATS4i ATSC2m ATSC8v SpMAD_Dzs SpMax_Dt VIF

AATS4i 1 2.434183

ATSC2m − 0.75196 1 2.863191

ATSC8v − 0.0437 0.007012 1 1.153923

SpMAD_Dzs − 0.33534 0.500984 − 0.22408 1 2.171914

SpMax_Dt 0.22882 − 0.12262 0.055053 0.404971 1 1.609751

Fig. 4 Williams plot (h* = 0.9)
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ASN439 (2.20367 Å), HIS440 (2.8928 Å), and LEU28
(3.55365 Å) amino acid residues. The standard drug with
docking score of − 5.7 kcal/mol formed only hydrogen
bond with ASN502 (2.42729 Å) and GLN524 (3.44886
Å) amino acid residues of β-glucuronidase enzyme. On
comparing the most active compound with the standard
drug, it can be seen that the most active compound has
higher docking score than the standard drug which may
be attributed to the kinds of interaction that occur be-
tween the active compound and the binding pocket of β-
glucuronidase. Figure 5 shows the 2D structure of the vi-
sualized ligand-receptor 10.

Result of the design
Four new β-glucuronidase inhibitors were designed and
found to bind tight in the binding pose of β-
glucuronidase enzyme (Table 7). Addition of halo-
substituted phenyl ring increased the binding energy of
the designed compounds. The designed compounds
were found to have higher binding energy than the tem-
plate (− 9.5 kcal/mole) and the standard drug (5.7 kcal/
mole). A design compound with serial number ID 4 was
identified to have the highest binding energy among the
designed compounds. It bound to the binding site of the
β-glucuronidase enzyme via halogen bond with TYR505;

Table 6 The binding energy, amino acid residues, hydrogen bonds, and hydrogen bond distance of reported ligands

Ligand-
receptor

Docking score (kcal/
mol)

Amino acid residues Hydrogen bonds H-bond distance (Å)

10 − 9.5 TYR29, LEU300, PRO323, MET393, CYS396, ARG436, LEU322,
and HIS440

TYR29, HIS440, and
GLU390

1.93247, 2.3299, and
3.68037

09 − 8.8 TYR29, PRO148, LEU322, PRO323, MET393, ARG436, and
CYS396

ASN439, HIS440, and
LEU28

2.20367, 2.8928, and
3.55365

26 − 8.3 PHE51, HIS94, VAL96, VAL96 ARG91, and GLU595 HIS94 and HIS94 2.81338 and 1.90271

14 − 8.6 HIS94, PHE200, and ARG91 HIS94 and HIS94 2.65814 and 2.02248

Fig. 5 The 2D structure of visualized ligand-receptor 10
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electrostatic bond with GLU540, ASP207, GLU451,
GLU451, and GLU451; hydrophobic bonds with
ASP207; and hydrogen bond with GLU540 (1.86751 Å)
and TYR505 (2.71161 Å). Figure 6 a and b show the 2D
structure of the visualized ID 4 and the standard drug
with their target enzyme.

Conclusion
A very high predictive QSAR model with good internal
and external validation parameters: R2trng = 0.954942, Qcv

2

= 0.925462, R2test = 0.855393, and LOF = 0.042924 was
built and reported in this study. The model was further
subjected to applicability domain to confirm the quality of

the model in terms of its predictions and found to make
good prediction. Docking investigation reveals that the
most potent compound among all the data set bound to
the binding pocket of β-glucuronidase enzyme via hydro-
phobic, electrostatic, and hydrogen bond. The design
compound with serial number ID 4 was identified to have
the highest binding energy of − 9.9 kcal/mole among the
designed compounds. It bound in the binding site of the
β-glucuronidase enzyme via halogen, hydrophobic, elec-
trostatic, and hydrogen bond. The design compound was
discovered to be better than the template used in the de-
signing new compound and the standard drug. The aim of
this research as stated was achieved.

Table 7 The binding energy, amino acid residues, hydrogen bonds, and hydrogen bond distance of design compounds and the
standard drug

S/No. Binding energy
(kcal/mol)

Amino acid residues Hydrogen bonds H-bond distance (Å)

ID 1 − 9.6 GLU540, ASP207, GLU451, GLU451, and TYR505 GLU540 and TYR205 1.65184 and 2.08484

ID 2 − 9.8 GLU540, SP207, GLU451, ASN484, GLU451,
ASP207, TYR508, and TYR505

GLU540 and TYR205 1.97506 and 1.81287

ID 3 − 9.7 GLU540, ASP207, GLU451, HIS509, GLU451,
GLU451, and ASP207

GLU540, TYR205, TYR505, TYR205,
TYR508, and ASN484

1.87415, 2.36282, 1.99757, 2.90634,
2.90057, and 3.18503

ID 4 − 9.9 GLU540, ASP207, GLU451, GLU451, GLU451,
and SP207

GLU540 and TYR505 1.86751 and 2.71161

Std
drug

− 5.7 ASN502 and GLN524 2.42729 and 3.44886

Standard drug = D-saccharic acid 1,4-lactone

Fig. 6 The 2D structure of visualized a ID 4-Receptor, b standard drug-receptor

Ibrahim et al. Bulletin of the National Research Centre          (2020) 44:114 Page 10 of 11



Abbreviations
QSAR: Quantitative-structure activity relationship; MLR: Multi-linear regression;
GFA: Genetic function approximation; PDB: Protein data bank; PES: Potential
energy surface; DTC: Drug theoretic and cheminformatics; VIF: Variation
inflation factor; PaDEL: Pharmaceutical Data Exploration Laboratory

Acknowledgements
The authors acknowledge the technical effort of Ahmadu Bello University,
Zaria—Nigeria.

Authors’ contributions
MTI: contributed throughout the research work. SMT: gives directives and
technical advices. ABU: partakes in technical activities. UA: also partakes in
technical activities. The authors read and approved the final manuscript.

Funding
This research did not receive any funding from anybody.

Availability of data and materials
Not applicable to this research

Ethics approval and consent to participate
Not applicable to this research

Consent for publication
Not applicable to this research

Competing interests
All authors have declared that there is no conflict of interest regarding this
submission.

Author details
1Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State,
Nigeria. 2Department of Biological Science, Faculty of Science, Kaduna State
University, Kaduna, Nigeria.

Received: 8 April 2020 Accepted: 29 June 2020

References
Abdulfatai U, Uzairu A, Uba S (2017) Quantitative structure-activity relationship

and molecular docking studies of a series of quinazolinonyl analogues as
inhibitors of gamma amino butyric acid aminotransferase. J Adv Res 8:33–43

Abdullahi M, Uzairu A, Shallangwa GA, Mamza P, Arthur DE, Ibrahim MT (2020)
In-silico modelling studies on some C14-urea-tetrandrine derivatives as
potent anti-cancer agents against prostate (PC3) cell line. J King Saud Univ
Sci 32:770–779

Ali F, Khan KM, Salar U, Iqbal S, Taha M, Ismail NH, Perveen S, Wadood A, Ghufran
M, Ali B (2016) Dihydropyrimidones: as novel class of b-glucuronidase
inhibitors. Bioorg Med Chem 24:3624–3635

Ambure P, Aher RB, Gajewicz A, Puzyn T, Roy K (2015) “NanoBRIDGES” software:
open access tools to perform QSAR and nano-QSAR modeling. Chemom
Intell Lab Syst 147:1–13

Amin SA, Gayen S (2016) Modelling the cytotoxic activity of pyrazolo-triazole
hybrids using descriptors calculated from the open source tool “PaDEL-
descriptor”. J Taibah Univ Sci 10:896–905

Baharudin MS, Taha M, Imran S, Ismail NH, Rahim F, Javid MT, Khan KM, Ali M
(2017) Synthesis of indole analogs as potent β-glucuronidase inhibitors.
Bioorg Chem 72:323–332

Beheshti A, Pourbasheer E, Nekoei M, Vahdani S (2016) QSAR modeling of
antimalarial activity of urea derivatives using genetic algorithm–multiple
linear regressions. J Saudi Chem Soc 20:282–290

Bouchikhi F, Anizon F, Moreau P (2008) Synthesis and antiproliferative activities of
isoindigo and azaisoindigo derivatives. Eur J Med Chem 43:755–762

Chadha N, Silakari O (2017) Indoles as therapeutics of interest in medicinal
chemistry: bird’s eye view. Eur J Med Chem 134:159–184

De Moreno de LeBlanc A, Perdigón G (2005) Reduction of b-glucuronidase and
nitroreductase activity by yoghurt in a murine colon cancer model. Biocell
29:15–24

Gloux K, Berteau O, Béguet F, Leclerc M, Doré J (2011) A metagenomic β-
glucuronidase uncovers a core adaptive function of the human intestinal
microbiome. Proc Natl Acad Sci 108:4539–4546

Ibrahim MT, Uzairu A, Shallangwa GA, Uba S (2019) QSAR modelling and docking
analysis of some thiazole analogues as⍺-glucosidase inhibitors. J Eng Exact
Sci 5:0257–0270

Ibrahim MT, Uzairu A, Shallangwa GA, Uba S (2020c) In-silico activity prediction
and docking studies of some 2, 9-disubstituted 8-phenylthio/phenylsulfinyl-9
h-purine derivatives as anti-proliferative agents. Heliyon 6:e03158

Ibrahim MT, Uzairu A, Uba S, Shallangwa GA (2020b) Computational modeling of
novel quinazoline derivatives as potent epidermal growth factor receptor
inhibitors. Heliyon 6:e03289

Ibrahim MT, Uzairu A, Umar AB, Bello AS, Isyaku Y (2020a) Molecular modelling,
docking and pharmacokinetic studies of N-arylidenequinoline-3-
carbohydrazides analogs as novel β-glucuronidase inhibitors. J Mex Chem
Soc 64

Jalali-Heravi M, Kyani A (2004) Use of computer-assisted methods for the
modeling of the retention time of a variety of volatile organic compounds: a
PCA-MLR-ANN approach. J Chem Inf Comput Sci 44:1328–1335

Jorgensen WL (2004) The many roles of computation in drug discovery. Science
303:1813–1818

Kennard RW, Stone LA (1969) Computer aided design of experiments.
Technometrics 11:137–148

Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual
screening for drug discovery: methods and applications. Nat Rev Drug
Discov 3:935

Lee J-H, Lee J (2010) Indole as an intercellular signal in msicrobial communities.
FEMS Microbiol Rev 34:426–444

Ojha Lokendra K, Rachana S, Rani BM (2013) Modern drug design with
advancement in QSAR: a review. Int J Res Biosci 2:1–12

Patil SS, Dandagvhal KR (2016) Indole - an interesting scaffold in drug discovery.
Int J Res Pharm Chem 6:301–311

Salar U, Miana GA, Khan KM, Naz F, Siddiqui NI, Taha M, Tauseef S, Khan S,
Perveen S (2015) Biology-oriented syntheses (BIOS) of novel santonic-1, 3, 4-
oxadiazole derivatives under microwave-irradiation and their antimicrobial
activity. J Chem Soc Pak 37

Sharma R, Patil S, Maurya P (2014) Drug discovery studies on quinoline-based
derivatives as potential antimalarial agents. SAR QSAR Environ Res 25:189–203

Taha M, Ismail NH, Imran S, Selvaraj M, Rashwan H, Farhanah FU, Rahim F,
Kesavanarayanan KS, Ali M (2015) Synthesis of benzimidazole derivatives as
potent β-glucuronidase inhibitors. Bioorg Chem 61:36–44

Tropsha, A. and Bajorath, J.r., Computational methods for drug discovery and
design. 2015, ACS Publications.

Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest:
validation is the absolute essential for successful application and
interpretation of QSPR models. Mol Inform 22:69–77

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and
multithreading. J Comput Chem 31:455–461

Veerasamy R, Rajak H, Jain A, Sivadasan S, Varghese CP, Agrawal RK (2011)
Validation of QSAR models-strategies and importance. Int J Drug Design Disc
3:511–519

Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular
descriptors and fingerprints. J Comput Chem 32:1466–1474

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ibrahim et al. Bulletin of the National Research Centre          (2020) 44:114 Page 11 of 11


	Abstract
	Background
	Result
	Conclusion

	Background
	Methods
	QSAR modeling methodology
	Data retrieving, activity normalization, and structure drawing

	Searching for optimum geometry and descriptor computations
	Dataset pretreatment and division
	Model generation and validation
	Docking methodology
	Preparation of ligands and the enzyme β-glucuronidase
	Docking simulation
	Design

	Results
	Results of docking studies
	Results of the design compounds

	Discussion
	QSAR modeling results
	Results of docking analysis
	Result of the design

	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

