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Abstract 

Background  Monoamine oxidase (MAO) is an enzyme that has been targeted pharmacologically for the treatment 
of depression and neurodegenerative diseases such as Parkinson’s disease. To avoid side effects, drugs currently in use 
must selectively target either of the enzyme’s two isoforms, A or B. In this study, we designed molecules derived from 
chalcone as potential reversible and selective inhibitors of isoform A of the MAO enzyme.

Results  Ten thousand one hundred compounds were designed and screened using molecular docking, considering 
the pharmacokinetic processes of chemical absorption, distribution, metabolism, and excretion. Density functional 
theory calculations were performed for the main ligands to evaluate their reactivity. Six drugs qualified as reversible 
and irreversible inhibitors of both isoform A and isoform B. Among these, molecule 356 was found to be a reversible 
inhibitor with the best performance in selectively targeting isoform A of the MAO enzyme. The interaction stability 
of ligand 356 in the isoform A binding site was confirmed by molecular dynamics. One hydrogen bond was found 
between the ligand and the cofactor, and up to six hydrogen bonds were formed between the ligand and the 
protein.

Conclusions  We selected a drug model (molecule 356) for its high affinity to isoform A over isoform B of the MAO 
enzyme. This proposal should decrease experimental costs in drug testing for neurodegenerative diseases. Therefore, 
our silico design of a reversible inhibitor of isoform A of enzyme monoamine oxidase can be used in further experi‑
mental designs of novel drugs with minimal side effects.

Keywords  MAO-A, MAO-B, Inhibitor, Reversible, DFT, Molecular docking, Molecular dynamics

*Correspondence:
A. R. Hernandez‑Martinez
angel.ramon.hernandez@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42269-023-01018-9&domain=pdf
http://orcid.org/0000-0003-1594-2546


Page 2 of 13Reyes‑Chaparro et al. Bulletin of the National Research Centre           (2023) 47:46 

Graphical Abstract

Background
Monoamine oxidase (MAO) has been a pharmaco-
logical target for treating depression and neurodegen-
erative diseases due to its role in regulating the levels 
of neurotransmitters in the brain. This enzyme (EC 
1.4.3.4.) is a flavoenzyme that metabolizes a wide range 
of primary, secondary, and tertiary monoamines, but 
has a lower affinity for diamines. MAOis expressed in 
most body tissues, with the highest levels in the liver 
(Mardani Moghanaki et al. 2022; Mondovì and Finazzi 
Agrò 1982; Shih and Lan 1990). It is located on the 
outer membrane of the mitochondria inside the cell 
and forms dimers (Denney and Denney 1985; Edmond-
son et al. 2009; Yelekçi and Erdem 2023). There are two 
MAO isoforms, MAO-A and MAO-B, encoded by dif-
ferent genes but with 70% coincidence in their amino 
acid sequence (Finberg 2014; Khan et al. 2022). MAO-A 
and MAO-B are integral mitochondrial outer mem-
brane proteins and, as isoenzymes, are distinguished 
from each other by differences in substrates and inhibi-
tor specificities (Finberg 2014). MAO-A is inactivated 
by the irreversible inhibitor clorgyline, and it oxidizes 
serotonin, norepinephrine, and epinephrine (Aboutabl 
et al. 2021), whereas MAO-B is inactivated by the irre-
versible inhibitors pargyline and selegiline and it oxi-
dizes phenylethylamine and benzylamine. Tyramine 
and tryptamine are oxidized by both MAO-A and 
MAO-B. They also have differences in their tissue dis-
tribution, e.g., placental tissue contains predominantly 
MAO-A, while platelets and lymphocytes express only 
MAO-B (Chen and Shih 1997; Edmondson et al. 2009; 
Hitge et al. 2022).

Both MAO-A and MAO-B play a critical role in the 
elimination of neurotransmitters such as norepinephrine, 
serotonin, and dopamine from the brain. Changes in the 
activity of these enzymes are linked to various psychiat-
ric pathologies. The study of drugs successfully used for 
treating severe depression has led to the development of 
two theoretical models to explain their mechanisms of 
action, one of which is known as “cerebral monoamine 
deficiency”.

The “cerebral monoamine deficiency” model is shown 
in Fig.  1. The noradrenergic, serotonergic, and dopa-
minergic neuronal pathways start in the cerebral cor-
tex expanding toward lower brain structures and 
modulating mental processes such as thoughts, feelings, 
and other cognitive activities. Certain antidepressant 
drugs are known to block the reuptake of monoamines 
(norepinephrine, serotonin, or dopamine) by presynap-
tic neurons. This is achieved by inhibiting MAO-A or 
MAO-B, which are responsible for the degradation of 
monoamines.

MAO-A inhibitors are effective in decreasing the 
metabolism of norepinephrine and 5-HT; for this reason 
they are used as antidepressants, while MAO-B inhibi-
tors are used for the treatment of Parkinson’s disease due 
to their role in dopamine metabolism (Finberg and Rabey 
2016). MAO inhibitors can be irreversible or reversible 
in effect and can be selective for MAO-A or MAO-B. 
Nevertheless, the use of non-selective and irreversible 
inhibitors requires dietary restrictions due to serious 
cardiovascular effects that occur if during treatment, 
foods containing tyramine are consumed; interactions 
with those inhibitors have been called “cheese effect” and 
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tyramine is found (in these cases) mainly in sympathetic 
neurons (Finberg and Gillman 2011; Rendić et al. 2022). 
It is also reported that the effects of these non-selec-
tive and irreversible drugs can result in the suicide of a 
patient (Finberg 2014). Hence, a selective and reversible 
inhibition of MAO-A is desirable to treat most depres-
sive disorders.

On the other hand, Computer-aided drug discovery 
(CADD) is being widely used in the development of 
new drugs, from pharmaceutical industries to research 
groups (Medina-Franco 2021). CADD includes vari-
ous theoretical disciplines such as cheminformatics, 
bioinformatics, data mining and more recently artifi-
cial intelligence (López-López et  al. 2021). Molecular 
docking is a tool that searches for the most feasible 
binding geometry of a ligand in the 3D space of the 
receptor active site, positions are scored resulting in 
interaction strength (Kitchen et al. 2004; Madanagopal 
et al. 2022). Density functional theory (DFT) reformu-
lates the problem to be able to obtain, for example, the 
energy and electron distribution of the ground state, 
working with the electron density functional instead 
of the wave function (Hoffmann and Rychlewski 2002). 
With the theory of density functionals, certain molecu-
lar descriptors such as chemical potential, hardness, 
and softness can be rigorously defined and quantified 

because DFT works with electronic density (LaPointe 
and Weaver 2007; García-Toral et  al. 2022; Zhao et al. 
2022).

The use of computational tools in research for new 
drugs has proven to be highly efficient in terms of cost 
and benefit, providing new opportunities to increase the 
precision and effectiveness of the drug development pro-
cess through in silico methods. This paper presents the 
results of our research and development efforts focused 
on designing a new selective and reversible MAO inhibi-
tor drug with fewer side effects using CADD tools. In 
this regard, an in silico design of novel reversible MAO 
inhibitor drugs was proposed, which could de-absorbed 
from the substrate by competition effects with serotonin 
at high concentrations and could prevent the serotoner-
gic syndrome.

Results
A total of 10,100 chalcone-derived molecules were 
obtained (Additional files 1, 2, and 3); then different 
screening techniques were used for physicochemical 
properties, molecular docking, molecular dynamics, and 
DFT calculations to select the best candidates. Drugs 
used as MAO-A inhibitors were evaluated as a reference 
comparison.

Fig. 1  Simplified schematization of the mechanism of action of monoamine oxidase inhibitors
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Molecular docking and dynamics
The resulting molecules of the chalcone derivatives were 
selected based on the docking results. The highest affin-
ity energy observed between chalcone derivatives and 
MAO-A was 13  kcal/mol (Table  1); however, this mol-
ecule (335) has also high affinity for MAO-B, which 
would not allow selectivity. In consequence, the mol-
ecule selected was ligand 356 due to its high affinity for 
MAO-A and low affinity energy for MAO-B, which sug-
gests selective binding properties.

Compound 356 (Fig.  2a) occupies the active site of 
the MAO-A protein, making it a potential competitive 
inhibitor (Fig. 2b). Two key interactions were presented 
as hydrogen bonding between the protein and the ligand; 
Arg206 and Gly110 (Fig. 2c). The interaction with these 
two amino acids has been previously reported for other 
molecules that have been proposed as MAO-A inhibi-
tors (Badavath et  al. 2016; Esfahani and Mirzaei 2019; 
Yusufzai et al. 2018).

The stability of the interaction was corroborated by 
molecular dynamics (Fig.  3), where it is observed that 
the root mean square deviation (RMSD) between the 
protein, the ligand and the cofactor is less than 0.6  nm 
(Fig.  3a). There is a hydrogen bond between the ligand 
and the cofactor. Still, it is not stable over time, and up 
to 6 hydrogen bonds are formed with the ligand and the 
protein, giving stability to the molecule at the binding 
site of the protein (Fig. 3b). The root mean square fluc-
tuation (RMSF; Fig. 3c) is a measure of the movement of 
the atoms of the protein chain; the region with the great-
est movement of the MAO-A is the beginning between 
1 and 200 atoms. Radius of gyration (Rg) was measured 

in the entire trajectory, the results show a variation of 
0.05 nm (2.32–2.37 nm), which verifies the stability of the 
tertiary structure of the protein with respect to its center 
of mass (Fig. 3d). MD results indicate that the interaction 
between compound 356 and MAO-A is stable and will 
also have selectivity with respect to MAO-B.

On the other hand, molecular docking studies of the 
inhibitors show that the affinity energy varies between 
− 6.10 and − 8.87 kcal/mol (Table 2). Irreversible inhibi-
tors would be expected to have higher affinity energy 
than reversible inhibitors. However, the results do not 
correlate; since moclobemide, a reversible inhibitor has 
higher affinity energy than irreversible inhibitors. There-
fore, the affinity energy result cannot be considered as 
a measure of the potential reversibility of the proposed 
compounds. Hence, new studies were proposed using 
molecular dynamics and DFT calculations.

Density functional theory (DFT) calculations
DFT results were used to evaluate the reactivity of 
the molecules, in order to select the best candidates 
that could be reversible inhibitors of MAO-A such as 
moclobemide. Considering the HOMO–LUMO energy 
change (ΔE), which has a direct correlation with the 
rest of the values (Fig. 4), the MAO-A inhibitors can be 
divided into three groups: pargyline and tranylcypromine 
with values of 5.9 and 5.8 eV, phenelzine and clorgyline 
with a ΔE of 4.7 eV, and finally the M30 which has a lower 
value of 3.1  eV. Moclobemide, which is the reference 
molecule as a reversible inhibitor, has a lower value than 
the first two groups, but higher than M30. The HOMO–
LUMO energy change is an indicator of the kinetic sta-
bility of the molecule. The higher the ΔE, the greater the 
stability of the molecule; a high reactivity of the molecule 
is associated with a lower value of ΔE (Luo et  al. 2006; 
Miar et al. 2021).

DFT results analyses of already approved drugs were 
used as a comparison point. A color gradient was estab-
lished from red to green, with the most reactive drugs 
being represented by the red end and the most stable 
ones by the green end (Table 3).

Ionization potential (I) is the energy required to 
remove an electron from the ground state of a molecule; 
if a higher energy is required, it is considered more sta-
ble (green). On the other hand, the electron affinity (A) is 
the energy released when a molecule in its ground state 
captures an electron; a high value of ionization potential 
indicates chemical stability (green), while a high value of 
electron affinity indicates that it is more likely to accept 
electrons and therefore more unstable (red). The ioniza-
tion potential has values from 5.6 to 5.77 eV in the MAO-
A, except for phenelzine, which has a value of 4.6  eV; 
no difference is observed in this parameter between 

Table 1  Docking molecular score of chalcone derivatives with 
MAO-A and MAO-B enzymes

Assays were performed using Autodock VINA software, values are affinity energy 
(Kcal/mol)

Ligand MAO-A MAO-B Difference

356 − 12.9 − 8.8 − 4.1

541 − 12.7 − 9.8 − 2.9

542 − 12.8 − 11.1 − 1.7

1780 − 13.3 − 11.7 − 1.6

2041 − 12.7 − 11.3 − 1.4

152 − 12.6 − 11.4 − 1.2

33 − 12.6 − 11.7 − 0.9

335 − 13 − 12.2 − 0.8

125 − 12.9 − 12.1 − 0.8

343 − 12.6 − 11.8 − 0.8

1006 − 12.8 − 12.2 − 0.6

1630 − 12.7 − 12.2 − 0.5

154 − 12.6 − 12.4 − 0.2
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Fig. 2  a Molecule 356 and SMILE code; b Interaction resulting from molecular docking assays between the 356 ligand and the MAO-A protein; c 2D 
diagram of amino acid interaction
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reversible and irreversible inhibitors. While the elec-
tronic affinity presents two extremes, from − 0.254 to 
2.7 eV, leaving moclobemide at an intermediate value of 
1.19 eV.

Hardness (η) and softness (σ) are descriptors of the 
behavior of a molecule in a chemical reaction. Hard 
molecules have a high resistance to changing their elec-
tron distribution during a reaction (higher values are 
stable, green), while soft molecules have a low resist-
ance to changing their electron distribution during a 
reaction (lower values are stable, green). As in previous 

parameters, moclobemide has an intermediate value 
between the rest of the irreversible inhibitors. It could 
be considered that a low reactivity also implies that once 
the covalent bond between flavin adenine dinucleotide 
(FAD) and the drug is formed, it cannot be easily broken.

The chemical potential (µ) indicates the possibility 
of a chemical reaction, the high value of µ (less nega-
tive) means that it is easier to donate electrons (elec-
tron donor), while a small value of µ (more negative) 
means that it is easier to accept electrons (electron 
acceptor). Moclobemide and M30 have the highest 

Fig. 3  Molecular dynamics results of the MAO-A receptor ligand-356 complex. a RMSD results of each component of the complex; b Hydrogen 
bonds formed between the components of the system; c RMSF of the MAO-A; d Radius of gyration

Table 2  Molecular docking results of the main commercial drugs used to inhibit MAO-A

Assays were performed using Autodock VINA software, 100 independent assays. Values represent mean ± standard deviation of the energy of affinity (Kcal/mol)

Drug MAO-A MAO-B Activity

Tranylcypromine − 6.49 ± 0.05 − 6.77 ± 0.099 Irreversible MAO-A + MAO-B

Phenelzine − 6.68 ± 0.05 − 6.31 ± 0.052 Irreversible MAO-A + MAO-B

Pargyline − 6.10 ± 0.05 − 6.81 ± 0.298 Irreversible MAO-A and MAO-B

Moclobemide − 8.87 ± 0.05 − 8.15 ± 0.046 Reversible highly MAO-A selective

M30 − 7.85 ± 0.05 − 7.63 ± 0.187 MAO-A and MAO-B relative brain selectivity

Clorgiline − 7.24 ± 0.05 − 7.02 ± 0.155 Irreversible highly MAO-A selective
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probability of accepting electrons in a chemical reac-
tion, with the 356 molecules having a chemical poten-
tial very close to that of moclobemide, which is the 
reversible inhibitor.

The electronegativity (χ) of a molecule measures its 
ability to attract electrons, a lower value is more sta-
ble (green). Electrophilicity (ω) is a predictor of the 
electrophilic nature of a chemical species; measures 
the propensity of the molecule to accept an electron, 
with high values of ω they are more reactive (red). 
The following is a classification of organic molecules 
based on electrophilicity; weak electrophiles have ω 
less than 0.8 eV, moderate electrophiles have ω in the 
range between 0.8 and 1.5 eV, and strong electrophiles 
have ω greater than 1.5  eV (Edim et  al. 2021). Based 
on this classification, pargyline, phenelzine, and tra-
nylcypromine are moderate electrophiles, and all other 
molecules are strong electrophiles. The highest values 
of electronegativity and electrophilic are for drug M30, 
which presented different values from the rest of the 
drugs.

In brief, molecule 356 was the best candidate to 
inhibit MAO-A, due to its high affinity for MAO-A 
(− 12.9 kcal/mol), and low affinity energy for MAO-B 
(− 8.8  kcal/mol), which indicates good selectivity. 
Additionally, molecule 356 presents electronic char-
acteristics and values of medium reactivity similar to 
moclobemide, considering M30 as a more reactive 
molecule and pargyline as a more stable molecule.

Discussion
Chalcone derivatives have served as the central nucleus 
for the design of drugs such as antimicrobials (Guo 
et  al. 2019), anticancer (Ouyang et  al. 2021), and anti-
inflammatories (Amir et al. 2022), among others (Duran 
et  al. 2021; Weyesa et  al. 2021). Proposals for chalcone 
derivatives as MAO-B inhibitors have been made using 
coumarin conjugates (Moya-Alvarado et  al. 2021), eth-
oxylated derivatives (Maliyakkal et  al. 2022), aldoxime 
and hydroxy functionalized (Oh et  al. 2022). MAO-A 
inhibitors derived from chalcone have also been designed 
and they have activity as antidepressants (at a dose of 
100 mg/kg) and selectivity for this isoform A (Tan et al. 
2022). Chalcone’s pharmacological and pharmacokinetic 
properties can be modified by introducing different sub-
stituents on either of its two rings or by attaching other 
biologically active functional groups (Gomes et al. 2017). 
These chalcone derivatives features have prompted our 
decision of selecting these compounds for studying viable 
drugs to treat neurodegenerative disorders.

We obtained the new molecules considering that the 
MAO-A active site is hydrophobic, and it has a differ-
ent shape from MAO-B. MAO-A active site allows larger 
molecules to interact with the FAD (flavin adenine dinu-
cleotide) cofactor for not having a constriction (tunnel) 
(Ramsay et al. 2020; Maršavelski et al. 2022).

Irreversible inhibition occurs due to the formation 
of a covalent bond between the inhibitor and FAD. 
For example, tranylcypromine forms an adduct at C4a 
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Table 3  DFT results of MAO-A inhibitors and new molecules

All values are in eV. Gradient color is based on the stability, where green is the most stable and red the most reactive. Results were calculated using Eqs. 1, 2, 3, 4, 5, 6, 
7 and 8.
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(Bonivento et al. 2010; Ramsay et al. 2020), while phen-
elzine, pargyline, clorgyline, selegiline, and rasagiline 
form adducts on N5 (Binda et al. 2002, 2004, 2008; De 
Colibus et al. 2005). Some studies determined that the 
interaction of inhibitors with the FAD cofactor should 
be a reversible interaction in drug design (Binda et al. 
2005; Borštnar et  al. 2011; Ganesan 2018; Mardani 
Moghanaki et  al. 2022). Our results indicate that a 
covalent bond will not be formed as there is no stable 
interaction between the ligand and the FAD.

Irreversible inhibitors are expected to have higher 
affinity energy than reversible inhibitors. However, 
moclobemide was the drug with the highest affinity 
energy for MAO-A with respect to MAO-B (0.72 kcal/
mol), and this is a selective reversible inhibitor (Hae-
fely et  al. 1992; Kumar et  al. 2022). Therefore, we did 
not consider the affinity energy as a measure of the 
potential reversibility of the proposed compounds. To 
address this issue, we proposed a complete study using 
molecular dynamics and DFT calculations. Although 
MAO-A irreversible inhibitors have been reported to 
be more effective than antidepressants, side effects 
represent a health problem, so inhibitors such as 
moclobemide are more recommended (Shulman et al. 
2013).

Various studies indicate that molecular docking 
results coincide with experimental selectivity of the 
affinity of inhibitors between MAO-A and MAO-B 
(Chaurasiya et al. 2019; Larit et al. 2018; Yelekçi et al. 
2007).

The analysis of our docking results indicates that 
compound 356 occupies the active site of the MAO-A 
protein and therefore could be a potential competi-
tive inhibitor, as mentioned in the results section. The 
stability of the interaction of compound 356 was cor-
roborated by molecular dynamics and the results indi-
cate that the interaction between compound 356 and 
MAO-A is stable and will also have selectivity with 
respect to MAO-B. Indicating that this molecule has 
potential as a component in a drug design for its inhib-
itory activity of MAO-A, and for being selective and 
reversible.

The comparison of our proposed compound with 
inhibitors of MAO-A and MAO-B currently used such 
as pargyline, tranylcypromine, phenelzine, clorgiline, 
moclobemide and M30 indicates that compound 
356 has medium stability, with similar behavior with 
moclobemide. Therefore, this study allows the possi-
bility for an in vitro and in vivo evaluation. Computa-
tional studies such as ours can enhance the generation 
of new drugs because they are inexpensive compared 
with experimental studies for each molecule.

Conclusions
In this study, a library of 10,100 compounds was gener-
ated and screened using bioinformatic tools to obtain the 
best molecule to selectively and reversibly inhibit MAO-
A. Molecule 356 showed the best characteristics of high 
affinity for MAO-A with respect to MAO-B, stability in 
the binding site and electronic characteristics that will 
allow it to be a reversible inhibitor. The feature of being a 
reversible inhibitor could minimize the side effects of the 
drug, because it may not interfere with enzyme’s func-
tion when monoamine concentrations are low This pro-
posal should decrease experimental costs in drug testing 
for neurodegenerative diseases. Therefore, our in silico 
design of a reversible inhibitor of isoform A of enzyme 
monoamine oxidase can be used in further experimental 
designs of novel drugs with minimal side effects.

Methods
Chalcone backbone was used as the starting structure to 
perform different substitutions with R groups at para and 
meta positions (Fig. 5A, B, respectively). Ten different R 
groups were used as substituents (Fig.  5C), from three 
pharmacophoric groups: hydrophobic, hydrogen bond 
donors and acceptors. The SMILIB software (Schüller 
et al. 2007) was used and 100 molecules (resulting from 
substitutions in para) and 10,000 molecules (from sub-
stitutions in meta) were obtained in SMILES code. Both 
resulting databases (10,100 compounds) were opened 
in DataWarrior software (Sander et  al. 2015; Yang et  al. 
2019), where they were screened using the following cri-
teria: ≤ 5 hydrogen bond donors, ≤ 10 hydrogen bond 
acceptors, molecular weight ≤ 500  Da, and cLogP ≤ 5. 
Obtaining a resulting database of 3321 molecules. 3D 
coordinates of the resulting molecules were constructed 
using OpenBabel software (O’Boyle et  al. 2011) and 
transformed into pdbqt format.

Molecular docking assays were performed to select the 
best ligands. Crystallized MAO-A protein (code 2BXR) 
was downloaded, UCSF Chimera software was used to 
clean the protein and add polar hydrogens, only FAD 
cofactor was preserved (Pettersen et  al. 2004). Using 
AutoDock Tools software, the protein was converted to 
pdbqt format, and the grid coordinates for directed dock-
ing with AutoDock VINA were generated, and virtual 
screening was performed using bash scripting (Jaghoori 
et  al. 2016; Trott and Olson 2010). The 100 molecules 
with the highest affinity energy were selected and molec-
ular docking assays were performed with MAO-B (code 
2V5Z), selecting the 10 molecules with the greatest dif-
ference between the affinity energy of both enzymes 
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(Table  1). For comparison purposes, molecular docking 
was performed with the common drugs used as MAO-A 
inhibitors, with the enzymes MAO-A and MAO-B 
(Table 2) (Happe 2007).

Molecular dynamics tests were carried out to evalu-
ate the stability of the ligand-receptor complexes that 
resulted from the molecular docking tests. Charmm-gui 
platform was used to prepare the different inputs, and the 
Gromacs 2021.1 software for molecular dynamics (Abra-
ham et al. 2015; Jo et al. 2008; Lindahl et al. 2021; Kutzner 
2022). Each protein was preprocessed using the PDB 
reader tool (Jo et al. 2014). On the other hand, the result-
ing docking ligands with the highest affinity energy were 
selected and changed to mol2 format using OpenBabel 
(O’Boyle et al. 2011). The “mol2” files of the ligands were 
loaded into the Ligand Reader & Modeler tool to generate 
the parameters and topology files (Kim et al. 2017). The 
ligand-receptor complexes were integrated into a single.
pdb file to be used in the “Solution Builder’’ tool to create 
the system that was used as input for Gromacs (Lee et al. 
2016). Water box was cubic, fit to protein size, and 10 Å 
of edge distance. Each system was neutralized using KCl 
ions placed by Monte-Carlo method, at concentration 
of 0.15  M. Each system underwent 5000 steps of steep-
est descents energy minimization to remove steric over-
lap. Afterward, all the systems were subjected to a NVT 
(constant number of particles, volume and temperature) 
equilibration phase for 125,000 steps, using the V-rescale 

temperature-coupling method, with constant coupling 
of 1 ps at 303.15 K (Bussi et al. 2007). Subsequently, the 
molecular dynamics was carried out for 100 ns using the 
CHARMM36m force field (Vanommeslaeghe et al. 2010). 
Trajectory Analysis: Gromacs utilities were used to 
evaluate the root mean square deviation (RMSD) of the 
complexes, as well as that of each protein and ligand, root 
mean square fluctuation (RMSF), and hydrogen bonds. 
The data were graphed using the GRACE program.

DFT calculations were performed using Gaussian 09 
software. GaussView 5.0.8 graphical interface was used 
to design the molecules (Frisch et al. 2016). Subsequently, 
calculations and optimization were made using the 
Becke-3 Parameter-Lee–Yang–Parr (B3LYP) model and 
the base 6-31G to optimize the best conformation of the 
molecules (Runge & Gross 1984). First step was the opti-
mization of the geometric structures and vibrational fre-
quencies in search of a minimum of local energy, which is 
corroborated by verifying that the frequencies presented 
in the calculation are not negative. Next, the ionic energy 
and cationic energy calculations for the minimum energy 
structures were performed. Finally, the electronic ener-
gies, ionization potentials, electronic affinity, hardness, 
and softness for each molecule were obtained.

Quantum calculations allow us to understand the stabil-
ity of molecules and their chemical reactivity. Koopmans 
developed a theorem to relate the chemical activities of 
molecular structures to their electronic properties (Luo 

Fig. 5  Developmental components of chalcone derivatives. A Substitution of chalcone in para sites of benzene rings. B Substitution in meta sites. C 
Substituents used in both substitution schemes. Images generated using MarvinSketch
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et al. 2006). Quantum chemical descriptors derived from 
Koopman theorem: ionization potential (I), electron 
affinity (A), hardness (η), softness (σ), chemical potential 
(µ), electronegativity (Χ), and electrophilicity (ω). These 
parameters are derived from HOMO energy and LUMO 
energy calculations that are mathematically defined below:

Equations 1–8:
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