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Background: Actinobacteria is as a group of advanced filamentous bacteria. Rare Actinobacteria are of special
interest as they are rarely isolated from the environments. They are a major source of important bioactive
compounds. Determining the proper strategy for the identification of Actinobacteria harboring biosynthetic gene
clusters and producing bioactive molecules is a challenging platform.

Methodology: In this review, we discuss a consequence of microbiological and molecular methods for the
identification of rare Actinobacteria. In addition to that, we shed light on rare Actinobacteria's significance in
antibiotic production. We also clarified molecular approaches for the manipulation of novel biosynthetic gene
clusters via PCR screening, fosmid libraries, and lllumina whole-genome sequencing in combination with

Conclusion: Perceptions of the conventional and molecular identification of Actinobacteria were conducted. This
will open the door for the genetic manipulation of novel antibiotic gene clusters in heterologous hosts. Also, these
conclusions will lead to constructing new bioactive molecules via genetically engineering biosynthetic pathways.
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Introduction

Actinobacteria is a group of aerobic, spore-forming
Gram-positive bacteria; they belong to the order Actino-
mycetales. It harbors GC content of DNA ranges from
just under 50% (e.g., Hoyosella and Tropheryma) to over
70% (e.g., Frankia and Streptomyces), which are recorded
from 16S ribosomal cataloging and DNA-rRNA pairing
studies (Korn-Wendisch & Schneider, 1992). Now, it sig-
nifies one of the largest taxonomic groups recognized
within the domain Bacteria (Ventura et al.,, 2007). The
name Actinobacteria originated from Greek “atkis” (a
ray) and “mykes” (fungus), having criteria of both Bac-
teria and Fungi (Das & Khosla, 2009), but it has suffi-
cient different features to restrict it into kingdom
Bacteria.
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Actinobacteria are generally aerobic; however, some
genera are facultative or obligatory anaerobic. They are
chemoheterotrophic using diverse energy sources and
complex polymers. Most of the Actinobacteria are free-
living in a wider range of habitats in nature such as
water (Ma et al.,, 2009), soil (Elbendary et al., 2018), the
greatest depth of the ocean (Pathom-Aree et al., 2006),
Antarctica (Rego et al., 2019), and desert soil (Busara-
kam et al., 2016). It has been reported that Actinobac-
teria are isolated from all layers of soil but gradually
decreases with increasing the depth (Takahashi &
Omura, 2003). In addition, some are pathogens for
humans (Konoénen & Wade, 2015), animals (Ertas et al.,
2005), and plants (Lerat, 2009). Actinobacteria have dif-
ferent morphological features that ranged from relatively
simple rods and cocci to complex mycelial organization
similar to eukaryotes. They were considered as an inter-
mediate group between bacteria and fungi but now are
recognized as prokaryotic organisms. Actinobacteria are
considered as Gram stain-positive or Gram stain
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variable. The cell wall of Actinobacteria is rigid to keep
the shape of the cell and avoid bursting at high osmotic
pressure (Colquhoun et al,, 1998). It is formed of differ-
ent complex compounds such as peptidoglycan, teichoic,
teichuronic acid, and polysaccharides (Davenport et al.,
2000). The trend of Actinobacteria identification has
been and still augmented, as it is a challenging signal for
further exploration of new natural compounds. In this
review, we highlight the procedures of rare Actinobac-
teria identification and manipulation of their biosyn-
thetic gene cluster (Fig. 1).

Taxonomy of Actinobacteria
According to the first edition of Bergey’s Manual of Sys-
tematic Bacteriology, Actinobacteria belonged to the
order Actinomycetales and was subdivided into 4 families
Streptomycetaceae, Actinomycetaceae, Actinoplanaceae,
and Mycobacteriaceae. The taxonomy of Actinobacteria
has evolved considerably over time with the buildup of
information. In the second edition of Bergey’s Manual of
Systematic Bacteriology, Actinobacteria were included
separately in the fifth volume. Phylum Actinobacteria is
separated into 6 classes: Actinobacteria, Acidimicrobiia,
Coriobacteriia, Nitriliruptoria, Rubrobacteria, and Ther-
moleophilia. Class Actinobacteria is subdivided into 16
orders: Actinomycetales, Actinopolysporales, Bifidobac-
teriales, Catenulisporales, Corynebacteriales, Frankiales,
Glycomycetales, Jiangellales, Kineosporiales, Micrococ-
cales, Micromonosporales, Propionibacteriales, Pseudono-
cardiales, Streptomycetales, Streptosporangiales, and
Incertae sedis.

Bergey’s Manual of Systematics of Archaea and Bac-
teria showed that phylum Actinobacteria includes 5
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classes, 19 orders, 50 families, and 221 genera. However,
many novel taxa continue to be discovered, so this list-
ing is certainly unfinished. The class Actinobacteria and
fundamental taxonomic ranks above the genus level
were proposed exclusively on the basis of 16S rRNA
gene sequence-based groups and taxon-specific 16S
rRNA gene sequences. This classification represented an
obvious change in the classification of Actinobacteria
above the genus level as it showed that previous classifi-
cations based on the form and function did not reflect
natural relationships. Actinobacteria have been assigned
the rank of a phylum as the phylogenetic depth signified
by the lineage resembles that of existing phyla on the
basis of its branching position in 16S rRNA gene trees
(Barka et al., 2016).

Basics of Actinobacteria identification

Originally, classical approaches for the identification of
Actinobacteria were based on morphological observa-
tions, chemotaxonomy, and physiological criteria. Mor-
phological observations were performed to identify an
unknown strain to the genus level including identification
of aerial mycelium presence, color of substrate mycelium,
color of aerial mycelium, ornamentation of spores, and
production of soluble pigments (Barka et al., 2016; Shir-
ling & Gottlieb, 1966; Messaoudi et al., 2015; Amin et al,,
2017a). Chemotaxonomic criteria such as the detection
of diaminopimelic acid (DAP) isomers are one of the
most important cell wall properties of Actinobacteria.
Determination of the DAP isomers LL (Levo) form or
the meso is usually sufficient for the characterization of
the Actinobacteria groups (Messaoudi et al., 2015; Amin
et al., 2017a; Hasegawa et al., 1983).

Detection of rare Actinobacteria with
biosynthetic potential

Morphological observation
of rare Actinobacteria

Sequencing of partial 16S
rRNA genes

L 2

L Molecular approaches for manipulating biosynthetic gene clusters ]

l

| l

Whole genome sequencing and gene

Screening of nonribosomal peptide o Tibrari
synthetases and polyketide synthases genes via Fosmid genomic libraries annotation using antiSMASH web
PCR assays construction harboring server
biosynthetic gene clusters

capability of the Actinobacteria

Fig. 1 Identification of bioactive rare Actinobacteria. The following flow chart demonstrates steps for the identification of Actinobacteria on the
genus level and their biosynthetic genes. Additionally, it gives different options to manipulate these genes and hence monitor the biosynthetic
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A wide range of physiological characteristics has been
evaluated, including carbohydrate utilization profile, ni-
trogen source utilization profile, degradation or hydroly-
sis of numerous substrates, and sensitivity to various
inhibitors (Shirling & Gottlieb, 1966; Messaoudi et al.,
2015).

The identification of Actinobacteria via traditional
methods such as phenotypic characteristics is not as ac-
curate as genotypic methods. 16S rRNA gene sequence
analysis has been recognized as a powerful tool for the
identification of poorly described, rarely isolated, or
phenotypically aberrant strains and can lead to a unique
phylogenetic analysis of newly isolated strains (Heuer
et al,, 1997; Monciardini et al., 2002; Busti et al., 2006).
However, it is not yet possible to complete a compre-
hensive suprageneric classification of Actinobacteria
from the results of partial sequencing of the 16S rRNA
and could not distinguish between closely related species
or even genera (Colquhoun et al, 1998). An updated
taxonomy of the phylum Actinobacteria based on 16S
rRNA trees was recently described (Korn-Wendisch &
Schneider, 1992). That bring up to date classification re-
moved the taxonomic ranks of subclasses and suborders,
moving the prior subclasses and suborders to the ranks
of classes and orders, respectively (Barka et al, 2016).
The phylum is consequently distributed into six separate
classes including Actinobacteria, Acidimicrobiia, Corio-
bacteriia, Nitriliruptoria, Rubrobacteria, and Thermoleo-
philia. The class Actinobacteria contains 16 orders,
comprising previously suggested orders, Actinomycetales
and Bifidobacteriales (Hasegawa et al., 1983). The order
Actinomycetales is now delimited only to the members
of the family Actinomycetaceae (Barka et al., 2016). Sev-
eral genera were identified by 16S rRNA gene sequence
analysis such as Streptomyces, Micromonospora, Krib-
bella, Actinomadura, and Saccharopolyspora (Patel
et al., 2004).

Definition of rare Actinobacteria

Rare Actinobacteria are defined as certain types of Acti-
nobacteria that are difficult to isolate. Molecular tools
indicate that the so-called rare Actinobacteria are rela-
tively abundant in various habitats, and they can be re-
trieved in large numbers if a suitable isolation method is
available. We believe that exploring rare Actinobacteria,
which is difficult to isolate, will result in chemical di-
verse active compounds (Donadio et al., 2002). Some
genera belonged to this group such as Actinomadura,
Actinoplanes, Amycolatopsis, Actinokineospora, Acrocar-
pospora, Actinosynnema, Catenuloplanes, Cryptosporan-
gium, Dactylosporangium, Kibdelosporangium,
Kineosporia, Kutzneria, Microbiospora, Microtetraspora,
Nocardia, Nonomuraea, Planomonospora, Planobispora,
Pseudonocardia, Saccharomonospora, Saccharopolyspora,
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Saccharothrix, Streptosporangium, Spirilliplanes, Ther-
momonospora, Thermobifida, Virgosporangium, Micro-
monospora, and some uncommon  species of
Streptomyces (Lazzarini et al., 2000; Mazza et al., 2003).

Rare Actinobacteria habitats

Although soil is the main habitat of rare Actinobacteria,
they also can be isolated from different ecological niches.
The population and types of rare actinomycetes in each
ecosystem are affected by various factors such as soil
type, pH, humus content, and humus type (Tiwari &
Gupta, 2013). An Egyptian research group selectively
isolated rare Actinobacteria genera including Actinoma-
dura, Actinoplanes, and Micromonospora from soil sam-
ples in Egypt (Abd-allah et al., 2012). Another study
declared the isolation of rare Actinobacteria from shal-
low water sediments of the Trondheim Fjord (Norway)
including Micromonospora, Actinocorallia, Actinoma-
dura, Knoellia, Glycomyces, Nocardia, Nocardiopsis,
Nonomuraea, Pseudonocardia, Rhodococcus, and Strep-
tosporangium genera (Bredholdt et al., 2007). Biodiver-
sity of rare Actinobacteria in water was also reported
from Lake Baikal revealing isolates belong to the genus
Micromonospora (Terkina et al., 2002). Additionally, rare
Actinobacteria inhabit extremophile ecological niches
such as caves with low temperatures, high relative hu-
midity, low amount of organic nutrients, and high min-
eral concentrations. Isolates belonging to the Nocardia
and Micromonospora genera were isolated from El Gola
cave, Sinai, Egypt (Mansour, 2003). Moreover, Nocardia
altamirensis was isolated from the Altamira Cave, Can-
tabria, Spain (Jurado et al., 2008). The extreme desicca-
tion condition of hyper-arid deserts is often
accompanied by high temperature, low water activity,
and intense radiation (Bull, 2011). Amin et al. declared
the isolation of Micromonospora and Kribbella genera
from the Sinai Desert, Egypt (Tolba et al., 2013).

Isolation of rare Actinobacteria

Isolation of rare Actinobacteria by conventional dilution
plate methods is difficult. They require a complicated
procedure for isolation, preservation, and cultivation be-
cause they are usually masked by fast growers such as
bacteria, fungi, and common streptomyces (Lazzarini
et al., 2000). So, new isolation methodologies were devel-
oped focusing on physical and chemical pretreatments
for isolation samples’ previous dilution plate methods.
Many pretreatments are used such as dry heat, phenol
treatments (Hayakawa et al., 2004), sucrose gradient cen-
trifugation (Yamamura et al., 2003), and sodium dodecyl
sulfate treatment. These treatments eliminate non-
filamentous bacteria from the samples and suppress fun-
gal growth that in turn promotes the growth of slow-
growing rare Actinobacteria (Stanek et al, 2011).
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Appropriate selective media containing macromolecules
like casein, chitin, and humic acid are important for pro-
moting the growth of rare Actinobacteria and suppress-
ing bacterial and fungal contaminants. It has been
confirmed that the addition of antibacterial and antifun-
gal antibiotics such as anisomycin, cycloheximide, genta-
micin, kanamycin, nalidixic acid, novobiocin, nystatin,
penicillin, primaricin, polymyxin, rifampicin, strepto-
mycin, tunicamycin, and vancomycin to the isolation
media promotes the selection of rare Actinobacteria
(Hong et al., 2009).

Role of rare Actinobacteria in antibiotic
production
In 2018, the World Health Organization declared the oc-
currence of antimicrobial resistance everywhere in the
world as a great challenge to public health (Roca et al,
2015; Tillotson, 2018). The emergence and spread of
multi-resistant pathogens became near to all known an-
tibiotics (Yong et al., 2009), which cause the urgent need
for searching for new antibiotics. The emergence of mul-
tidrug resistance among bacteria including Staphylococ-
cus aureus, members of the ESKAPE pathogens, and
latterly extreme drug-resistant Mycobacterium tubercu-
losis is a major worldwide public health threat (Pfaller
et al., 1998; Vajs et al, 2017). It has been reported that
numerous bioactive compounds were isolated from Acti-
nobacteria and inhibited multidrug-resistant pathogens
such as vancomycin-resistant Enterococci, methicillin-
resistant  Staphylococcus aureus, Shigella dysenteriae,
Klebsiella sp., Escherichia coli, and Pseudomonas aerugi-
nosa (Selvameenal et al., 2009; Severin et al., 2014).
Nowadays, it is highly important to explore new antibi-
otics in order to combat multidrug-resistant pathogens.
We believe that exploring the biosynthetic potential of
rare Actinobacteria will reveal novel structures with use-
ful biological activities (Koehn & Carter, 2005; Baltz,
2006; Pelaez, 2006; Bull & Stach, 2007; Dancer, 2004).
Rare Actinobacteria isolates are a rich source of anti-
bacterial agents, anti-parasitics, antifungal agents, herbi-
cides, pesticides, anticancer, and immunosuppressive
agents and enzymes (Takahashi & Omura, 2003; Magar-
vey et al, 2004; Singh & Barrett, 2006; Hacene et al,
2000). Different genera of Actinobacteria produce valu-
able bioactive molecules such as rifamycins from Amyco-
latopsis mediterranei (Solanki et al., 2008), erythromycin
from Saccharopolyspora erythraea (Oliynyk et al., 2007),
teicoplanin from Actinoplanes teichomyceticus (Somma
et al., 1984), vancomycin from Amycolatopsis orientalis
(Lazzarini et al., 2000), lupinacidins from Micromonos-
pora lupini (Igarashi et al., 2007), neorustmicin from M.
carbonacea (Yun-yang et al., 2007), rifamycin S from M.
rifamycinica (Huang et al., 2009), erythromycin from
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Actinopolyspora sp. (Huang et al., 2009), and roseoflavin
from Streptomyces davawensis (Grill et al., 2008).

The antibiotics produced by Actinobacteria are divided
into numerous classes based upon their structure such
as aminoglycosides (e.g., streptomycin and kanamycin),
ansamycins (e.g., rifampin) (Floss & Yu, 1999), anthracy-
clines (e.g., doxorubicin) (Kremer et al., 2001), -lactam
(cephalosporins) (Kollef, 2009), macrolides (e.g., erythro-
mycin), and tetracycline. Antibiotics produced by rare
Actinobacteria have various mechanisms of action such
as inhibition of cell wall synthesis (vancomycin), cell
membrane damage (polyene), inhibition of DNA and
RNA synthesis (quinolones and fluoroquinolones), pro-
tein synthesis inhibition (aminoglycosides, macrolides,
and tetracyclines), and inhibition of essential enzymes
required for folate metabolism (trimethoprim and
sulfonamide).

Factors affecting antibiotic production

There are many natural products to be discovered from
rare Actinobacteria (Bérdy, 2012). Searching for valuable
antibiotics begins with screening unusual rare Actino-
bacteria to detect the best source of novel bioactive me-
tabolites, followed by optimization of culture conditions
for maximum antimicrobial compound production, anti-
biotic assay, chemical characterization, and identification
of antibiotic substances. The nature of antibiotics pro-
duced by Actinobacteria depends upon the species,
strain, and culturing conditions such as cell density, pH,
incubation period, carbon sources, and nitrogen sources.
The ability of Actinobacteria cultures to form antibiotics
is not a fixed property but can be greatly increased or
completely lost under different conditions of nutrition
and cultivation. The cell density is an important factor
in attaining the highest antimicrobial yield. It has been
reported in some studies that the optimum pH range for
antimicrobial metabolite production by Actinobacteria is
6—7 (Hamid et al., 2015; Amin et al., 2018; Amin et al,,
2017b; Pharm, 2010; Ahmad et al., 2017), depending
upon each strain. The incubation period of Actinobac-
teria greatly affects the yield of antibiotics. It was shown
that the highest level of antimicrobial agent production
was recorded after 6 to 8 days of incubation (Liang
et al., 2008). Carbon sources are essential components in
the culture media. Several reports showed that the
optimum antimicrobial agent production depends upon
the type and concentration of carbon sources used in
culture media such as (starch, glucose, maltose, fructose,
glycerol, and molasses) (Amin et al., 2017a; Amin et al.,
2017b; Pharm, 2010; Taurino et al, 2011; Wang et al,,
2017; Abdelwahed et al., 2012). Also, the type and
amount of nitrogen sources such as ammonium sulfate,
ammonium nitrate, ammonium chloride, peptone, soya
bean meal, and yeast extract greatly influence the
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antimicrobial production by Actinobacteria (Amin et al.,
2017a; Amin et al, 2017b; Ahmad et al., 2017; Taurino
et al,, 2011; Wang et al,, 2017; Abdelwahed et al., 2012).

Antibiotic crude substances were extracted after the
optimized fermentation step. Purification of the crude
substance is performed using paper or thin-layer chro-
matography and high-performance liquid chromatog-
raphy analysis which separates the metabolites according
to the retention factor value. The further physiochemical
analysis is important for the identification of antimicro-
bial agents such as infrared analysis, mass spectroscopy
(Tiwari & Gupta, 2012), and nuclear magnetic resonance
spectroscopy (Bérdy, 2012).

It has been shown that the manipulation of genes that
encode the enzymes involved in the biosynthetic path-
ways is considered as a hopeful alternative approach for
redesigning antibiotic structures to create new activities
and overwhelmed microbial resistance to current drugs.
Studying the functional analysis of biosynthetic genes is
crucial for such approaches. In addition to that, the de-
velopment of genetic manipulation methodologies and
heterologous hosts is more genetically agreeable for anti-
biotic expression of biosynthetic genes (Sinchez et al.,
2002).

Polymerase chain reaction screening for genes that en-
code the enzymes responsible for antibiotic production
and studying their phylogeny and biotechnological ma-
nipulation of these genes are valuable tools for drug dis-
covery (Amos et al., 2015; Okami & Hotta, 1988; Walsh,
2002). Bioinformatics tools are crucial for analyzing huge
genomic and proteomic data that will help in the field of
drug discovery and detecting novel antibiotics (Bérdy,
2012; Amos et al., 2015).

Molecular approaches for manipulating antibiotic
biosynthetic clusters

Screening of non-ribosomal peptide synthetase and
polyketide synthase genes

Non-ribosomal peptide synthetase (NRPS) and polyke-
tide synthase (PKS) as non-ribosomal peptides (NRPs)
and polyketides (PKs) are the two major classes of sec-
ondary metabolites with diverse chemical structures and
a valuable source of pharmaceutically important mole-
cules. Recent advances in genomics and genome sequen-
cing have shown that the potential of Actinobacteria to
produce molecules of pharmacological interest has been
greatly under-evaluated. Full genome sequencing showed
that there are three biosynthetic pathways: peptides
manufactured by the conventional ribosomal assembly,
NRPS metabolites, and polyketides. Non-ribosomal pep-
tide synthetases and polyketide synthases are a group of
enzymes, coded by genes responsible for the production
of important antibiotic groups. The presence of NRPS
and PKS genes in an Actinobacteria strain is highly
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related to their biosynthetic potential. The NRPS mech-
anism was first described in 1971 during a research on
gramicidin S and tyrocidin biosynthesis. NRPSs are
modularly organized with each module responsible for
the incorporation of a specific amino acid. The modules
consist of at least three core domains catalyzing a spe-
cific reaction in the incorporation of a monomer (Lip-
mann et al., 1971). Firstly, the adenylation (A) domain
selects the cognate amino acid which it activates by
transforming it into an aminoacyl adenylate. The thiola-
tion or peptidyl carrier protein (PCP) domain covalently
binds the activated monomer to the synthetase by a
phosphopantetheinyl arm. The condensation (C) domain
catalysis the formation of a peptide bond between the
amino acids linked to two adjacent modules. (A) dedi-
cated loading module, carrying only the (A), and PCP
domains is the first module of the NRPS, whereas a ter-
mination module containing a thioesterase (TE) domain,
which releases the peptide from the synthetase, con-
cludes the assembly line (Lipmann et al., 1971).

Many NRPSs feature secondary specialized domains
within modules that allow residue modifications. Epi-
merization (E) domains lead to D-isomer forms of amino
acids; methylation (M), oxidation (Ox), reduction (R),
formylation (F), and heterocyclization (Cy) domains en-
able NRPSs to biosynthesize an impressive number of
diversified peptides with broad biological activities that
cannot be produced by the classical ribosomal machin-
ery (Felnagle et al., 2008). PKS consists of modules of at
least three core domains: an acyltransferase (AT) domain
which selects the suitable extender unit and transmits it
to the acyl carrier protein (ACP) domain, wherever a
thioester bond is made fixing the growing polyketide to
the synthase, and a ketosynthase (KS) domain. The KS
domain is responsible for the condensation between the
extender unit present on the acyl carrier protein (ACP)
domain of the same module and the polyketide inter-
mediate bound to the (ACP) domain of the preceding
module. Additional secondary domains such as ketore-
ductase (KR), oxidation (Ox), dehydratase (DH), methyl-
transferase (MT), enoylreductase (ER), and methylation
(M) domains modify the growing polyketide molecule.
Type II PKSs often feature a cyclase (Cy) domain leading
to the formation of aromatic structures. The last module
possesses a thioesterase (TE) domain catalyzing the re-
lease of the final product from the enzyme (Meurer
et al., 1997; Moore & Hertweck, 2002).

Important antibiotics are produced by NRPS gene
clusters such as amphomycin produced by Streptomyces
canus (Yang et al., 2014), cephamycin from Streptomyces
clavuligerus (Alexander & Jensen, 1998), daptomycin
from Streptomyces roseosporus (Miao et al., 2006), and
teicoplanin from Actinoplanes teichomyceticus (Somma
et al, 1984). Antibiotics produced by PKS gene clusters
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are rifamycin from Amycolatopsis mediterranei (Strat-
mann et al., 1999), tetracycline from Streptomyces rimo-
sus (Petkovi¢ et al, 2006), and actinorhodin from
Streptomyces coelicolor. Some antibiotics are hybrid from
both NRPS and PKS gene clusters such as pristinamycin
IIA from Streptomyces pristinaespiralis (Voelker &
Altaba, 2001) and virginiamycin from Streptomyces virgi-
niae (Pulsawat et al., 2007).

Several PCR assays using diverse primers were used to
target PKS and NRPS genes, which is useful in selecting
potent strains with a diverse biosynthetic potential due
to different associations of modules (Amos et al., 2015).
Recently, a research group studied the biosynthetic cap-
ability of Micromonospora sp. Rc5 isolated from Egyp-
tian soils via NRPS and PKS PCR assays. They used
eight pairs of primers demonstrating low similarity PKS
gene clusters in Micromonospora sp. Rc5 compared to
related PKS sequences to a database. The results re-
vealed that these distinct clusters would probably be re-
sponsible for the production of different bioactive
molecules (Amin et al., 2017c). Another study explored
European soil sample biosynthetic potential using newly
designed primers in NRPS and PKS PCR assays. The re-
sults revealed a surprising number of phylogenetically
divergent NRPS and PKS sequences to some rare Actino-
bacteria such as Actinospica, Catenulispora, and Nono-
muraea. They also suggested that these NRPS and PKS
sequences may encode for novel bioactive compounds
(Amos et al, 2015). They assumed that NRPS and PKS
PCR assay limitations are the specific primer sequence
designs in underexplored taxa and a great sequencing ef-
fort needed to discover all the gene clusters in these soils
(Amos et al., 2015).

Actinobacteria genomic libraries

A genomic library is a collection of the total genomic
DNA from a single organism and digested with a restric-
tion enzyme to cut the DNA into fragments of a specific
size. The fragments are then inserted into the vector.
Genomic libraries are commonly used for sequencing
applications. Fosmid vectors are cosmids which are a
type of hybrid plasmid that contains a lambda phage cos
sequence, which use the F-plasmid origin of replication
and partitioning mechanisms to allow cloning of large
DNA fragments. Fosmids can hold DNA inserts of up to
40 kb in size. Fosmids contain several main functional
elements such as OriV (origin of replication): the se-
quence starting with which the plasmid DNA will be
replicated in the recipient cell; tra-region (transfer
genes): genes coding the F-pilus and DNA transfer
process, antibiotic resistance genes as a selectable
marker and lambda phage cos site sequence for pack-
aging insert DNA integrated within fosmid into phages
(Hall, 2004).
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A fosmid library is prepared by extracting the genomic
DNA from the target organism. DNA must be sheared
into fragments of approximately 35 kb in size and cloned
into the fosmid vector (Hall, 2004). The ligation mix is
then packaged into phage particles, and the DNA is
transfected into the bacterial host such as Escherichia
coli and bacterial cells were grown on Luria-Bertani
media containing an antibiotic marker. Bacterial clones
with a fosmid library can only grow on the media due to
antibiotic resistance genes carried on the fosmid. Fos-
mids may be convenient to construct libraries from
complex genomes. Fosmids have high structural stability
and have been found to maintain human DNA effect-
ively even after 100 generations of bacterial growth (Shi-
zuya et al., 1992).

Fosmid libraries have been constructed for a variety of
organisms, including bacteria (Fitz-Gibbon et al., 1997),
fungi (Magrini et al., 2004), plants (Meyer et al., 2008),
animals (Zhang et al., 2007), and humans. Fosmid librar-
ies can be successfully used to capture and express many
functional genes such as those associated with antibiotic
resistance (Udikovic-Kolic et al, 2014; Amos et al,
2014). In addition to that, fosmid libraries are used to
evaluate the diversity of biosynthetic gene clusters and
the discovery of several new bioactive compounds (Feng
et al, 2011; Kallifidas et al, 2012). Similar studies
showed the construction of Actinobacteria fosmid librar-
ies with distinct clones with PKS genes (Parsley et al.,
2011). Moreover, it was reported the screening of dis-
tinct NRPS and PKS genes in fosmid libraries from en-
vironmental DNA from soil (Amos et al., 2015).

It was demonstrated that only 40% of the genes from
the genomes of 32 prokaryotes could be detected when
expressed in E. coli (Gabor et al., 2004). The study also
revealed significant differences in the predicted expres-
sion modes between distinct taxonomic groups of organ-
isms. Another study showed that E. coli, Pseudomonas
putida, and Streptomyces lividans differed in their abil-
ities to express heterologous gene clusters (Martinez
et al, 2004). Our previous work on the biosynthetic
NRPS and PKS genes using a fosmid library indicated
that it was a successful way to capture the genes. How-
ever, no gene expression was recorded. We concluded
that the biosynthetic gene cluster integration in the fos-
mids was incomplete. We recommend the use of bacter-
ial vectors with large DNA intake capacity for complete
gene expression.

Whole-genome sequencing

Metagenomics is a novel strategy for the identification
of bacteria diversity, and the next-generation DNA se-
quencing technologies increase scientific interests in un-
derstanding the microbial diversity inhabiting different
environments. Several new methods for DNA
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sequencing were developed in the mid to late 1990s and
were implemented in commercial DNA sequencers by
the year 2000. These were called the “next-generation”
sequencing methods such as reversible dye terminators
(Ilumina sequencing) (Bentley et al., 2008), massively
parallel signature sequencing (Brenner et al., 2000), 454
pyrosequencing (Margulies et al., 2005), polony sequen-
cing (Shendure et al., 2005), sequencing by oligonucleo-
tide ligation detection (Mardis, 2008), ion torrent
sequencing by synthesis (Rusk, 2010), single-molecule
real-time sequencing by synthesis (Eid et al., 2009), and
DNA nanoball sequencing (Drmanac et al., 2010). An
important application of next-generation sequencing is
whole-genome sequencing. Whole-genome sequencing
is a powerful tool for genomics research and the most
comprehensive method for analyzing the genome such
as determining the sequence of individual genes, clusters
of genes or operons, full chromosomes, or entire ge-
nomes of any organism. It reduces sequencing costs and
produces large volumes of data (Bentley, 2006). Whole-
genome sequencing is commonly associated with se-
quencing human genomes, livestock (Eck et al., 2009),
plants (Goff et al., 2002), and microbes (Qiao et al,
2012). Whole-genome sequencing provides a high-
resolution, base-by-base view of the genome; identifies
potential causative variants for further follow-on studies
of gene expression and regulation mechanism; and de-
livers large volumes of data in a short amount of time to
support the assembly of novel genomes.

lllumina genome sequencing

[lumina (Bennett, 2004) is an American company
founded by Shankar Balasubramanian and David Klener-
man in 1998 and developed a sequencing method based
on reversible dye terminator technology and engineered
polymerases. Illumina gains the massively parallel se-
quencing technology invented in 1997 by Pascal Mayer
and Laurent Farinelli, which is now implemented in Illu-
mina’s Hi-Seq genome sequencers.

High-throughput Hi-Seq genome sequencers are used
for whole-genome sequencing of numerous microbes
and plant (Li et al,, 2012), human, and animal genomes
(Eck et al., 2009). The company provides a line of prod-
ucts and services that serve the sequencing, genotyping,
and gene expression markets. Its tools allow the re-
searchers to make genetic tests and provide medical in-
formation based on genomics and proteomics. Illumina
genome sequencing technologies allow researchers to se-
quence DNA and RNA much more quickly to obtain the
sequence of multiple strands at once and cheaply than
the previously used Sanger sequencing; thus, it revolu-
tionized the study of genomics and molecular biology
(Pettersson et al., 2009).

Page 7 of 12

In Illumina sequencing (Bentley, 2006; Bennett, 2004;
Bennett et al., 2005), the process started with the frag-
mentation of purified DNA into 100-150-bp reads by
enzymatic digestion or temperature. The small DNA
fragments are linked to adapters which are a kind of mo-
lecular modifications and act as reference points during
amplification, sequencing, and analysis. In this process,
one end of a single DNA molecule is attached to a flow
cell surface (it had a complementary sequence with
adapters at certain regions). DNA fragments subse-
quently bend over and hybridize to complementary
adapters creating a “bridge,” thereby forming the tem-
plate for the synthesis of their complementary strands
by DNA polymerases.

After the amplification step, a flow cell with more than
40 million clusters is produced, wherein each cluster is
composed of approximately 1000 clonal copies of a sin-
gle template molecule. The templates are sequenced in a
massively parallel fashion using a DNA sequencing-by-
synthesis approach that employs reversible terminators
with removable fluorescent moieties and special DNA
polymerases that can incorporate these terminators into
growing oligonucleotide chains. The terminators are la-
beled with fluorescence of 4 different colors to distin-
guish among the different bases at the given sequence
position, and a computer determines each base was
added by the wavelength of the fluorescent tag and re-
cords every spot on the chip (Bentley, 2006; Bennett,
2004; Bennett et al., 2005).

Bioinformatics analysis and genome assembly

The production of raw sequence data is only the begin-
ning of its detailed bioinformatics analysis (Severin et al.,
2014). Many new methods for sequencing and correcting
sequencing errors were developed.

Occasionally, raw reads provided by the sequencer are
accurate and precise only in a part of their length. The
use of the entire read may lead to artifacts in the down-
stream analyses such as genome assembly, single nucleo-
tide polymorphism calling, or gene expression
assessment. Two classes of trimming programs have
been introduced, based on the window-based or the
running-sum classes of algorithms (Del Fabbro et al.,
2013). Trimming programs such as Trimmomatic to
trim raw reads and remove adapters was widely used
(Bolger et al., 2014). Samtools (Li et al., 2009) and bwa-
mem software (Li & Durbin, 2009) were used for quali-
tative filtering the reads and assembling the genome.

Genome assembly refers to the process of taking a
large number of short DNA sequences and putting them
back together to create a representation of the original
chromosomes from which the DNA originated. Auto-
mated sequencing machines produce millions of small
DNA fragments “read” which can read up to 1000
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nucleotides. A genome assembly algorithm works by tak-
ing all the pieces and aligning them to one another and
detecting overlapping regions of the reads. These over-
lapping reads can be merged and the process continues
(Paszkiewicz & Studholme, 2010).

Genome assembly is a very difficult computational
problem, made more difficult because many genomes
contain large numbers of identical sequences, known as
repeats. These repeats may be thousands of nucleotides
long, and some occur in dissimilar positions, particularly
in the large genomes of plants and animals. The result-
ing genome is called a draft genome sequence; it is pro-
duced by combining the information sequenced contigs
together in the correct orientation and order and then
link them to create scaffolds (Paszkiewicz & Studholme,
2010).

Scaffolds are larger DNA fragments positioned along
the physical map of the chromosome. Also, contigues
obtained from the sequencing genomes can be assem-
bled on the basis of the most similar reference genome
on the database to fill the gaps (Darling et al, 2011).
Several tools are used in this process such as mauve
Aligner 2.4. software (Rissman et al., 2009) and CAP3
assembly program for contigue assembly (Huang &
Madan, 1999).

Genome annotation

Genome annotation is the process of identifying the ele-
ments of the genome and attaching biological informa-
tion to these elements (Stein, 2001). After genome
assembly is performed, gene annotation is required to
determine the structural and functional identity of those
genes (Kisand & Lettieri, 2013). Automatic annotation
tools try to perform all this by computer analysis, rather
than manual annotation which involves human expert-
ise. The popular online automated annotation systems
are Rapid Annotation using Subsystem Technology
(RAST) which is an automated service for annotating
complete or approximately complete bacterial genomes.
It also provides high-quality genome annotations for
these genomes in phylogenetic tree analysis (Aziz et al.,
2008), IMG (Integrated Microbial Genomes based on
BLAST p) system which serves as a community resource
for comparative analysis of publicly accessible genomes
in a wide-ranging integrated context. IMG contains both
draft and complete microbial genomes (Markowitz et al.,
2009) and Prokaryotic Genomes Automatic Annotation
Pipeline (PGAAP) developed at the National Center for
Biotechnology Information (NCBI) that is based on gene
prediction algorithms with homology-based methods.
PGAAP annotates both complete genomes and draft ge-
nomes encompassing multiple contigs (Tatusova et al.,
2016).
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In 2018, a research group declared the annotation of
two rare Actinobacteria genomes derived from Illumina
whole-genome sequencing using mainly PGAAP system.
They assume that this annotation opens the door for
highlighting significant biosynthetic gene clusters in rare
Actinobacteria (Amin et al., 2019).

Identification of biosynthetic gene clusters by antiSMASH
The genes encoding the biosynthetic pathways that are
responsible for the production of secondary metabolites
are usually clustered together on the chromosome in
biosynthetic gene clusters. Recently, genome mining of
such biosynthetic gene clusters (BGCs) is considered as
an important method to identify new molecules, leading
to the detection of lots of novel compounds. A variety of
computational tools have been developed to analyze spe-
cific classes of secondary metabolites (Weber et al,
2015).

In 2011, a tool called the antibiotics and Secondary
Metabolite Analysis SHell (antiSMASH) was introduced
as a Web server for genomic identification and analysis
of BGCs of any type, thus facilitating rapid genome an-
notation of a wide range of bacterial and fungal strains
(Blin et al., 2013). Although antiSMASH is capable of
annotating extensive chemical structures of secondary
metabolites, it is still limited to annotate peptides and
polyketides coded by modular assembly lines only. An-
notation of chemical compounds coded by cyclization
and tailoring reactions is still limited. A multiple pos-
sible end product compound strategy can be applied to
overcome this limitation. This is important to prevent
the replication of existing compounds for effective drug
discovery and comparative analysis of unknown and
known gene clusters (Weber et al., 2015).

Bioinformatics analysis using antiSMASH 3.0 predicts
secondary metabolite gene clusters in rare Actinobac-
teria. Amin et al. mined the whole genomic sequence of
Micromonospora sp. Rc5 isolated from the Egyptian des-
ert using antiSMASH server. This study demonstrated
out reads of 33 potential secondary metabolite gene
clusters including PKS, NRPS, hybrid polyketide
synthases, terpenes, lantipeptides, saccharides, sidero-
phore, bacteriocin, arylpolyene, and unidentified clusters
(Amin et al., 2019). Another study reporting the annota-
tion of the draft genome sequence of Micromonospora
sp. DSW705 using antiSMASH analysis predicts 3 PKS
gene clusters, 1 NRPS gene clusters, and 3 hybrid PKS/
NRPS gene clusters responsible for antitumor rakicidin
synthesis (Komaki et al., 2016).

Conclusion

Rare Actinobacteria is a great potential source of anti-
biotic production against multidrug-resistant pathogens.
Conventional and molecular identification of rare
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Actinobacteria is a valuable tool. However, further inves-
tigations including DNA-DNA hybridization and add-
itional chemotaxonomic and biochemical tests are
required to identify their species level. Molecular ap-
proaches for the identification of biosynthetic gene clus-
ter are useful in detecting the antimicrobial potential of
rare Actinobacteria with uncommon biochemical path-
ways. This will help in the development of novel bio-
active metabolites. The current review provides
information that helps to control antimicrobial drug re-
sistance problems and will enhance health care in Egypt
and worldwide. In addition, it introduces promising
methodologies to support the research of drug discovery

in Egypt.
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