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Abstract 

Background:  Leishmaniasis is one of the neglected tropical diseases which is prevalent in the tropical regions of the 
world most especially in Africa. It is caused by the Leishmania species and transmitted to humans majorly through 
the bite of the female sandfly. This study was carried out in support of the continuous search for new drug molecules 
effective enough for the treatment of leishmaniasis, and which have very limited side effects. This study was focused 
on a combined 2-D and 3-D QSAR modeling of thirty-six arylimidamide-azole hybrids, molecular docking study, 
design, and pharmacokinetic analysis of some selected and newly designed arylimidamide-azole analogs. The density 
functional theory (DFT) with B3LYP and 6-31G** basis set was employed for the geometry optimization of the various 
compounds. Genetic function approximation (GFA) and multi-linear regression (MLR) approaches were used for the 
2-D QSAR model building, while the fractional factorial design (FFD) and uninformative variable elimination-partial 
least square (UVEPLS) were employed for building the 3-D QSAR model. Pyridoxal kinase (PdxK) receptor (PDB: 6K91) 
was the target protein of interest in this study.

Results:  The built 2-D and 3-D QSAR models were found to satisfy the requirement of both internal and external 
validation tests as follows: 2-D QSAR; R2 = 0.9614, R2

adj = 0.9513, Q2
cv = 0.9350, R2

test = 0.6766 and cRp2 = 0.8779, and 
for 3-D QSAR (UVEPLS at PC = 5); R2 = 0.9839, Q2

LOO = 0.7539 and Q2
LTO = 0.7367. The CoMFA steric and electrostatic 

field contributions were 68.96% and 31.04%, respectively. All the designed analogs showed higher predicted activi-
ties than that of the template (36). Also, the new compounds showed higher binding affinities (MolDock scores) than 
that of the reference drug pentamidine (− 141.793 kcal/mol), with 36e showing the highest negative MolDock score 
of − 208.595 kcal/mol. Additionally, these newly designed compounds were said to be orally bioavailable (excluding 
36f and 36g that violated 2 of the Lipinski’s provisions), with perfect intestinal absorption, less difficult to synthesize, 
AMES toxicity free, and showed strong interactions with the target.

Conclusions:  The newly designed compounds especially 36e have shown a marked pharmacological improvement 
over the template molecule and are therefore recommended for further practical evaluation as superior pyridoxal 
kinase inhibitors.
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Background
Leishmania species is a group of protozoan parasites 
responsible for leishmaniasis, a neglected tropical dis-
ease known to affect a global population of up to 350 
million people majorly in the tropical regions (Al-
Tamimia et  al. 2019; Baquedano et  al. 2016). Three 
common clinical manifestations were earlier reported 
as cutaneous, mucocutaneous, and visceral leishma-
niasis (VL) (Díaz et  al. 2019). Among these forms, 
cutaneous is the most common, while VL is the most 
fatal (Keurulainen et  al. 2018). Specific species caus-
ing VL include Leishmania Donovani (L. donovani) and 
L. infantum, transmitted by the insect vector (female 
sandfly) (Ugbe et  al. 2022a, b). Only a limited number 
of drugs are readily available for the treatment of leish-
maniasis such as pentamidine, amphotericin B, pento-
stam, paromomycin, and miltefosine, none of which is 
reported free from associated drug adverse effects, low 
efficacies, high cost, etc. (Fan et  al. 2018). For exam-
ple, amphotericin B has been linked to fever, nephro-
toxicity, myocarditis, chill, and hypokalemia (Ghorbani 
and Farhoudi 2018). Induction of insulin-dependent 
diabetes mellitus has been the major drawback of 
pentamidine, while paromomycin is not free from 
nephrotoxicity and ototoxicity (Seifert 2011). Also, 
most organisms had in recent times shown constant 
resistance to some of these medicines, a case which 
has greatly threatened the effective treatment of leish-
maniasis (Fan et al. 2018). Additionally, the disease has 
received less attention compared to other infections 
such as hepatitis, malaria, AIDS, diabetes, tuberculo-
sis, and cancer. As such, it has become imperative to 
develop new medicines with attributes that overcome 
all of these shortcomings.

In the continuous search for new effective drug com-
pounds, in silico approaches like the molecular dock-
ing studies, quantitative structure–activity relationship 
(QSAR), homology modeling, molecular dynamics, 
and pharmacokinetics analysis among others play a 
very crucial role because it is cost-effective, save time 
and proves effective than the crude methods (Adeniji 
et al. 2019; Ugbe et al. 2021). The connection between 
a compound’s structural properties (independent vari-
ables) and its biological activities (dependent variable) 
is usually established by QSAR (Adeniji et  al. 2019). 
Molecular docking on the other hand helps to investi-
gate the binding of ligands with the active sites of the 
target receptor (Ibrahim et al. 2020). The pharmacoki-
netic study is a crucial step in the preclinical phase 

of new drug molecules, which helps to ascertain how 
such drug compounds affect the living organism when 
administered (Lawal et  al. 2021; Ibrahim et  al. 2021). 
The choice of drug molecules for oral bioavailability has 
been widely guided by the Lipinski rule of five (RO5) 
or the Pfizer rule which considers physicochemical 
properties such as molecular weight (MW), lipophilic-
ity, hydrogen bond donors (HBDs), and hydrogen bond 
acceptors (HBAs) as necessary factors in predicting 
drug’s likelihood of being orally bioavailable (Lipinski 
et al. 2001). Also important for evaluation as part of a 
pharmacokinetics study are absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) (Ugbe 
et al. 2022a, b).

Pyridoxal kinase (PdxK) from L. donovani (PDB: 
6K91) is an interesting enzyme previously reported to 
catalyze the phosphorylation of the 5′ hydroxyl group 
of pyridoxal to form pyridoxal-5′-phosphate, an active 
form of vitamin B6 (Are et al. 2020). PdxK is an impor-
tant enzyme for parasite growth and key to host infec-
tion (Kumar et al. 2018). Chloroquine and primaquine 
which are well-known anti-malaria drugs were earlier 
reported to inhibit PdxK (Kimura et  al. 2018). There-
fore, PdxK serves as a promising protein target for 
designing new leishmanial inhibitors. Arylimidamide-
azole compounds incorporate both arylimidamide and 
azole moiety in their structures, which were reported 
to possess the advantage of interacting with the tar-
gets of both classes of compounds and which also show 
improvement in the in  vivo pharmacokinetics and/
or pharmacodynamics of these classes of molecules 
(Abdelhameed et al. 2020).

Therefore, this study was focused on a combined 2-D 
and 3-D QSAR modeling for predicting the activities of 
some arylimidamide-azole hybrids, performing molec-
ular docking studies, and design of new analogs, while 
subjecting same to pharmacokinetics analysis to evalu-
ate their drug-likeness and ADMET properties.

Methods
Data acquisition
A series of thirty-six arylimidamide-azole hybrids with 
reported biological activities (IC50 in µM) against L. 
donovani intracellular amastigotes were sourced from 
the literature (Abdelhameed 2018). The various bioac-
tivity (IC50) values were separately converted to pIC50 
using Eq.  (1) (Ugbe et  al. 2022a, b). The molecular 
structures of the various arylimidamide-azole hybrids 
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Table 1  Molecular structures of arylimidamide-azole hybrids, and pentamidine with their anti-leishmanial activities and MolDock 
scores
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Table 1  (continued)
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Table 1  (continued)
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with their observed anti-leishmanial activities, includ-
ing the molecular structure of the reference drug (pen-
tamidine), are shown in Table 1.

(1)pIC50 = −log10(IC50 × 10−6)

Table 1  (continued)

IC50-half-maximal inhibitory concentration, pIC50-negative log of IC50
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Hardware and software
The hardware used was an HP laptop computer with the 
following specifications: Processor (Intel(R) Core(TM) 
i5-4210U CPU @ 1.70  GHz 2.40  GHz), Installed 
RAM (8.00  GB), System type (64-bit operating sys-
tem, × 64-based processor), Edition (Windows 10 Home 
Single Language), Version 21H2.

Software used include ChemDraw Ultra v. 12.0.2, 
Spartan’14 v. 1.1.4, PaDEL-descriptor v. 2.20, and Drug 
Theoretics and Cheminformatics Laboratory (DTC-Lab)-
based software. Others include Material Studio v. 8.0, 
Open3Dtools, Maestro v. 12.3, Biovia Discovery Studio 
Visualizer v. 16.1.0.15350, and Molegro Virtual Docker v. 
6.0, a product of the A CLC bio company.

Molecular geometry minimization
The molecular structures of all the compounds were 
drawn using the ChemDraw Ultra, saved as MDL mol-
file format, and thereafter imported separately onto the 
Spartan’14 Graphical User Interface while enabling the 
auto conversion of 2-D models to 3-D. The imported 
molecules were initially subjected to energy minimiza-
tion and then saved in Spartan file format. The resulting 
structures were then fully optimized first by using molec-
ular mechanics force field (MMFF) and thereafter density 
functional theory (DFT) with Becke’s three-parameter 
read-Yang–Parr hybrid (B3LYP) option and utilizing the 
6-31G** basis set. The optimized structures were then 
saved as SD files and PDB formats for subsequent use in 
descriptor generation and docking, respectively (Wang 
et al. 2020; Ugbe et al. 2021).

2‑D QSAR model building
The 2-D QSAR model building began with the generation 
of molecular descriptors for all thirty-six compounds by 
feeding the various molecules in SD file format into the 
PaDEL-Descriptor software (Lawal et al. 2021). Data pre-
treatment using the DTC-Lab pretreatment tool (GUI 
1.2) was carried out to remove uninformative descriptors 
from the generated descriptors pool (Adeniji et al. 2020). 
With the aid of the DTC-Lab data division tool which 
uses the Kennard Stone method, the resulting data were 
then partitioned into a training set and test set data in the 
70:30 ratio, respectively (Kennard and Stone 1969). The 
Material studio software was used for the model building 
by employing the genetic function approximation (GFA) 
to obtain the optimum descriptor combination which 
is contained in the QSAR model equations built based 
on the multi-linear regression (MLR) approach. MLR 
establishes the relationship between the dependent vari-
able (pIC50) and the independent variables (molecular 
descriptors) (Arthur et al. 2020). The MLR equation takes 
the general form (Eq. 2) (Adawara et al. 2020):

where ‘k’s and ‘x’s are, respectively, regression coefficients 
and independent variables, Y is the dependent variable, 
and ‘C’ represents intercept or regression constant.

After the model building has been completed, the 
next important step was to subject the built models to 
an internal and external validation assessment. Some 
parameters computed from the Material studio are use-
ful for the internal validation such as correlation coef-
ficient (R2), adjusted correlation coefficient (R2

adj), and 
cross-validation coefficient (Q2cv). The Y-randomization 
test was also necessary to show how well the model pre-
dicts the activities of the training set compounds (Ada-
wara et al. 2020; Ugbe et al. 2021). To ascertain the built 
model’s ability to predict the activities of the external test 
set compounds, a validation assessment was carried out 
externally. The predictive strength of the QSAR model 
depends heavily on the correlation coefficient (R2 test) 
for the external test set (Isyaku et al. 2020). Furthermore, 
the Golbraikh and Tropsha acceptable QSAR model cri-
teria were equally considered (Roy et  al. 2013; Edache 
et  al. 2020a, b; Ugbe et  al. 2022a, b). Table  2 shows the 
selected equations and parameters used for the validation 
assessment.

Furthermore, the relative contribution of each descrip-
tor in the built QSAR model is shown by the mean effect 
(ME) values, defined as (Eq. 9):

where βj represents the coefficient j descriptor in the 
model, Dj equals each descriptor’s value for each mol-
ecule in the training set, m represents the number of 
descriptors present in the model, and n is the total num-
ber of compounds in the training set (Adeniji et al. 2019).

The variance inflation factor (VIF) defined as (Eq. 10) 
shows the extent of inter-correlation between the 
descriptors.

R2 represents the coefficient of correlation of the mul-
tiple regressions between the variables in the model. VIF 
equal to 1 shows that no inter-correlation exists for each 
variable, and for VIF values within the range of 1–5, the 
related model is acceptable, and where VIF is above 10, 
the related model is unstable and therefore cannot be 
accepted (Abdullahi et al. 2019).

Also, evaluating the applicability domain (AD) of a 
QSAR model helps to ascertain the uncertainty in the 

(2)Y = k1x1 + k2x2 + k3x3 + . . .C

(9)ME =
Bj

n
i Dj

m
j (Bj

n
i Dj)

(10)VIF =
1

(1− R2)
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prediction of compounds based on their similarity with 
the model building set. It is therefore a test of the reli-
ability and robustness of the built QSAR model (Trop-
sha et al. 2003). The AD of the built model was described 
using the leverage approach. The leverage (h) of a given 
molecule is defined thus (Eq. 11):

where X = m × k descriptor matrix of the training set 
compound, and XT = transpose matrix of X. In order to 
check for influential molecule or outlier, it is necessary to 
define the warning leverage (h*) because it provides the 
cutoff value (Eq. 12):

where m = number of training set compounds, and 
j = number of descriptors in the model.

The plot of standardized residuals versus leverages 
(William’s plot) was used to evaluate the area of signifi-
cance within the model’s chemical space. Therefore, mol-
ecules that are found within this area on the plot are said 

(11)h = X(XTX)−1XT

(12)h∗ = 3
(j + 1)

m

to be the approved predicted compounds (Veerasamy 
et al. 2011; Adeniji et al. 2020).

3‑D QSAR model building
Molecular alignment
The alignment of molecular structures plays a critical role in 
3D-QSAR modeling (Al-Attraqchi et al. 2022) as it strongly 
determines the predictive accuracy and statistical qual-
ity of any given 3D-QSAR model (ElMchichi et  al. 2020). 
Several alignment methods have been reported previously 
such as atom-based alignment, docking-based alignment, 
pharmacophore-based alignment, and co-crystallized con-
former-based alignment among others (Zhang et  al. 2020; 
Al-Attraqchi et al. 2022). In this study, the atom-based align-
ment was adopted using the Open3DAlign (O3A) software. 
The atom-based method attempts to match the atoms of the 
various structures to be aligned with those of the template 
structure, based on the atom’s properties such as the par-
tial charge. Compound 32 with the highest O3A_score was 
chosen as the template molecule, onto which the remaining 
thirty-five compounds were superimposed (aligned) and 
used to build the 3-D QSAR model.

Table 2  Some selected equations and parameters for validation of the QSAR model

SEE = Standard error of estimation, c = number of terms in the model, d = user-defined smoothing parameter, p = total number of descriptors in the model, 
M = number of data in the training set, Ῡtraining = mean experimental activity of the training set, Yexp = experimental activity in the training set, Ypred = predicted 
activity in the training set, n = number of compounds in the training set., cR2p = Y-randomization coefficient, R = correlation coefficient for Y-randomization, 
Rr = average ‘R’ of random models. Ypredtest = predicted activity of test set, Yexptest = experimental activity of test set, r2 = square correlation coefficients of the plot of 
predicted activity versus experimental activity values. ro

2 = square correlation coefficients of the plot of predicted activity versus experimental activity values at zero 
intercept. r′o

2 = square correlation coefficients of the plot of experimental activity versus predicted activity at zero intercept. k = slope of the plot of predicted activity 
against experimental activity at zero intercept

Parameter Equation Eq Significance Threshold value

Internal validation

Friedman lack of fit (LOF) LOF = SEE

(1−
c+dxp
M )

2
(3) Allows for the best fitness score to be 

obtained
–

SEE =

√
(Yexp−Ypred )

2

N−P−1

Correlation coefficient ( R2)
R2 = 1−

[ ∑
(Yexp−Ypred )

2

∑
(Yexp−Ȳtraining)2

]
(4) Measures the degree of fitness of the regres-

sion equation
 ≥ 0.6

Adjusted  R2
R2adj =

R2−p(n−1)
n−p+1

(5) Ensures the model’s stability and reliability  ≥ 0.5

Cross-validation regression coefficient ( Q2cv)
Q2
cv = 1−

[ ∑
(Ypred−Yexp)

2

∑
(Yexp−Ȳtraining)2

]
(6) Indicates a high internal predictive power  ≥ 0.5

The coefficient of determination ( cR2p ) of 
Y-Randomization

cR2p = RX [R2 − (Rr)
2
]
2 (7) This is for confirmation that the QSAR model 

built is strong and not created by chance
cR2p> 0.50

External validation

Predicted  R2 ( R2 test) R2test = 1−
∑

(Ypredtest−Yexptest )
2

∑
(Ypredtest−Ȳtraining)2

(8) Measures the ability of the model to predict 
activity values of an external set of com-
pounds

 ≥ 0.6

Golbraikh and Tropsha’s acceptable model 
criteria

|r2o − r′2o | – Assess the robustness and stability of the 
model

 < 0.3

[(r2 − r2o )/r
2
]  < 0.1

k 0.85 ≤ k ≤ 1.15
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Model development (CoMFA)
The aligned structures were used for building the 3-D 
QSAR model using the Open3DQSAR software (Edache 
et al. 2020a, b). 3-D QSAR can be comparative molecu-
lar field analysis (CoMFA) concerned with only steric 
and electrostatic fields’ contributions, or comparative 
molecular similarity indices analysis (CoMSIA) which 
deals with the steric, electrostatic, hydrophobic, hydro-
gen bond donor, and hydrogen bond acceptor fields’ 
contributions, among others (ElMchichi et  al. 2020). 
Herein, the CoMFA model is studied. A dataset of 36 
compounds was divided into a training set and a test 
set of 25 and 11 molecules, respectively, i.e., percent-
age ratio of 70:30. The steric and electrostatic molecu-
lar interaction fields (MIFs) analysis was carried out on 
the aligned compounds placed within a 3-D cubic lattice 
of grid size 1.5  Å and a 5.0  Å out gap (Tosco and Balle 
2011). Variables pretreatment was carried out as follows: 
energy cutoff (30.0 kJ/mol), elimination of variables hav-
ing constant or near-constant values, and standard devia-
tion cutoff (level = 2.0) (Al-Attraqchi et  al. 2022). The 
fractional factorial design (FFDSEL) and uninformative 
variable elimination-partial least square (UVE-PLS) were 
used to develop the statistical models and to generate the 
steric and electrostatic contour plots (Edache et al. 2022). 
The resulting models were then cross-validated using 
the leave one out (LOO), leave two out (LTO), and leave 
many out (LMO).

Molecular docking screening
A molecular docking simulation was conducted between 
the thirty-six arylimidamide-azole analogs, the reference 
drug (pentamidine), and the pyridoxal kinase (PdxK) 
receptor (PDB: 6K91) using Molegro Virtual Docker 
(MVD). PdxK in 3-D form was retrieved from the pro-
tein data bank and prepared on the Molegro Virtual 
Docker by removing water molecules, ligands, and cofac-
tors associated with the protein structure. The software 
allows for the repair (rebuild) of all affected residues. The 
receptor’s binding cavities were defined and that which 
has the largest volume and surface (volume: 398.336 and 
surface: 952.32) was adopted for the docking. All ligands 
were imported in PDB file format and prepared appropri-
ately. The simulation was carried out using the parameter 
settings available in Table  3. The predicted ligand–pro-
tein interaction profiles were then visualized using the 
Biovia Discovery Studio Visualizer. A similar method was 
earlier reported elsewhere (Ibrahim et al. 2021; Abdullahi 
et al. 2022).

Evaluation of pharmacokinetic properties
The prediction of pharmacokinetic properties plays a 
very critical role in the early stage of drug discovery. 
This is because only molecules which demonstrate good 
ADMET and drug-likeness properties reach the preclini-
cal research phase (Ugbe et  al. 2022a, b). Therefore, six 
arylimidamide-azole hybrids (21, 22, 26, 31, 33, and 
36) with the highest anti-leishmanial activities were 
subjected to drug-likeness and ADMET tests using two 
online web servers; http://​www.​swiss​adme.​ch/​index.​php 
and http://​biosig.​unime​lb.​edu.​au/​pkcsm, respectively. 
Similar tests were performed on the newly designed 
compounds (36a–36  g) to ascertain their drug-likeness 
properties. Lipinski’s RO5 also called the Pfizer rule is a 
well-established provision determining the oral bioavail-
ability of a given compound (Lipinski et  al. 2001; Lawal 
et  al. 2021). Hence, the various compounds would be 
subjected to the RO5 criterion to ascertain their oral 
bioavailability.

Table 3  Parameter settings used for the execution of the 
docking process

Setting Chosen option

Scoring function

Score MolDock score

Grid resolution 0.30Å
Binding site

Origin Volume: 398.336; Surface: 971.52

Center X: 20.73, Y: − 2.48, Z: 35.87

Radius 15

Search algorithm

Algorithm MolDock SE

Number of runs 10

Constrain poses to cavity Yes

After docking: Energy minimization Yes

After docking: Optimize H-bonds Yes

Parameter setting

Maximum iteration 1500

Maximum population size 50

Pose generation

Energy threshold 100

Simplex evolution

Maximum steps 300

Neighbor distance factor 1.00

Multiple poses

The maximum number of poses 
returned

5

Enable energy threshold 0.00

Cluster similar poses RMSD threshold: 1.00

http://www.swissadme.ch/index.php
http://biosig.unimelb.edu.au/pkcsm
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Ligand‑based drug design (LBDD)
QSAR has over the years been utilized for ascertaining the 
relationships between the bioactivities of chemical entities 
and their physicochemical properties, to obtain a reliable 
model which could be used for predicting the antipro-
liferative activities of new chemical compounds. This is 
governed by the variation of structural properties across 
compounds which in turn is responsible for the difference 
in their biological activities. 3-D QSAR has emerged as a 
more sophisticated tool for designing new molecules than 
the classical QSAR study (2-D) because it exploits the 3-D 
properties of the ligands to predict their activities (Verma 
et  al. 2010). In this study, seven compounds (36a–36  g) 
were designed via LBDD using the template compound 
(36) majorly by structural adjustments involving the addi-
tion and/or removal of certain chemical moieties or sub-
stituent groups based on the information provided by the 
steric and electrostatic fields’ contour maps. The molecular 
structures of the new molecules were prepared according 
to the procedure earlier described under the ‘molecular 
geometry minimization’ section. Molecular docking was 
conducted between the newly designed compounds and 
the target receptor (PdxK), using MVD, while utiliz-
ing the Biovia Discovery Studio to visualize the resulting 
pharmacological interactions. The bioactivities of the new 

compounds were predicted by the built 2-D QSAR model 
equation.

Results
2‑D QSAR modeling
Theoretical modeling of thirty-six arylimidamide-azole 
derivatives was conducted to establish a quantitative rela-
tionship between their structures and their inhibitory 
activities. As a result, a five-descriptor QSAR model was 
built (Eq. 13) with the descriptors well described in Table 4. 

Table 4  Selected descriptors used in the 2-D QSAR model

Key: ME—Mean effect

S/No Descriptor Description Class ME

1 AATS8p Average Moreau–Broto autocorrelation of lag 8 weighted by polarizability 2-D 0.4986

2 ATSC3c Centered Moreau–Broto autocorrelation of lag 3 weighted by Gasteiger charge 2-D  − 0.0316

3 VR1_Dzv Randic-like eigenvector-based index from Barysz matrix weighted by vdw volume 2-D  − 0.0576

4 SpMin8_Bhv Smallest eigenvalue n. 8 of Burden matrix weighted by van der Waals volume 2-D 0.6330

5 MDEC-22 Molecular distance edge between secondary C and Secondary C 2-D  − 0.0423

Fig. 1  Plot of predicted pIC50 against experimental pIC50

Fig. 2  Plot of standardized residual against experimental pIC50

Fig. 3  The plot of standardized residuals against leverages (William’s 
plot)
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The outcome of the internal and external validation assess-
ment conducted on the built model is available in Table 5. 
The computed descriptors, observed activities (pIC50), and 
the predicted activities together with their residuals are 
presented in Table 6. Also, a plot of predicted activities ver-
sus experimental activities for the training set and test set is 
shown in Fig. 1, while Fig. 2 shows the plot of standardized 
residuals against experimental activities (pIC50).

Furthermore, the result of Pearson’s correlation statisti-
cal analyses performed on all five descriptors’ values in the 
model building set is reported in Table 7. Another powerful 
validation method called Y-randomization or Y-scrambling 

(13)

pIC50 = 3.616080840∗AATS8p− 2.281588771∗ATSC3c

− 0.000838864∗VR1Dzv + 4.105572067∗SpMin8Bhv

− 0.019073658∗MDEC− 22− 2.787505814

test was equally applied, and the result is presented in 
Table 8. Finally, Fig. 3 shows the plot of standardized residu-
als against the leverages otherwise known as William’s plot 
determined to show the model’s applicability domain space.

3‑D QSAR modeling (CoMFA)
Molecular structural alignment represents a crucial fac-
tor in determining the predictive capacity of a built 3-D 
QSAR model. Figure  4a, b shows the molecular struc-
ture of the alignment template (compound 32) and the 
aligned structures as obtained from the atom-based 
superimposition of the remaining structures on the tem-
plate. Two models were developed: each from the FFD-
SEL and UVEPLS approaches. Some significant statistical 
parameters calculated for both the 3-D models are pre-
sented in Table  9. Presented in Table  10 are the O3A 
scores, experimental pIC50, and the predicted pIC50 avail-
able from the two models, as well as their residual values. 

Fig. 4  Molecular alignment of structures used for the 3D-QSAR modeling (a) Alignment template (compound 32 with the best O3A_Score of 
6594.08), (b) All structures aligned

Fig. 5  Correlation between predicted pIC50 and experimental pIC50 for training and test sets a FFDSEL, b UVEPLS
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Additionally, a plot showing the correlation between pre-
dicted and experimental activities for training and test 
sets was obtained for both models and is presented in 
Fig. 5a, b. The CoMFA model equation (FFDSEL) is sum-
marized graphically as 3-D contour maps as shown in 
Figs. 6a, b and 7a, b.

Molecular docking study
The results (MolDock scores) of the molecular docking 
simulation conducted between the receptor (PdxK) and 

the 36 arylimidamide-azole hybrids as well as the reference 
drug (pentamidine) using the Molegro Virtual Docker are 
earlier reported in Table 1. The predicted pharmacological 
interactions of compound 36 (template) and pentamidine, 
with the target receptor, are shown in Fig. 8.

Pharmacokinetics study
The results of the drug-likeness and ADMET prop-
erties investigation conducted on the selected 

Fig. 6  Visualization of the CoMFA steric field contour maps of compound 36 a Red contours represent regions of unfavorable steric bulk; b Blue 
contours represent regions of favorable steric bulk

Fig. 7  Visualization of the CoMFA electrostatic field contour maps of compound 36 a Yellow represents regions favored by high electron 
density or unfavorable to electron-withdrawing substituents; b Green represents regions of unfavorable high electron density or favorable to 
electron-withdrawing groups
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arylimidamide-azole analogues and the newly designed 
compounds are presented in Tables 11 and 12.

Ligand‑based drug design (LBDD)
A total of seven compounds were designed using the 
ligand-based drug design approach. A combined 2-D 
and 3-D QSAR approach was adopted, where infor-
mation provided by the 3-D QSAR (CoMFA) contour 
maps was used for the design, while the inhibitory 
activities of these new compounds were predicted using 
the 2D-QSAR model equation. Their molecular struc-
tures predicted activities and docking scores are pre-
sented in Table 13, while Table 14 shows their predicted 
pharmacological interaction profiles with PdxK. Also, 
the binding interactions of these compounds (excluding 
36f and 36 g) with the active sites of PdxK as visualized 
via Biovia discovery studio are presented in Figs. 9, 10, 
11. Their predicted drug-likeness and ADMET proper-
ties are earlier reported in Tables 11 and 12.

Discussion
2‑D QSAR modeling
The values of VIF reported in Table  7 range from 1 to 
5 for all 5 descriptors, indicating that the built QSAR 
model was statistically substantial and is therefore sta-
ble and acceptable. Each descriptor has an absolute 
t-statistics value of greater than 2, which shows that the 
selected descriptors were significant (Adeniji et al. 2018). 
Additionally, the calculated p values (Table  7) of these 
descriptors in the model at a 95% confidence level were 
less than 0.05. This is therefore in support of an alter-
native hypothesis that states that there is a relationship 
between the descriptors in the model equation and the 
compounds’ inhibitory activities at p ˂ 0.05.

The strength and direction of each descriptor’s contri-
butions in the built QSAR model are determined by the 
value of the mean effect (ME) (Table 4). The magnitude 
of ME signifies the extent to which the descriptor influ-
ences the molecule’s inhibitory activity, while the sign 
of ME shows the direction of influence. As shown in 
Table 4, SpMin8_Bhv and AATS8p have the largest posi-
tive ME, which implies elevating their values will mean a 
corresponding increase in the molecule’s inhibitory activ-
ities. ATSC3c, VR1_Dzv, and MDEC-22 on the other 
hand have negative ME values, signifying that an increase 
in these descriptors’ values will lead to a decrease in the 
molecule’s antiproliferative activities.

The application of GFA in conjunction with the MLR 
approach led to the development of the 2-D QSAR model 
with a total of five descriptors as shown in Eq.  13. The 
built model was adjudged to satisfy the requirement of a 
good QSAR model. The low residual values between the 

experimental and predicted activity values for both train-
ing and test set compounds as shown in Table 6 indicate 
a high predictive strength of the built model. The R2 val-
ues of 0.9614 for the training set and 0.6766 for the test 
set from Fig. 1 were similar to those obtained from GFA 
(0.9615 and 0.6766) and MLRplusValidation analysis 
(0.9615 and 0.6766) available in Table  5, which means 
that the R2 values were computed accurately. Figure  1 
shows how well the predicted activities correlated with 
the experimental activities as suggested by the grouping 
of points along the line of best fits, implying that the built 
model is very reliable and robust in predicting the activi-
ties of new chemical entities. A random distribution of 
standard residuals on both sides of zero as observed in 
Fig. 2 shows that the built model is not associated with 
any systematic error.

Furthermore, the result of the Pearson correlation 
analysis available in Table 7 shows that no pair of descrip-
tors is significantly inter-correlated as suggested by the 
low values of the correlation coefficients. This was also 
observed by Adeniji et al. (2018).

The values of R2 and Q2 obtained from the y-ran-
domization test (Table  8) were significantly low, and 
this implies that the developed model is stable, robust, 
and reliable. The Y-randomization coefficient, c R2p 
(0.877748) greater than 0.50, signifies that the built 
model is powerful and not inferred by chance. The plot of 
standardized residuals against leverages (William’s plot) 

Table 5  Validated parameters of the 2D-QSAR model

Validation parameters Model Threshold Remarks

Training set

Friedman LOF 0.037669 – –

R-squared (R2) 0.961448  ≥ 0.6 Passed

Adjusted R-squared ( R2adj) 0.951303  ≥ 0.5 Passed

Cross-validated R-squared ( Q2
cv) 0.935022  ≥ 0.5 Passed

R2— Q2
cv 0.026426  ≤ 0.3 Passed

Significant regression Yes – –

Significance of regression F value 94.768088 – –

Critical SOR F value (95%) 2.7617200 – –

Replicate points 0 – –

Computed experimental error 0.000000 – –

Test set

R-squared ( R2test ), i.e.,r2 0.67655  ≥ 0.6 Passed

Number of test set compounds 
(Ntest set)

11  ≥ 5 Passed

∣
∣
∣r2o − r

′2
o

∣
∣
∣ 0.13553 ˂ 0.3 Passed

[(r2 − r2o )/r
2
]

0.00036 ˂ 0.1 Passed

k 0.95605 0.85 ≤ k ≤ 1.15 Passed
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Table 6  Calculated descriptors, experimental pIC50, predicted pIC50, and residuals of the arylimidamide-azole hybrids

Comp ID AATS8p ATSC3c VR1_Dzv SpMin8_Bhv MDEC-22 pIC50 Pred. pIC50 Residuals

1* 1.2199 0.10142 270.0957 1.058166 19.2253 4.7447 5.1436  − 0.3988

2 1.1374 0.10337 246.1391 1.059033 21.2696 4.8861 4.8252 0.0609

3 1.1717 0.10146 336.3404 1.074016 23.3487 4.9208 4.8999 0.0210

4* 1.1394 0.10088 274.3332 1.275013 27.5844 6.0000 5.5810 0.4190

5* 1.1366 0.09818 276.4469 1.259531 25.0924 4.8861 5.5593  − 0.6732

6 1.1171 0.09817 337.6577 1.386533 29.3725 5.8539 5.8772  − 0.0234

7 1.1436 − 0.0869 276.0232 1.274367 30.1033 5.9208 5.9725  − 0.0516

8 1.1421 0.08209 274.0999 1.279542 30.1964 5.7696 5.6024 0.1671

9 1.2460 0.13739 285.0252 1.274853 24.4658 5.8861 5.9330  − 0.0469

10 1.2228 0.11552 283.3093 1.274145 24.6116 5.6778 5.8948  − 0.2170

11 1.1349 0.21981 294.8321 1.357263 24.4658 5.6576 5.6734  − 0.0158

12 1.1172 0.19295 304.3565 1.407047 26.6076 5.7212 5.8262  − 0.1049

13 1.1034 0.15186 313.6883 1.409511 24.4658 6.0132 5.9129 0.1003

14 1.1247 0.16042 291.6092 1.386967 24.6116 5.8239 5.8938  − 0.0699

15 1.1465 0.13456 300.2214 1.414288 26.6427 6.1367 6.0978 0.0389

16 1.1650 0.09448 309.3355 1.414420 24.6116 6.2366 6.2877  − 0.0511

17 1.3544 0.11905 545.5559 1.157252 27.1705 5.5850 5.6139  − 0.0289

18 1.2919 0.11910 1400.000 1.373810 0.00000 6.0044 6.0781  − 0.0737

19 1.2847 0.25278 562.4740 1.383724 24.0822 6.0862 6.0312 0.0549

20 1.2443 0.25282 785.8467 1.399141 0.00000 6.2218 6.2202 0.0017

21 1.3170 0.18643 592.6294 1.410787 24.0822 6.4815 6.3852 0.0963

22* 1.2801 0.18647 625.0888 1.425862 0.00000 6.5376 6.7457  − 0.2081

23* 1.2981 0.09132 564.8354 1.354464 23.9122 5.6576 6.3293  − 0.6717

24 1.2529 0.09137 1670.000 1.389976 0.00000 5.8239 5.8405  − 0.0166

25* 1.2183 0.02712 583.0883 1.405821 23.9122 5.9208 6.3824  − 0.4616

26* 1.1929 0.02717 733.2270 1.422312 0.00000 6.8239 6.6885 0.1354

27* 1.2645 0.27261 662.1033 1.366036 23.7602 5.5229 5.7628  − 0.2399

28* 1.2511 0.20456 728.1258 1.408369 23.7602 5.8539 5.9881  − 0.1343

29 1.2271 0.27257 972.9505 1.390970 0.00000 5.9208 5.9225  − 0.0016

30 1.2229 0.20452 986.6988 1.424248 0.00000 6.1612 6.1878  − 0.0266

31 1.2649 0.05074 751.7122 1.382670 23.7266 6.3372 6.2643 0.0730

32* 1.2287 − 0.0132 1060.000 1.410908 23.7266 6.1079 6.1363  − 0.0284

33 1.2255 0.05078 810.6949 1.402543 00.0000 6.7212 6.6062 0.1150

34* 1.2017 − 0.0131 773.6185 1.425836 0.00000 6.1135 6.7928  − 0.6793

35 1.1972 0.01983 967.5941 1.408440 24.8039 6.0269 5.994 0.0328

36 1.1836 − 0.1077 1060.000 1.453531 24.8039 6.3098 6.3436  − 0.0338

Table 7  Inter-correlation analysis and statistical parameters of descriptors forming the 2-D QSAR model

VIF-Variance inflation factor

Descriptors Inter-correlation Statistical parameters

AATS8p ATSC3c VR1_Dzv SpMin8_Bhv MDEC-22 VIF t-Stat p value

AATS8p 1 1.7182 10.359 3E–09

ATSC3c 0.1707 1 1.7813  − 8.6015 5.6E−08

VR1_Dzv 0.5182  − 0.0772 1 4.8285  − 8.16 1.2E−07

SpMin8_Bhv  − 0.011 0.1074 0.3819 1 1.3996 20.003 3.2E−14

MDEC-22  − 0.38  − 0.3148  − 0.7419  − 0.2559 1 3.5129  − 6.2199 5.6E−06
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(Fig.  3) shows that all the compounds were contained 
within the ± 3.0 square area of standardized cross-vali-
dated residual, which clearly shows that no outlier is pre-
sent in the data set. However, compounds 1 and 32 have 
leverages greater than the computed warning leverage 
(h* = 0.72) and were said to be influential molecules.

3‑D QSAR modeling
The 3-D QSAR modeling began with the atom-based 
alignment of structures using compound 32 as the 

alignment template. The alignment process involves 
an early step that provided all the 36 compounds the 
opportunity of being selected as the alignment template 
based on the compound with the highest Open3DAlign 
(O3A) score. The O3A scores of the various compounds 
are included in Table 10. Compound 32 was found with 
the highest O3A score of 6594.08 and hence selected as 
the template upon which the remaining structures were 
superimposed. Two CoMFA models were built using the 
FFDSEL and UVEPLS approaches, with their computed 
statistical parameters tabulated in Table  9. The param-
eters were computed for five principal components (PCs) 
among which the fifth PC (PC = 5) performed relatively 
better. The statistical parameters available in Table 9 were 
those associated with PC 5. The predictive strength of the 
regression models on new datasets of compounds can 
be estimated by cross-validation (Grohmann and Schin-
dler 2008). A cross-validated coefficient of correlation 
(Q2) ≥ 0.50 indicates a good QSAR model. Here, three  
types of Q2 were calculated; leave one out (LOO), leave 
two out (LTO), and leave many out (LMO), together with 
their associated standard error of prediction (SDEP). 
Although both models passed the cross-validation test 
(i.e., Q2 > 0.5), relatively higher values of correlation coef-
ficient (R2), Q2

LOO, Q2
LTO, Q2

LMO, and the Fischer’s statis-
tics (F-test) were associated with the UVEPLS CoMFA 
model. Also, the calculated standard error of correla-
tion (SDEC) and SDEP were lower for UVEPLS than 
for FFDSEL. A linear correlation between the CoMFA 
descriptors (independent variables) and the activity val-
ues (dependent variables) was established by the PLS 
analysis method. The lower residual values between the 
predicted and observed activity values (Table 10) show a 
strong predictive strength of both models. This was sup-
ported by the clustering of points along the lines of best 
fits in the plots of predicted pIC50 against the experimen-
tal pIC50 for both models (Fig. 5a, b).

The CoMFA QSAR equation is summarized graphically 
as a 3-D contour map, which shows the regions within 
the molecules’ 3-D structural space where steric and 
electrostatic fields are associated with extreme values. 
The underlying principle behind CoMFA is that varia-
tions in the shape and strength of non-covalent interac-
tion fields surrounding the molecules, such as steric or 
electrostatic fields, can be related to changes in binding 
affinities (Kakarla et al. 2016). Therefore, molecular fields 
are key factors in binding affinity.

The contour maps presented in Figs.  6, 7 were those 
generated from the UVEPLS CoMFA model for com-
pound 36. The steric and electrostatic field contribu-
tions are 68.19% and 31.81% for FFDSEL, and 68.96% and 
31.04% for UVEPLS, respectively (Table  9), which has 
only a very insignificant difference between both models. 

Table 8  Y-randomization test parameters

cR2p -Y—randomization coefficient, R—correlation coefficient for Y—
randomization, R2—correlation coefficient, Q2—cross-validated R.2

Iteration R R2 Q2

Random 1 0.498658 0.248660  − 0.17040

Random 2 0.115103 0.013249  − 0.55512

Random 3 0.318787 0.101625  − 0.88510

Random 4 0.572381 0.327620  − 0.17467

Random 5 0.430382 0.185229  − 0.26640

Random 6 0.364943 0.133183  − 0.59773

Random 7 0.235410 0.055418  − 0.45178

Random 8 0.486282 0.236470  − 0.27500

Random 9 0.466289 0.217426  − 0.18640

Random 10 0.513190 0.263364  − 0.27803

Random models parameters

Average R 0.400143

Average  R2 0.178224

Average  Q2  − 0.38406

cRp^2 0.877748

Table 9  Statistical parameters of the built CoMFA models

PC—principal components, SDEP—standard error of prediction, F-test—
Fischer’s statistics, LOO—leave one out, LTO—leave two out, LMO—leave many 
out, Q2—cross-validated correlation coefficient, R.2—correlation coefficient, 
SDEC—standard error of correlation

Parameters CoMFA (FFDSEL) CoMFA (UVEPLS)

PC 5 5

R2 0.9817 0.9839

SDEC d0.0544 0.0509

F-test 203.39 232.69

Q2
LOO 0.6806 0.7539

SDEPLOO 0.2268 0.1991

Q2
LTO 0.6660 0.7367

SDEPLTO 0.2319 0.2059

Q2
LMO 0.5956 0.6784

SDEPLMO 0.2537 0.2262

Field contributions

Steric 0.6819 (68.19%) 0.6896 (68.96%)

Electrostatic 0.3181 (31.81%) 0.3104 (31.04%)
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From the steric field contour maps available in Fig.  6a, 
b, the red contours represent the regions of unfavorable 
steric bulk, while blue contours represent the regions of 
favorable steric bulk. An identified region of unfavorable 
steric bulk in compound 36 is the number 2-position of 
the alkyl chain linking the biphenyl group and the imi-
dazole group. This means that if the hydrogen in that 
position is replaced with a more bulky group like methyl, 
ethyl, isopropyl, etc., the compound’s activity or bind-
ing affinity will decrease. On the other hand, more steric 
bulk favorable regions were identified, which include the 
alkoxy substituents on the biphenyl ring system and the 
4-position of the pyridine ring system. This implies that 
increasing the steric bulk around those areas will enhance 
the inhibitory activity or binding affinity of the molecule. 
From the electrostatic field contour maps available in 
Fig.  7a, b, yellow contours represent regions favored by 
high electron density or unfavorable to electron-with-
drawing substituents, while green contours represent 
regions of unfavorable high electron density or favora-
ble to electron-withdrawing groups. Two regions of low 
electron density were identified to include the number 
4-position of the alkyl chain linking the biphenyl group 
to the imidazole group, and the number 2-position of the 
phenyl ring which links to the amide group. These regions 
need not be too electron-dense, and hence, the introduc-
tion of electron-withdrawing groups at these positions 
will enhance the molecule’s inhibitory activity or binding 
affinity. Regions of high electron density were identified 
around positions 2 and 3 of the phenyl ring which links 
to the alkyl chain via the oxygen, and positions 3 and 5 

of the pyridine ring system. These regions need not be 
less electron-dense, and hence, electron-donating groups 
will keep these regions at a high electron density which 
in turn will enhance the molecule’s inhibitory activity or 
binding affinity.

Molecular docking study
The binding affinity of protein–ligand interaction is 
necessary to describe how well drugs bind to the target 
receptor. The spontaneity of the binding process and 
how well drugs can fit into the receptor’s binding cavi-
ties to form the most stable receptor is shown by the 
negative value of the binding affinity (Ugbe et al. 2022a, 
b). Here, the results (binding affinities) obtained from 
the docking study using Molegro Virtual Docker are 
expressed as MolDock scores in kcal/mol as included in 
Table 1. On average, the result shows that binding affin-
ity correlates well with inhibitory activity. The screen-
ing identified compounds 1 and 36 as showing the least 
and highest binding affinities of -142.632  kcal/mol and 
-198.260  kcal/mol, respectively. Also, the predicted 
binding affinity (MolDock score =  − 141.793  kcal/mol) 
of the reference drug (pentamidine) was lower than 
those of the arylimidamide-azole hybrids, an indica-
tion that the various compounds bind better with the 
active sites of the protein (PdxK) than pentamidine. This 
claim can further be supported by comparing the bind-
ing interaction profile of 36 with that of pentamidine as 
presented in Fig. 8 and Table 14. More interactions were 
visible from the binding profile of compound 36 with 

Fig. 8  Binding interaction of PdxK with compound 36 and reference drug (pentamidine)
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PdxK. For 36_PdxK, three conventional hydrogen bonds 
were formed involving GLN-258 (interaction distance 
of 2.78 Å), THR-229 (1.95 Å), and SER-47 (2.42 Å), Two 
carbon-hydrogen (C-H) bonds were visible with HIS-46 
and ASP-124, a π-donor hydrogen bond with GLY-230, 
π-anion electrostatic interaction with ASP-124, and sev-
eral hydrophobic interactions. Pentamidine_PdxK on 
the other hand shows two conventional hydrogen bonds 
with THR-229 (2.53 Å) and SER-47 (2.52 Å), one C–H 

bond involving TYR-129, a π-donor hydrogen bond with 
GLY-228, and one π-alkyl hydrophobic interaction with 
VAL-19.

Pharmacokinetics properties prediction
Lipinski’s RO5 for oral bioavailability has a broad applica-
tion in the discovery of new drug molecules (Ugbe et al. 
2022a, b). It asserts that a drug molecule may likely not 
be orally bioavailable when it has hydrogen bond donors 

Table 10  Open3DAlign scores, observed pIC50, predicted pIC50, and residuals for FFDSEL and UVEPLS CoMFA models

O3A—Open3DAlign

Comp. ID pIC50 O3A_Score CoMFA (FFDSEL) CoMFA (UVEPLS)

Pred. pIC50 Residual Pred. pIC50 Residual

1* 4.745 5513.18 5.118  − 0.373 5.052  − 0.307

2 4.886 5615.18 4.852 0.034 4.850 0.036

3 4.921 5719.81 4.951  − 0.030 4.938  − 0.017

4* 6.000 6084.29 5.824 0.176 5.787 0.213

5* 4.886 6101.02 5.809  − 0.923 5.773  − 0.887

6 5.854 5927.51 5.824 0.030 5.851 0.003

7 5.921 5540.74 5.851 0.070 5.827 0.094

8 5.770 5693.62 5.780  − 0.010 5.815  − 0.045

9 5.886 5578.15 5.796 0.090 5.836 0.05

10 5.678 5906.85 5.683  − 0.005 5.721  − 0.043

11 5.658 5858.38 5.631 0.027 5.657 0.001

12 5.721 5580.25 5.709 0.012 5.742  − 0.021

13 6.013 5788.80 5.968 0.045 5.971 0.042

14 5.824 5674.69 5.934  − 0.110 5.924  − 0.100

15 6.137 6165.71 6.149  − 0.012 6.123 0.014

16 6.237 6197.31 6.249  − 0.012 6.211 0.026

17 5.585 6323.30 5.707  − 0.122 5.675  − 0.090

18 6.004 6367.39 6.035  − 0.031 6.023  − 0.019

19 6.086 6399.99 6.019 0.067 5.973 0.113

20 6.222 6436.15 6.236  − 0.014 6.217 0.005

21 6.481 6529.21 6.462 0.019 6.434 0.047

22* 6.538 6500.79 6.638  − 0.100 6.612  − 0.074

23* 5.658 6036.83 6.419  − 0.761 6.293  − 0.635

24 5.824 6180.15 5.792 0.032 5.809 0.015

25* 5.921 6013.88 6.357  − 0.436 6.242  − 0.321

26* 6.824 6174.96 5.922 0.902 5.950 0.874

27* 5.523 6049.77 5.651  − 0.128 5.576  − 0.053

28* 5.854 6068.11 5.944  − 0.090 5.854 0.000

29 5.921 6104.10 5.912 0.009 5.918 0.003

30 6.161 5782.03 6.205  − 0.044 6.137 0.024

31 6.337 6574.15 6.398  − 0.061 6.422  − 0.085

32* 6.108 6594.08 6.406  − 0.298 6.435  − 0.327

33 6.721 6455.52 6.637 0.084 6.699 0.022

34* 6.114 6579.92 6.734  − 0.620 6.782  − 0.668

35 6.027 5796.79 6.112  − 0.085 6.050  − 0.023

36 6.310 6137.54 6.292 0.018 6.359  − 0.049
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(HBDs) of greater than 5, hydrogen bond acceptors 
(HBAs) > 10, molecular weight (MW) > 500, and lipo-
philicity (MLOGP > 4.15 or WLOGP > 5) (Lipinski et  al. 
2001). Whenever a molecule passed at least three of the 
four provisions of the RO5, it is said to obey Lipinski’s rule 

for oral bioavailability (Lawal et al. 2021). From Table 11, 
it was observed that all the selected arylimidamide-azole 
hybrids passed the drug-likeness test (Lipinski RO5). Five 
of the seven newly designed analogs pass the Lipinski 
criteria. Only 36f and 36  g failed the drug-likeness test 

Table 11  Predicted drug-likeness properties of some selected arylimidamide-azole derivatives and the newly designed analogues

MW—molecular weight, TPSA—topological polar surface area, ESOL—estimated solubility, HBD—hydrogen bond donors, HBA—hydrogen bond acceptors, RO5—
Lipinski rule of five, SA—synthetic accessibility score

Comp ID MW TPSA MLOGP HBD HBA Rot. b LOG S (ESOL) SA RO5 
violation

Drug likeness

Six (6) arylimidamide-azole hybrids with the highest pIC50

21 469.58 85.05 2.78 2 5 12  − 5.54 3.60 0 YES

22 497.63 85.05 3.17 2 5 14  − 6.01 3.83 0 YES

26 497.63 85.05 3.17 2 5 14  − 6.01 3.80 0 YES

31 441.52 85.05 2.38 2 5 11  − 4.96 3.28 0 YES

33 469.58 85.05 2.78 2 5 13  − 5.42 3.51 0 YES

36 555.71 94.28 3.21 2 6 16  − 6.68 4.34 1 YES

Newly designed arylimidamide-azole analogs

36a 583.76 94.28 3.57 2 6 16  − 7.06 4.59 1 YES

36b 551.68 94.28 3.07 2 6 14  − 6.68 2.67 1 YES

36c 581.75 94.28 3.50 2 6 15  − 7.05 2.78 1 YES

36d 579.73 94.28 3.44 2 6 14  − 7.06 3.02 1 YES

36e 630.22 94.28 4.13 2 6 15  − 7.96 3.01 1 YES

36f 664.66 94.28 4.30 2 6 15  − 8.36 3.25 2 NO

36 g 692.72 94.28 4.65 2 6 15  − 8.97 2.85 2 NO

Table 12  Predicted ADMET properties of some selected arylimidamide-azole derivatives and the newly designed analogues

BBB—Blood–brain barrier, CNS—central nervous system, HIA—human intestinal absorption, Skin—skin permeability, LogBB—the logarithmic ratio of brain to 
plasma drug concentration, LogPS—blood–brain permeability-surface area product, CYP-34A—cytochrome p450 isoform, CYP-2D6—cytochrome p450 isoform, S—
substrate, I—inhibitor, MRTD—maximum recommended tolerated dose, TCE—total clearance

Comp ID A D M E T

HIA P-glycoprotein Skin BBB CNS CYP-2D6 CYP3A4 TCE AMES MRTD

% S I II LogKp LogBB LogPS S I S I

Six (6) arylimidamide-azole hybrids with the highest pIC50

21 92.56 YES YES YES  − 2.74  − 0.62  − 2.36 NO YES YES YES 0.843 YES 0.276

22 90.83 YES YES YES  − 2.74  − 0.62  − 2.31 NO YES YES YES 0.906 NO 0.193

26 90.68 YES YES YES  − 2.74  − 0.55  − 2.27 NO YES YES YES 0.939 YES 0.282

31 92.52 YES YES YES  − 2.74  − 1.13  − 2.45 NO NO YES YES 0.904 YES 0.406

33 90.80 YES YES YES  − 2.74  − 1.16  − 2.40 NO YES YES YES 0.997 YES 0.323

36 100.0 YES YES YES  − 2.74  − 0.70  − 2.29 NO YES YES YES 0.848 NO 0.132

Newly designed arylimidamide-azole analogs

36a 100 YES YES YES  − 2.74  − 0.66  − 1.92 NO YES YES YES 0.437 NO 0.073

36b 100 YES YES YES  − 2.74  − 0.70  − 2.13 NO YES YES YES 0.529 NO 0.088

36c 100 YES YES YES  − 2.74  − 0.63  − 1.80 NO YES YES YES 0.354 NO 0.072

36d 100 YES YES YES  − 2.74  − 0.60  − 1.74 NO YES YES YES 0.144 NO 0.068

36e 100 YES YES YES  − 2.74  − 0.42  − 1.47 NO NO YES YES 0.237 NO 0.098

36f 100 YES YES YES  − 2.74  − 0.61  − 1.44 NO NO YES YES 0.290 NO 0.112

36 g 100 YES YES YES  − 2.74  − 0.55  − 1.26 NO NO YES YES 0.338 NO 0.123
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Table 13  Molecular structures, predicted pIC50 and MolDock scores of the newly designed arylimidamide-azole analogs
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because both violated two of the RO5 criterion: MW > 500 
and MLOGP > 4.15. The reported values of topological 
polar surface area (TPSA) for all molecules are less than 
140 Å2. Also, the predicted values of the estimated water 
solubility (Log S) for the selected compounds showed 
that only 21, 31, and 33 are moderately water-soluble 
(-4 > Log S > -6), while  22, 26, 36 and the newly designed 
compounds are associated with poor solubility (-6 > Log 
S > -10). Solubility  can, however, be improved by careful 
introduction of moieties that suggest so into the structural 

template. The values of the synthetic accessibility (SA) 
scores of the designed compounds except 36a showed 
that they may be more easily synthesized in the laboratory 
compared to the design template (compound 36).

The predicted ADMET properties available in Table 12 
show a very high human intestinal absorption for all 
tested compounds with 36 and the new compounds 
reaching 100%. All the tested molecules are substrates 
and inhibitors of p-glycoprotein, indicating that these 
molecules may easily mediate to reach their target sites. 

Table 14  Predicted binding interaction profiles of the newly designed molecules with PdxK receptor

ARG—Arginine, ASN—asparagine, ASP—aspartic acid, GLN—glutamine, GLY—glycine, HIS—histidine, LYS—lysine, SER—serine, THR—threonine, TYR—tyrosine

ID Hydrogen bond Interactions Electrostatic/hydrophobic interactions

Amino acid Type Distance (Å)

36 THR-229 Conventional 1.95 ASP-124 (π-anion), TYR-85 (π–π stacked), VAL-121 (alkyl), π-alkyl (LEU-43, VAL-41, VAL-19, 
MET-254, LEU-257) and unfavorable donor–donor clash with SER-47

GLN-258 Conventional 2.78

SER-47 Conventional 2.42

HIS-46 C–H 2.95

ASP-124 C–H 2.69

GLY-230 π-donor 3.18

36a ARG-225 Conventional 2.31 ASP-124 (attractive charge), ASP-124 (π-anion), VAL-121 (alkyl), π-alkyl (LEU-257, LYS-187, 
ARG-127, TYR-129, VAL-19)

LYS-187 C–H 2.62

ASP-124 C –H 2.14

GLY-228 π –donor 2.32

GLY-230 π –donor 2.79

36b HIS-222 Conventional 2.03 ASP-231 (attractive charge), ASP-231 (π-anion), HIS-46 (π–π stacked), VAL-121 (alkyl), π-alkyl 
(TYR-129, VAL-121, VAL-19, LEU-198, ILE-261)

HIS-222 C–H 2.35, 2.96

TYR-129 C–H 3.09

LYS-187 C–H 2.09

36c SER-47 Conventional 2.39 π-anion (ASP-124, ASP-125), TYR-85 (π–π stacked), VAL-121 (alkyl), π-alkyl (LEU-43, VAL14, 
VAL-19, TYR-129, ARG-225)

ASN-45 C–H 3.00

THR-227 C–H 2.45

TYR-226 C–H 1.75

ARG-225 C–H 2.41

36d GLY-48 C–H 2.63 ASP-124 (attractive charge), ASP-124 (π-anion), ASP-124 (π-cation), TYR-49 (π–π T-shaped), 
THR-229 (amide-π stacked), VAL-121 (alky), alkyl (ARG-278, TYR-129, LEU-257, LYS-187) and 
unfavorable steric bump with THR-229

GLY-228 π-donor 3.09

GLY-230 π-donor 2.96

36e ASP-125 C–H 2.69 ASP-231 (attractive charge), HIS-46 (π-anion), ASP-124 (π-anion), HIS-46 (π–π stacked), VAL-
121 (alkyl), π-alkyl (HIS-46, TYR-129, halogen (ASP-231)

GLY-228 π-donor 3.32

GLY-230 π-donor 2.83

Pentamidine SER-47 Conventional 2.52 VAL-19 (π-alkyl) and unfavorable donor-donor clash with SER-12

THR-229 Conventional 2.53

TYR-129 C-H 2.36

GLY-228 π-donor 2.39
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Skin permeability is a key factor in transdermal drug 
delivery development. Values of skin permeation con-
stant LogKp > -2.50 connotes low skin permeability. As a 
result, the various compounds tested showed LogKp val-
ues < -2.50, indicating good skin permeability. Drug mol-
ecule penetration through the blood–brain barrier (BBB) 
and central nervous system (CNS) comes with certain 
criteria. For a drug molecule to be able to pass through 
the BBB and CNS readily, the logarithmic ratio of brain 
to plasma drug concentration (logBB) must be > 0.3 and 

the blood–brain permeability-surface area product 
(logPS) be > -2, respectively. As a result, all the selected 
arylimidamide-azole hybrids do not readily penetrate 
the BBB and the CNS. On the other hand, all the newly 
designed compounds are poorly distributed to the brain 
but are said to readily penetrate the CNS except 36b.

Furthermore, some group of enzymes called 
cytochrome P450 enzymes are important in the body 
to facilitate drug metabolism and to help in their 
excretion. The two major isoforms enhancing drug 

Fig. 9  Binding interaction of PdxK with 36a and 36b 

Fig. 10  Binding interaction of PdxK with 36c and 36d 
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metabolism, CYP-34A and CYP-2D6, were tested. 
None of all the tested molecules is a substrate of CYP-
2D6. However, all molecules are both substrates and 
inhibitors of CYP3A4, an indication of a well-moder-
ated metabolic process. The extent of drug removal 
from the body is determined by the drug’s total clear-
ance (TCE). The range of values of TCE for all tested 
molecules is good. Compounds 22, 36, and all the 
newly designed molecules have no AMES toxicity, 
implying that they are non-mutagenic and cannot act 
as a carcinogen. Also available in Table 12 is the maxi-
mum recommended tolerated dose (MRTD) predicted 
for the various molecules. MRTD value of ≤ 0.477 log 
(mg/kg/day) is considered low, while a value > 0.477 
log (mg/kg/day) is considered high. The overall drug-
likeness and ADMET properties of the design template 
(36) and the newly designed compounds (except for 
36f and 36  g) showed good pharmacokinetic profiles. 
Therefore, these molecules could be considered poten-
tial drug candidates for the treatment of leishmaniasis.

Ligand‑based drug design (LBDD)
As stated earlier, the information encoded in the 3-D 
QSAR contour maps of the design template (36) was 
utilized in designing seven new arylimidamide-azole 
derivatives (36a–36  g). 36a was obtained by replac-
ing the isopropoxy groups of the template with a bulky 
tert-butoxy group to increase the steric bulk as observed 
from the contour maps. 36b was designed by reducing 
the steric bulk around the 2-position of the alkyl (hexyl) 
chain with the introduction of two double bonds (con-
jugated) to take off four hydrogens around that position. 
36c reduces the two double bonds in 36b to one. 36d 

replaces the isopropoxy groups in 36c with tert-butoxy 
groups. 36e introduces the methyl group (a more bulky 
group than hydrogen) at the para-position of the pyri-
dine ring system and also takes into account the elec-
trostatic field effect by introducing the chloro group 
(electron-withdrawing group) at that position. 36f fur-
ther introduced the chloro group at the 4-position of the 
hexyl chain to deplete the electron density in that region. 
Finally, 36  g further introduced two methyl groups at 
positions 3 and 5of the pyridine ring system.

The results of activity prediction and molecular dock-
ing conducted on the newly designed compounds 
(Table  13) showed that all the compounds have higher 
predicted inhibitory activities than the template (36) with 
only 36b and 36 g showing lower MolDock scores than 
36. Compound 36e showed the highest MolDock score 
of -208. 595  kcal/mol and the second-highest predicted 
pIC50 of 7.375 only behind 36f with a predicted pIC50 
value of 7.670. Also, 36f and 36 g failed the drug-likeness 
test as both violated 2 out of 4 provisions of the Lipinski 
RO5. Hence, the interaction profile of compound 36e will 
be discussed further. One C-H bond involving ASP-125 
at a distance of 2.69Å and two π-donor hydrogen bonds 
with GLY-228 (3.32Å) and GLY-230 (2.83Å) were vis-
ible in the binding interaction profile of 36e with PdxK. 
Electrostatic interaction types are attractive charge with 
ASP-231 and π-anion with HIS-46 and ASP-124. Others 
are hydrophobic interactions such as π–π stacked with 
HIS-46, alkyl with VAL-121, π-alkyl with HIS-46 and 
TYR-12, and halogen interaction with ASP-231. Interest-
ingly, unlike the template and reference drug (pentami-
dine), most of the newly designed compounds have no 
unfavorable clashes with some amino acid residues, indi-
cating a possible elimination or lowering of side effects 
that could be associated with the newly designed hybrids. 
Therefore, compound 36e and the other newly designed 
analogs (except 36f and 36 g) have shown good pharma-
cological and pharmacokinetic properties and are hence 
worthy of selection for further practical evaluation in the 
laboratory as pyridoxal kinase inhibitors.

Conclusions
In this study, a five-descriptor 2-D QSAR model and 
a 3-D QSAR (CoMFA) model were developed with 36 
arylimidamide-azole hybrids, both of which were found 
to satisfy the requirement for internal and external vali-
dation tests. The anti-leishmanial activities of the vari-
ous compounds were well predicted by both models. A 
combined 2-D and 3-D QSAR approach was utilized to 
design and predict the inhibitory activities of seven new 
arylimidamide-azole analogs using compound 36 as the 
template. The molecular docking screening conducted 

Fig. 11  Binding interaction of 36e with PdxK
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between the 36 arylimidamide-azole compounds and the 
target receptor, pyridoxal kinase (PdxK), revealed com-
pounds 1 and 36 as having the least and highest Mol-
Dock scores of − 142.632  kcal/mol and − 198.260  kcal/
mol, respectively, both higher than MolDock score of 
-141.793  kcal/mol reported for the reference drug pen-
tamidine. The new compounds bind excellently into 
PdxK’s cavities with binding affinities (MolDock scores) 
in the order: 36e (− 208.595  kcal/mol) > 36f > 36a > 3
6c > 36d > 36 (Template) > 36b > 36  g (− 187.155  kcal/
mol), while the predicted pIC50 follows the order: 36f 
(7.670) > 36e > 36  g > 36c > 36d > 36a > 36b > Template 
(36) (6.344). Also, the newly designed analogs showed 
a good pharmacokinetic profile and obeyed Lipinski’s 
RO5 for oral bioavailability except for 36f and 36 g. Spe-
cial emphasis on 36e because it appears to be the most 
consistent with the various employed validation proto-
cols, being that it possessed the highest binding score, 
second-highest predicted pIC50, showed excellent phar-
macokinetic properties and binds adequately with the 
target protein. Therefore, this work has provided useful 
information on the arylimidamide-azole hybrids as anti-
leishmanial agents.
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