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Abstract 

Background  Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a contagious infectious disease that pri-
marily targets the lungs but can also impact other critical systems such as the bones, joints, and neurological system. 
Despite significant efforts to combat TB, it remains a major global health concern. To address this challenge, this study 
aims to explore and evaluate various tuberculosis control approaches using a mathematical modeling framework.

Results  The study utilized a novel SEITR mathematical model to investigate the impact of treatment on physical 
limitations in tuberculosis. The model underwent qualitative analysis to validate key aspects, including positiv-
ity, existence, uniqueness, and boundedness. Disease-free and endemic equilibria were identified, and both local 
and global stability of the model was thoroughly examined using the derived reproduction number. To estimate 
the impact of each parameter on each compartment, sensitivity analysis was conducted, and numerical simulations 
were performed using Maple 18 software with the homotopy perturbation method. The obtained results are promis-
ing and highlight the potential of the proposed interventions to significantly reduce tuberculosis virus prevalence. 
The findings emphasize the significance of fractional-order analysis in understanding the effectiveness of treatment 
strategies for mitigating tuberculosis prevalence. The study suggests that the time fractional dynamics of TB treatment 
correspond to the treatment’s efficacy, as the conceptual results showed that non-local interactions between the dis-
ease and the treatment may lead to more accurate ways of eradicating tuberculosis in real-world scenarios. These 
insights contribute to a better understanding of effective treatment strategies and their potential impact on tubercu-
losis control and public health.

Conclusions  In conclusion, scientists, researchers, and healthcare personnel are urged to take action and utilize 
the discoveries from this research to facilitate the eradication of the hazardous tuberculosis bacteria.
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Background
Tuberculosis (TB) is a highly contagious disease caused 
by the Mycobacterium tuberculosis bacteria, primarily 
affecting densely populated areas and posing a significant 

public health threat. It spreads through airborne trans-
mission when infected individuals cough or have close 
contact with others. Common symptoms include a per-
sistent cough, chest pain, weight loss, and a fever. Diag-
nosis involves a comprehensive assessment of medical 
history and various examinations, such as X-rays and 
tests. TB is particularly prevalent in low- and middle-
income countries with limited access to healthcare, 
impacting millions of people worldwide. An active TB 
patient can infect 5 to 15 susceptible individuals in their 
environment (WHO 2021).
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To combat TB, several preventive measures have been 
proposed, including treatment interventions (Luju and 
Yan 2014; Ramli et al. 2019; Clark et al. 2019). (Luju and 
Yan 2014) incorporated treatment interruptions and 
latent periods into their approach, while (Ramli et  al. 
2019) emphasized the importance of multiple drug 
administration’s within specific timeframes. Clark et  al. 
(2019) conducted sensitivity analyses to identify effec-
tive strategies for treatment and prevention during epi-
demics. (Ullah et  al. 2020a, b) employed the modified 
Adams–Bashforth technique to calculate numerical solu-
tions for a fractional tuberculosis model, highlighting the 
significance of the proposed derivative in understanding 
TB dynamics and control. (Fatmawati et al. 2020) focused 
on investigating TB infection dynamics in children and 
adults using a novel fractional model and fractional cal-
culus, particularly the Caputo and Atangana–Baleanu 
derivatives. Their results indicated a significant reduction 
in TB infection among individuals already affected by the 
disease when the fractional order was decreased. (Ullah 
et  al. 2020a, b) explored optimal TB control techniques 
involving vaccines and treatment, emphasizing the 
importance of community-based TB control and show-
casing the impact of disease control through simulations. 
Furthermore, (Ullah et  al. 2018) proposed a fractional-
order model for simulating TB dynamics in Khyber Pakh-
tunkhwa, Pakistan, utilizing the Caputo derivative to 
demonstrate its superiority over classical models.

Recent research has focused on investigating the age-
specific aspects of TB infection, with newborn vaccina-
tion being suggested as a preventive measure (Tilahun 
et al. 2020; Mengistu et al. 2020). The urgency to develop 
a more effective and longer-lasting TB vaccine has 
heightened due to the emergence of drug-resistant 
strains. However, surpassing the efficacy and durability of 
the current BCG vaccine has proven to be a significant 
challenge (Schrager et  al. 2020). To address this chal-
lenge, researchers have developed the TB Vaccine Devel-
opment Pathway web tool (Roordink et al. 2021), which 
serves as a valuable resource for guiding vaccine develop-
ment from discovery to deployment, ultimately aiming to 
eradicate TB.

Various preventive strategies,including therapy inter-
ventions, infant immunization, and innovative vaccine 
development  according to (Zhang et  al. 2023; Kelemu 
Mengistu and Witbooi  2019), have been proposed. It 
is crucial to employ well-designed trials and models 
to plan for success and ensure the timely distribution 
of vaccines to those most in need. Different numerical 
methods, such as the homotopy perturbation method 
(Kolawole et  al. 2023; Olayiwola et  al. 2023) and the 
Laplace Adomian decomposition method (Yunus 
et  al. 2023), have been employed to control various 

diseases, including COVID-19 and Lassa fever. Frac-
tional calculus has also been utilized to develop math-
ematical models for epidemic diseases, including TB. 
The Caputo fractional derivative operator has been 
employed to describe TB transmission dynamics, tak-
ing into account memory behavior (Danane et al. 2020). 
Additionally, Zhang et al. (2021) delve further into the 
application of the Caputo operator for TB transmis-
sion and prevention, highlighting the crucial role of 
appropriate treatment in minimizing TB transmission 
and prevalence. Ahmad et  al. (2021) consider a math-
ematical model for TB that incorporates the Caputo 
and Fabrizio derivatives with an exponential kernel. 
Furthermore, (Zafar et  al. 2022) examine a newly dis-
covered fractional operator (FO) with a ML non-sin-
gular kernel for different fractional orders, utilizing 
the fractional Caputo and Atangana–Baleanu–Caputo 
predictor and corrector approaches. Fractional-order 
derivatives in the context of epidemic disorders have 
been extensively studied in previous research (Liu et al. 
2023; Farman et al. 2023; Nazir et al. 2020; Okyere and 
Ackora-Prah 2023; Ahmed et  al. 2021; Hajaj and Odi-
bat 2023) using operators such as Atangana–Baleanu–
Caputo, Caputo–Fabrizio, and Caputo fractional 
derivatives. Several fractional-order TB models have 
investigated the impact of quarantine, hospitalization, 
and treatment, while (Ullah et  al. 2023) took a unique 
deterministic epidemic approach, examining the influ-
ence of treatment adherence and awareness on TB 
dynamics.

Despite the wealth of research on fractional-order 
models for tuberculosis, the specific effects of treat-
ment rate and effective contact rate on the disease have 
not been thoroughly explored. This research seeks to 
fill this gap and contribute valuable insights into how 
these factors influence tuberculosis dynamics. By ana-
lyzing the influence of treatment rate on the fractional 
order and the impact of the effective contact rate on 
tuberculosis transmission, this study aims to enhance 
our understanding of disease control strategies and 
pave the way for more effective and targeted interven-
tions to combat tuberculosis. To achieve this, we modi-
fied the model presented by (Kereyu and Demie 2021) 
to suit the study of tuberculosis dynamics in Nigeria, 
specifically considering the incorporation of the treat-
ment class, leading to a significant improvement in dis-
ease cure.

The paper’s structure includes a detailed description 
of the model formulation and description in “Model 
formulation and description” section, the model anal-
ysis in “Model analysis” section, an exploration of the 
method in “Methods” section, the presentation of 
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results in “Results” section, and a conclusion in “Dis-
cussion” section.

Model formulation and description
A five-compartmental model of tuberculosis is 
described, consisting of susceptible (S(t)), exposed 
E(t) , infected I(t) , treatment T (t) , and recovered R(t) 
compartments. Susceptible individuals are those who 
are vulnerable to contracting the disease if they come 
into contact with someone who is infected. Exposed 
individuals E(t) are the group of individuals who have 
come into contact with an infectious agent but have not 
yet developed symptoms of the disease. The infected 
class comprises confirmed cases of people who have 
developed the disease and are prone to transmitting it 
to others. Individuals undergoing treatment for any ill-
ness are at risk of developing tuberculosis, while those 
who have recovered are denoted as R(t) and receiving 
treatment are denoted as T(t). The parameter � shows 
the recruitment rate which occurs in the susceptible 
class only, and susceptible individuals have the tuber-
culosis through contact with the infected individuals 
at the rate β

N S(t)I(t) where β is the effective contact 
rate. δ represents the death due to TB, while η also rep-
resents the treatment rate of infected class. τ indicates 
the progression rate of exposed to infected class, and σ 
represents natural cure rate. The re-infection rate is ϕ, 
and the individual leaves the treatment class at the rate 
θ . Based on the details mentioned earlier, a nonlinear 
SEITR model for tuberculosis is formulated, and this 
model is illustrated through the schematic diagram in 
Fig. 1.

(1)

dS

dt
= �− µS(t)−

β

N
S(t)I(t)

dE

dt
=

β

N
S(t)I(t)− (µ+ τ + σ)E(t)+ ϕR(t)

dI

dt
= τE(t)− (µ+ η + δ)I(t)

dT

dt
= ηI(t)− (µ+ θ)T (t)

dR

dt
= θT (t)+ σE(t)− (µ+ ϕ)R(t)

Equation (1) can be rewritten as

where K =
β
N .

With the initial conditions:

Table  1 shows the description of variables and 
parameters.

Preliminaries of fractional calculus
In this section of the paper, some preliminaries defini-
tions are discussed based on fractional calculus.

Definition 1  A fractional order can be repre-
sented by κ ∈ (0, 1] using the Riemann–Liou-
ville method of the function g ∈ L−1([0,T ],R) s 

(2)

dS

dt
= �− µS(t)− KS(t)I(t)

dE

dt
= KS(t)I(t)− (µ+ τ + σ)E(t)+ ϕR(t)

dI

dt
= τE(t)− (µ+ η + δ)I(t)

dT

dt
= ηI(t)− (µ+ θ)T (t)

dR

dt
= θT (t)+ σE(t)− (µ+ ϕ)R(t)

(3)
S(0) = κ1,E(0) = κ2, I(0) = κ3,T (0) = κ4,R(0) = κ5.

Fig. 1  Schematic diagram of SEITR tuberculosis model

Table 1  Description of variables and parameters

Description 2

Variable

S(t) Susceptible state

E(t) Exposed state

I(t) Infected state

T (t) Treated state

R(t) Recovered state

Parameters

� Recruitment rate of susceptible

β Effective contact rate

σ Natural cure rate

η Treatment rate of infected class

µ Natural death

δ Death due to TB at infected class

ϕ Reinfection rate

θ Rate at which individual leaves 
the treated class
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Iκ0 f (t) =
1

Ŵ(κ)

∫ t
0
(t − x)κ−1g(x)dx, and the following prop-

erties are satisfied:

Definition 2  The Caputo derivative of 
a in the interval [0,T ] can be written as 
c
0D

κg(t) = 1
Ŵ(m−κ)

t
0
(t − x)m−κ−1g (m)(x)dx , where 

m = |κ| + 1 and |κ| represents the integer part of κ in [0,1].

Model analysis
In this section, we shall conduct the qualitative analysis 
of the mathematical model, and we shall do this with an 
integer order α = 1 to fully study the properties of the 
mathematical model and show its potential for real-life 
applications.

Positivity and boundedness
This section focuses on investigating the positivity and 
boundedness of solutions to the model in Eq. (2) with the 
initial condition described in Eq. (3).

Theorem  1  For t ≥ 0 , the system of Eq.  (2) and the 
starting condition (3) have a positive solution.

Proof  Assume that Eq. (2) has a solution S(t), E(t), I(t), 
T(t), and R(t) with the initial condition (3). So, we have

i. Iκ Iαζ(t) = Iκ+αξ(t),

ii. Iκ Iαζ(t) = IαIκξ(t),

iii. Iκ tβ =
Ŵ(β + 1)

Ŵ(κ + β + 1)
tκ+β . Also, for boundedness, let 

N (t) = S(t)+ E(t)+ I(t)+ T (t)+ R(t) which gives

Therefore, solution is positive for all t ≥ 0 and hence 
bounded.

Dynamic behaviors of the model
The dynamic behavior of the model was investigated by 
obtaining the disease-free and endemic equilibrium of 
the tuberculosis model.

Disease‑free equilibrium
A disease-free equilibrium (DFE) is a population that 
is entirely free of infectious diseases. Thus, when there 
is no infection I = 0 , the equilibrium points result 
in:E1 =

(

S0,E0, I0,T 0,R0
)

=

(

�
µ
, 0, 0, 0, 0

)

.

Endemic equilibrium points
Endemic equilibrium is a steady state of an infectious dis-
ease in a population in which the prevalence of the disease 
remains stable over time. Hence, E  = I  = 0 and the follow-
ing thresholds are obtained:

dαS(t)

dtα
= � ≥ 0,

dαE(t)

dtα
= ϕR+ KSI ≥ 0,

dαI(t)

dtα

= τE ≥ 0,
dαT (t)

dtα
= ηI ≥ 0,

dαR(t)

dtα

= θT + σE ≥ 0.

dN

dt
= �− µN (t)− δI(t) ≤ �− µN (t).

S∗ =
N ((µ+ ρ + τ)(µ+ η + δ)(µ+ θ)(µ+ ϕ))− ϕρ(µ+ η + δ)(µ+ θ)− ητϕθ

τ(µ+ θ)(µ+ ϕ)β
,

E
∗ =

−(N (µ+ η + δ)(µ+ ρ + τ)(µ+ θ)(µ+ ϕ)µ− (µ+ η + δ)(µ+ θ)Nµϕσ − ηNτϕθ(µ+ η + δ)− (µ+ θ)(µ+ ϕ)(µ+ η + δ)τ�β)

τβ(µ+ η + δ)(µ+ ρ + τ)(µ+ η + δ)(µ+ θ)(µ+ ϕ)− (µ+ η + δ)(µ+ θ)σϕτβ − ητ 2βϕθ)

(4)I∗ =
(µ+ η + δ)Nµϕ − (µ+ ϕ)(µ+ ρ + τ)(µ+ η + δ)Nµ(µ+ θ)+�βτ(µ+ ϕ)(µ+ θ)+ Nηµϕτθ

τβ(µ+ η + δ)(µ+ ρ + τ)(µ+ η + δ)(µ+ θ)(µ+ ϕ)− (µ+ η + δ)(µ+ θ)σϕτβ − ητ2βϕθ)

T ∗ =
−
(

−(µ+ η + δ)Nµϕση + (µ+ ϕ)(µ+ θ)(µ+ ρ + τ)(µ+ η + δ)Nµη −�βτη(µ+ ϕ)(µ+ θ)− Nη2µϕτθ
)

β(µ+ η + δ)(µ+ ρ + τ)(µ+ θ)2(µ+ ϕ)− (µ+ θ)2σϕβ − ητβϕθ(µ+ θ))

R
∗ =

−(−(µ+ ϕ)(µ+ θ)�βτ + N (µ+ ρ + τ)(µ+ η + δ)(µ+ ϕ)(µ+ θ)µ− Nµϕσ(µ+ η + δ)(µ+ ϕ)− Nηµϕτθ)((µ+ η + δ)(µ+ ϕ)σ + ητθ)

(((µ+ η + δ)(µ+ ρ + τ)(µ+ θ)(µ+ ϕ))− (ϕσ(µ+ ρ + τ)(µ+ θ))− ητϕθ(µ+ η + δ))((µ+ θ)(µ+ ϕ)τβ)
.
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Basic reproduction number
The reproductive number of the SEITR model associated 
with the reproductive power of the disease is defined by 
R0 = ρ(G) where ρ is the spectral radius of the next-gener-
ation matrix G = FV−1.

So the R0 of the model Eq.  (2) at diseases-free equilib-
rium is obtained as:

So, the next-generation matrix is resulted in

Therefore, R0 =
β�τ

N (µ+σ+τ)(η+µ+δ)
 which represent the 

dominant eigenvalue.

Local stability for disease‑free equilibrium
At the equilibrium state, the equations of the model (2) can 
be written as follows

where K =
β
N .

At the disease-free equilibrium point, the Jacobian 
matrix of Eq. (9) is obtained as

(5)F =





βS0

N
0

0



 and V =





(µ+ τ + σ)E
−τE + (µ+ η + δ)I
−ηI + (µ+ θ)T



.

(6)Given that F =







∂f1
∂E

∂f1
∂I

∂f1
∂T

∂f2
∂E

∂f2
∂I

∂f2
∂T

∂f3
∂E

∂f3
∂I

∂f3
∂T






=





0
βS0

N 0

0 0 0

0 0 0





(7)

and V =





∂v1
∂E

∂v1
∂I

∂v1
∂T

∂v2
∂E

∂v2
∂I

∂v2
∂T

∂v3
∂E

∂v3
∂I

∂v3
∂T



 =





(µ+ τ + σ) 0 0

−τ (µ+ η + δ) 0

−η (µ+ θ) 0



.

(8)G = FV−1 =





β�τ
N (µ+σ+τ)(η+µ+δ)

β�
(η+µ+δ)

0

0 0 0

0 0 0



,

(9)



























�− µS(t)− KS(t)I(t) = 0,

KS(t)I(t)− (µ+ τ + σ)E(t)+ ϕR(t) = 0 ,

τE(t)− (µ+ η + δ)I(t) = 0,

ηI(t)− (µ+ θ)T (t) = 0,

θT (t)+ σE(t)− (µ+ ϕ)R(t) = 0,

Also, the characteristics equation can be obtained using 
det (J (E1)− �I) to obtain the eigenvalues �.

The characteristics equation derived from Eq. (11) is

Using the Routh–Hurwitz criterion stability (Gant-
macher 1959) of order four, a3a2a1 > a21 + a23a0 where 
ai > 0.

From the above equations, it can be observed that 
a3 > 0, a2 > 0, a1 > 0 and a0 > 0.

So, the Routh–Hurwitz criterion is satisfied.
Hence, the disease-free equilibrium of the system is 

asymptotically stable.

(10)

J =













−µ 0
−β�
Nµ

0 0

0 −µ− ρ − τ
β�
Nµ

0 ϕ

0 τ −δ − µ− η 0 0

0 0 η −µ− θ 0

0 σ 0 0 −µ− ϕ













.

(11)det













−µ− � 0
−β�
Nµ

0 0

0 (−µ− ρ − τ )− �
β�
Nµ

0 ϕ

0 τ (−δ − µ− η)− � 0 0

0 0 η (−µ− θ)− � 0

0 σ 0 0 (−µ− ϕ)− �













= 0.

(�+ µ)

(

�
4 + a3�

3 + a2�
2 + a1�+ a0

)

= 0.

(12)a3 = 4µ+ η + ϕ + ρ + δ + τ + θ ,

(13)
a2 =6µ2 + (3(η + ϕ + δ + ρ + τ + θ)µ

+ (η + ϕ + ρ + δ + τ)θ

+ (η + ϕ + δ − 1)τ + (ϕ + σ)(η + δ)),

(14)

a1 =4µ3 + (3(η + ϕ + δ + ρ + τ + θ)µ2

+ (2(η + ϕ + ρ + δ + τ)θ + 2(η + ϕ + δ − 1)τ

+ 2(ϕ + σ)(η + δ))µ+ ((η + ϕ + δ − 1)τ

+ (ϕ + σ)(η + δ))θ + ϕτ(η + δ − 1)) ,

(15)

a0 =µ4 + (η + ϕ + δ + ρ + τ + θ)µ3

+ ((η + ϕ + ρ + δ + τ)θ

+ (η + ϕ + δ − 1)τ + (ϕ + σ)(η + δ))µ2

+ ((η + ϕ + δ − 1)τ + (ϕ + σ)(η + δ))θ

+ ϕτ(η + δ − 1))µ+ ϕτθ(δ − 1).
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Global stability of endemic equilibrium

Theorem 2  If R0 > 1 , the endemic equilibrium point of 
the model Eq. (2) is globally asymptotically stable.

Proof  The global stability is constructed using Lyapunov 
function as follows:

Obtaining the derivative of Lyapunov of the solution of 
Eq. (2) results in:

where we have

Inserting (18) into (17), we arrive at

Then, we obtain

(16)






V (S∗,E∗, I∗,T ∗,R∗) =

�

S − S∗ − S∗In S
S∗

�

+

�

E − E∗ − E∗In E
E∗

�

+
�

I − I∗ − I∗In I
I∗

�

+

�

T − T ∗ − T ∗In T
T∗

�

+

�

R− R∗ − R∗In R
R∗

�







.

(17)

dV

dt
=

(

S − S
∗

S

)

dS

dt
+

(

E − E
∗

E

)

dE

dt

+

(

I − I
∗

I

)

dI

dt
+

(

T − T
∗

T

)

dT

dt

+

(

R− R
∗

R

)

dR

dt
,

(18)



























dS
dt

= �− µS(t)− KS(t)I(t),
dE
dt

= KS(t)I(t)− (µ+ τ + σ)E(t)+ ϕR(t)
dI
dt

= τE(t)− (µ+ η + δ)I(t),
dT
dt

= ηI(t)− (µ+ θ)T (t),
dR
dt

= θT (t)+ σE(t)− (µ+ ϕ)R(t).

(19)
dV

dt
=















�

S − S∗

S

�

[�− µS − KSI]+

�

E − E∗

E

�

[KSI− (µ+ τ + σ)E + ϕR]

+

�

I − I∗

I

�

[τE − (µ+ η + δ)I]+

�

T − T ∗

T

�

[ηI − (µ+ θ)T ]+

�

R− R∗

R

�

[θT + σE − (µ+ ϕ)R]















.

(20)dV

dt
=















(S−S∗)
S �− µ

(S−S∗)
S − K

(S−S∗)
2

S (I − I∗)+ K (S − S∗)(I − I∗)
(E−E∗)

E − (µ+ τ + σ)
(E−E∗)

2

E

+ϕ
(E−E∗)

E (R− R∗)+ τ (E − E∗)
(I−I∗)

I − (µ+ η + δ)
(I−I∗)

2

I + η(I − I∗)
(T−T∗)

T − (µ+ θ)
(T−T∗)

2

T

+θ(T − T ∗)
(R−R∗)

R + σ(E − E∗)
(R−R∗)

R − (µ+ ϕ)
(R−R∗)

2

R ,















,

where P and Q can be extracted from Eq.  (20) and then 
give the formula as dV

dt
= P − Q which is then written as:

(21)P =
(S − S

∗)

S
[�− µ]+

(E − E
∗)

E

[

K (S − S
∗)(I − I

∗)

+ϕ(R− R
∗)

]

+
(I − I

∗)

I

[

τ
(

E − E
∗
)]

+
(T − T

∗)

T

[

η
(

I − I
∗
)]

+
(R− R

∗)

R

[

θ(T − T
∗)

+σ(E − E
∗)

]

and

Therefore, if P < Q , the dV
dt

 will be negative, also if 
dV
dt

= 0 if and only if S(t) = S∗,,E(t) = E∗, I(t) = I∗ , 
T (t) = T ∗,R(t) = R∗ . Hence, the largest invariant set 
in 

{

(S(t),E(t), I(t),T (t),R(t)) : dV
dt

= 0

}

 is the single 
point set E∗ . Using the LaSalle’s invariance principle 
adopted by (LaSalle 1976), the endemic equilibrium is 
globally asymptotically stable if P < Q.

(22)

Q =
(S − S

∗)2

S
K
(

I − I
∗
)

+
(E − E

∗)2

E

(µ+ τ + σ)+
(I − I

∗)2

I
(µ+ η + δ)

+
(T − T

∗)2

T
(µ+ θ)+

(R− R
∗)2

R
(µ+ ϕ)
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Methods
Homotopy perturbation method
Our study focuses on utilizing the homotopy perturba-
tion method as a numerical approach to solve the math-
ematical model. The homotopy perturbation method 
is presented below, and we explore its effectiveness in 
accomplishing this task.

Firstly, consider the classical order procedure for solv-
ing coupled system of differential equation

Subject to the boundary condition

where � indicates the operator of differential, � repre-
sents the boundary condition operator, m(t) denotes the 
analytic function, and υn is the normal vector derivative. 
The function �(υ) is divided into two which are:

LH (υ) and NH (υ) denotes the linear and nonlinear 
operator in the equation.

So, (25) implies

The homotopy for Eq. (26) can be obtained as

where p is an encoding parameter that can change from 
[0, 1] by a deformation process. Equation (27) is reduced 
further to yield:

as p → 0, Equation (28) gives:

And when p → 1,

Equation  (30) can be written in the form of power 
series and gives

As a result of combining (31) and (28), and compar-
ing coefficients of equal powers of p,

we have the solution:

(23)�(υ) = m(t), t ∈ �.

(24)�(υ, υn) = 0 t ∈ �

(25)�(υ) = LH (υ)+ NH (υ),

(26)LH (υ)+ NH (υ) = m(t), t ∈ �.

(27)
G(g , p) = (1− p) [LH (g)− LH (υ0)]+ p [�(g)−m(t)] = 0.

(28)
G(g , p) = LH (g)− LH (υ0)+ p[LH (υ0)] + p[NH (υ0)−m(t)] = 0,

(29)G(g , 0) = LH (g)− LH (υ0) = 0

(30)G(g , 1) = �(g)−m(t) = 0.

(31)g(t) = g0(t)+ pg1(t)+ p2g2(t)+ · · · pngn(t).

(32)

g(t) = lim
p→1

gn(t) = g0(t)+ g1(t)+ g2(t)+ g3(t)+ g4(t)+ · · ·

The application of He’s homotopy perturbation 
method (He 1999) is subsequently demonstrated for a 
system of ordinary differential equations of fractional 
order using the following algorithm:

The fractional-order derivative of Eq. (2) can be writ-
ten as:

Using the HPM method as described in Olayiwola 
et  al. (2023) and Abdulaziz et  al. (2008), the theory of 
HPM can be applied to Eq.  (33). Consider a system of 
ordinary differential equations of Caputo fractional 
order α defined as:

Constructing a homotopy for Eq.  (34) is written as 
follows:

Simplifying Eq. (35) results in

where p ∈ (0, 1) is an embedding parameter. At p = 0, 
Eq. (36) becomes linear such that the following equation 
is obtained:

At p = 1, the original equation in (37) is obtained. 
Let’s assume a solution series embedding the parameter 
p for (36) such that

Substituting Eq.  (38) into Eq.  (36) and comparing the 
coefficients of equal powers of p , the following series of 
equations is obtained:

(33)

Cdα1S(t)
dtα1

= �− µS(t)− KS(t)I(t)
Cdα2E(t)

dtα2
= KS(t)I(t)− (µ+ τ + σ)E(t)+ ϕR(t)

Cdα3 I(t)
dtα3

= τE(t)− (µ+ η + δ)I(t)
Cdα4T (t)

dtα4
= ηI(t)− (µ+ θ)T (t)

Cdα5R(t)
dtα5

= θT (t)+ σE(t)− (µ+ ϕ)R(t)































.

(34)
CdS

α1
i (t)

dtα1
= f (t, S1, S2, S3, . . . Sn) i ∈ N ,

(35)

(1− p)
CdS

α1
i (t)

dtα1
− p

(

CdS
α1
i (t)

dtα1
− f (t, S1, S2, S3, . . . Sn

)

= 0, i ∈ N .

(36)
cdS

α1
i (t)

dtα1
= p

(

f (t, S1, S2, S3, . . . Sn)
)

,

(37)
cdS

α1
i (t)

dtα1
= 0.

(38)Si(t) = si0 + psi1 + p2si2 + p3si3, . . . p
nsin,
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and so on. Also, these systems of equation in (39) 
can be solved by applying the Riemann–Liouville 
fractional integral operator Iα1 to obtain the values 
of si1(t), si2(t), si3(t) . . . . Thus, the solution of (34) is 
obtained as:

Numerical experiment
This section detailed how the homotopy perturbation 
technique was used to run the numerical simulation that 
produced the approximate solution to the SEITR epi-
demic model.

The SEITR epidemic model’s Caputo time fractional-
order derivative in (2) is provided as:

where K =
β
N  and CDαi

t =
Cdαi

dtαi
 for i = 1, 2, 3, 4, 5.

Constructing a homotopy for (39),

(39)

p0: :
cdS

α1
i0 (t)

dtα1
= 0

p1 :
cdS

α1
i2 (t)

dtα1
= fi1(t, s10, s20, s30, . . . sn0),

p2 :
cdS

α1
i3 (t)

dtα1
= fi2(t, s10, s20, s30, . . . sn0, s11, s21, s31, . . . sn1),

(40)SiN (t) =

N−1
∑

k=0

sik(t).

(41)

CD
α1
t S(t) = �− µS(t)− KS(t)I(t)

CD
α2
t E(t) = KS(t)I(t)− (µ+ τ + σ)E(t)+ ϕR(t)

CD
α3
t I(t) = τE(t)− (µ+ η + δ)I(t),

CD
α2
t T (t) = ηI(t)− (µ+ θ)T (t),

CD
α2
t R(t) = θT (t)+ σE(t)− (µ+ ϕ)R(t),

(42)

(1− p)
dα1S(t)

dtα1
= p

(

dα1S(t)

dtα1
+�− µS(t)− KS(t)I(t)

)

,

(1− p)
dα2E(t)

dtα2
= p

(

dα2E(t)

dtα2
+ KS(t)I(t)− (µ+ τ + σ)E(t)+ ϕR(t)

)

,

(1− p)
dα3 I(t)

dtα3
= p

(

dα3 I(t)

dtα3
+ τE(t)− (µ+ η + δ)I(t)

)

,

(1− p)
dα4T (t)

dtα4
= p

(

dα4T (t)

dtα4
+ ηI(t)− (µ+ θ)T (t)

)

,

(1− p)
dα5R(t)

dtα5
= p

(

dα5R(t)

dtα5
+ θT (t)+ σE(t)− (µ+ ϕ)R(t)

)

.

The approximate solution of (41) can be assumed as:

substituting (43) for (42) and trying to compare coeffi-
cients with identical p powers

Solving Eq. (42) yields

Similarly comparing the coefficients of p1,

Applying the property of Riemann–Liouville integral 
(Liouville 1832) in Definition 1, and using solution (45), 
results in the system of equations,

(43)

S(t) = s0(t)+ p s1(t)+ p2 s2(t)+ · · · pn sn(t),

E(t) = e0(t)+ p e1(t)+ p2 e2(t)+ · · · pn en(t),

I(t) = i0(t)+ p i1(t)+ p2 i2(t)+ · · · pn in(t),

T (t) = v0(t)+ p v1(t)+ p2 v2(t)+ · · · pn vn(t),

R(t) = r0(t)+ p r1(t)+ p2 r2(t)+ · · · pn rn(t),

(44)
p0 :

•
s0(t) = 0,

•
e0(t) = 0,

•

i0(t) = 0,
•
v0(t) = 0,

•
r0(t) = 0,

(45)
s0(t) = s0, e0(t) = e0, i0(t) = i0, v0(t) = v0, r0(t) = r0.

(46)

dα1S1(t)

dtα1
= �− µs0(t)− Ks0(t)i0(t),

dα2E1(t)

dtα2
= Ks0(t)i0(t)− (µ+ τ + σ)e0(t)+ ϕ r0(t),

dα3 I1(t)

dtα3
= τ e0(t)− (µ+ η + δ)i0(t),

dα4T1(t)

dtα4
= ηi0(t)− (µ+ θ)v0(t),

dα5R1(t)

dtα5
= θv0(t)+ σ e0(t)− (µ+ ϕ)r0(t).
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The coefficients of p2 equally yield:

By solving these equations, the second approximation 
is achieved as follows: s2(t) = Ks0((σ + η + µ)i0 − τ e0)

t
α3+α1

Ŵ(α3+α1+1)
+ Ki0(Ks0i0 + µs0 −�) t

2α1

Ŵ(2α1+1)

+µ(Ks0i0 + µs0 −�) t
2α1

Ŵ(2α1+1)

(47)

S1(t) = (�− Ks0i0 − µs0)
tα1

Ŵ(α1 + 1)
.

E1(t) = (Ks0i0 − ϕr0 + (σ + τ + µ) e0)
tα2

Ŵ(α2 + 1)
.

I1(t) = (−(δ + η + µ)i0 + τ e0)
tα3

Ŵ(α3 + 1)
.

Q1(t) = (ηi0 − (µ+ θ) v0)
tα4

Ŵ(α4 + 1)
.

R1(t) = (σ e0 + θv0 − (ϕ + µ)r0)
tα5

Ŵ(α5 + 1)

(48)

dα1S2(t)

dtα1
= −µs1(t)− Ks0(t)i1(t)− Ks1(t)i0(t),

dα2E2(t)

dtα2
= Ks0(t)i1(t)+ Ks1(t)i0(t)− (µ+ τ + σ)e1(t)+ ϕ r1(t),

dα3 I2(t)

dtα3
= τ e1(t)− (µ+ η + δ)i1(t),

dα4T2(t)

dtα4
= ηi1(t)− (µ+ θ)v1(t),

dα5R2(t)

dtα5
= θv1(t)+ σ e1(t)− (µ+ ϕ)r1(t).

e2(t) =− Ks0((σ + η + µ)i0 − τ e0)
t
α3+α1

Ŵ(α3 + α1 + 1)

− Ki0(Ks0i0 + µs0 −�)
t
α1+α2

Ŵ(α1 + α2 + 1)

− ϕ((µ+ ϕ)r0 − σ e0 − θ v0))
t
α5+α2

Ŵ(α5 + α2 + 1)

+ σ(−Ks0i0 + (τ + µ+ σ)e0 − ϕr0)
t
2α2

Ŵ(2α2 + 1)

+ τ (−Ks0i0 + (τ + µ+ σ)e0 − ϕr0)
t
2α2

Ŵ(2α2 + 1)

+ µ(−Ks0i0 + (τ + µ+ σ)e0 − ϕr0)
t
2α2

Ŵ(2α2 + 1)

i2(t) =− τ(−Ks0i0 + (τ + µ+ σ)e0 − ϕr0)

t
α2+α3

Ŵ(α2 + α3 + 1)
+ σ(σ i0 + (τ + µ)i0 − τ i0)

t
2α3

Ŵ(2α3 + 1)
+ η(σ i0 + (τ + µ)i0 − τ i0)

t
2α3

Ŵ(2α3 + 1)

+ µ(σ i0 + (τ + µ)i0 − τ i0)
t
2α3

Ŵ(2α3 + 1)

where α1 = α2 = α3 = α4 = α5 = α.
In the same way, subsequent approximations 

sk(t), ek(t), ik(t),Tk(t), rk(x, t) , k = 3, 4, . . . n can be com-
puted using MATHEMATICA software.

Results
Numerical simulations and analysis of ℜ0.

Experiment I
Sensitivity analysis on R0
We analyze the effect of some model parameter on R0 
using the formula presented below and parameter in 
Table 2

T2(t) =µ(−ηi0 + (θ + µ)v0)
t
2α4

Ŵ(2α4 + 1)

− θ(−ηi0 + (θ + µ)v0)
t
α2+α3

Ŵ(α2 + α3 + 1)

− η((σ i + η + µ)i0 − τ e0)
t
α3+α4

Ŵ(α3 + α4 + 1)

r2(t) =µ(µr0 + ϕr0 − (θ − σ)v0)
t
2α5

Ŵ(2α5 + 1)
+ ϕ(µr0

+ ϕr0 − (θ − σ)v0)
t
2α5

Ŵ(2α5 + 1)

− θ(−ηi0 + (θ + µ)v0)
t
α4+α5

Ŵ(α4 + α5 + 1)

− σ(−Ks0i0 + (µ+ τ + σ)e0 − ϕr0)
t
α5+α2

Ŵ(α5 + α2 + 1)

Table 2  Parameters of the model and their respective values

Parameter Value Unit References

� 5.42 yr−1 Schrager et al. (2020)

β 0.0375 yr−1 Ullah et al. (2020a)

σ 0.25 yr−1 Syahrini et al. (2017)

µ 0.018 yr−1 Schrager et al. (2020)

δ 0.19 yr−1 Schrager et al. (2020)

ϕ 0.0013 yr−1 Tilahun et al. (2020)

θ 0.01 yr−1 Ullah et al. (2023)

τ 0.0019 yr−1 Schrager et al. (2020)

N 206,000,000 yr−1 Ullah et al. (2018)

η 0 < η < 1.0 yr−1 Estimated
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Fig. 2  a–d Display the behavior of the all population at various β levels
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The sensitivity of parameters η changed in the infected 
group. This suggests that raising the treatment rate η 
leads to a fall in the proportion of infected persons seek-
ing treatment, which decreases the R0 . To reduce the 
virus transmission, we must lower the rate at which 
exposed individuals become infectious, denoted by σ . 
Additionally, a decrease in sigma also negatively impacts 
the basic reproduction number R0 . Hence, the rate 
should be decreased. Lastly, prioritizing treatment plays 
a vital role in reducing TB virus transmission effectively.

Experiment II
Numerical result analysis
To eradicate tuberculosis infection, we present the 
numerical results graphically by applying the homotopy 
perturbation method to the tuberculosis model. Addi-
tionally, we present and assess the result of the effective 
contact rate (β) for the susceptible, exposed, infected, 
treated, and recovered groups in Fig. 2.

Discussion
In this research, two experiments were conducted to 
investigate the dynamic behavior of the tuberculosis 
model. Experiment II is presented in Figs. 3 and 4, illus-
trating the impact of the treatment rate η on the suscepti-
ble, exposed, infected, treated, and recovered population 
growth. The graphs revealed a decrease in the suscepti-
ble, exposed, and infected populations as the fractional 
order increased. Interestingly, the treated class showed 
an increase with higher treatment values, while the 
recovered class indicated a rise in population, suggesting 

(49)S
R0
F =

∂R0

∂F
·
F

ℜ0

where F = (β , σ , η,µ, δ, τ ).
that many individuals would recover from the disease. 
Notably, a higher treatment rate resulted in a decrease in 
the population.

Furthermore, the study analyzed the effect of the con-
tact rate, which revealed that a higher rate led to fewer 
susceptible individuals becoming infected. Experiment 
I provided sensitivity index results in Table 3, and Fig. 5 
displays the graph of each parameter affecting the basic 
reproductive number R0 . Through this analysis, the study 
identified key parameters significantly influencing the 
growth of the basic reproductive number. The results and 
graph demonstrated that increasing the treatment rate 
η correlated with a decline in the proportion of infected 
individuals seeking treatment, consequently reduc-
ing the reproductive number. Additionally, the rate at 
which exposed individuals become infectious τ positively 
impacts R0 , highlighting the need to reduce the value of τ 
to control virus spread. On the other hand, σ had a nega-
tive effect on the reproductive number, indicating that 
this rate should be decreased as well.

Stability analysis for both local and global equilibrium 
points was conducted. The disease-free equilibrium was 
found to be locally asymptotically stable when R0 using the 
Routh–Hurwitz criterion for stability, implying that the 
tuberculosis disease would be eradicated from the popu-
lation in this case. Furthermore, the endemic equilibrium 
was confirmed to be globally stable using the Lyapunov 
function, and no other equilibrium points were identified.

In conclusion, the study highlights that efficient treat-
ment is a crucial control measure for eradicating tubercu-
losis. By understanding the impact of various parameters 
on the disease dynamics, we can develop more effective 
strategies to combat tuberculosis and minimize its spread 
in the population.

Fig. 2  continued
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Fig. 3  a–e The dynamic effect of tuberculosis model with control and without control η = 0, 0.3, 0.6, 0.9 at different values of order α 
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Fig. 4  a–e The dynamic behavior of a fractional TB model with control η = 10 for various α values
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Fig. 5  a–f Display the impact of each parameter on R0
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Conclusions
This study introduces a mathematical model of tuber-
culosis (TB) along with a control measure to assess the 
effectiveness of interventions. The focus lies on a frac-
tional-order Caputo model for TB, enabling a measure-
ment of control methods’ impact. In our analysis, we 
conducted disease-free and endemic equilibrium, posi-
tivity and boundedness assessments of the solution, as 
well as local and global stability evaluations. Addition-
ally, we explored the basic reproduction number and 
performed sensitivity analysis. The results consistently 
highlighted the critical role of early and effective treat-
ment in curbing the spread of this serious disease. To 
accurately estimate the time fractional derivative, a reli-
able numerical method based on the homotopy pertur-
bation method was developed. The numerical findings 
were visually depicted through graphs, providing valu-
able insights. In conclusion, our study emphasizes the 
importance of seeking timely diagnosis and treatment 
for individuals affected by diseases to prevent fur-
ther transmission within society. The control measure 
proposed in the model underscores the significance 
of proactive measures in managing and controlling 
tuberculosis.
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