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Abstract

be derived from the weathering of chlorite.

Chemical composition

Background: The present study deals with mineralogy, diagenesis, and their impact on chemical composition
for early Paleozoic, Cambro-Ordovician, (Adediya and Abu Hamata formations) and late Paleozoic, early
Carboniferous, (El Hashash and Magharet El Maiah) mudrocks at the southwestern Sinai area. Mineralogical
study reveals the presence of kaolinite and illite clay minerals.

Conclusions: The detection of kaolinite and illite clay minerals favors that the environment of formation was
alkaline, and the origin of the clay minerals present is chlorite more probably than illite origin where illite can

Diagenetic study reveals that kaolinite can be neo-formed, transformed at high rainfall and a temperate
climate which can transform muscovite and biotite into kaolinite together with some illite.

Chemical composition study, abundance, behavior, and distribution of major and trace components reveals
that the studied mudrocks seem to be formed under reducing alkaline environment.
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Background

The mudrocks constitute about 15.42% of the studied
Paleozoic rock units. The study of their mineral com-
position and diagenesis as well as the abundance and
distribution of their major and trace chemical compo-
nents aim to understand the long history of these
units.

Early and late Paleozoic rock unites recorded at
southwestern Sinai, to the east of Abu Zenima city,
lies between latitudes 28° 57" 00'" and 29° 05" 00"’
N and longitudes 33° 20" 00"" and 33° 25" 00"" E, ap-
proximately, were studied (Fig. 1).

Early and late Paleozoic in the studied area varies
either in thickness or in facies and is subdivided ac-
cording to Soliman and Abu El Fetouh (1969) into
seven formations, where the lower series comprises
Sarabit El Khadim, Abu Hamata, and Adediya forma-
tions; the middle carbonate comprises the Um Bogma
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formation; and the upper series comprises El
Hashash, Magharet El Maiah, and Abu Zarab forma-
tions (Fig. 2). The mudrock samples are recorded in
early Paleozoic, Cambro-Ordovician, (Abu Hamata
and Adediya formations (fms.)) and late Paleozoic,
early Carboniferous (El Hashash and Magharet EIl
Maiah fms.).

Materials and methods
Eighteen samples which represented early (12 sam-
ples) and late (6 samples) Paleozoic mudrocks were
collected from the studied area. X-ray diffraction
analysis was carried out at the Egyptian Mineral
Resource Authority (E.M.R.A) using the Philips X-ray
diffractometer (Type PW/1050) with Ni filter, Cu
radiation, A = 1.5AA18 A at 30 kv, 10 mA, and a
normal scanning speed 20/min was used for seven
clay samples which were selected to represent early (3
samples) and late (4 samples) Paleozoic rock units.
Nighen selected samples were chemically analyzed
using X-Ray flourocense analysis (N.R.C.E Labs.) to
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determine the major oxide (Si, Al, Fe, Mg, Ca, Na,
K, P, S, and Cl) and trace element (Ti, Cr, Y, Co, Mn,
V, Ni, Cu, Zn, Pb, Sr, Ba, Rb, Zr, Ce, Th, and Ga)
chemical components.

Results

Mineralogical composition

The X-ray diffraction analyses data of the studied clay
samples is shown in (Table 1 and Figs. 3, 4 and 5)
favor the presence of kaolinite and illite clay
minerals.

Chemical composition

Abundance and distribution of major oxides and trace
elements

The mudrocks constitute about 15.42% relative to the
total thickness of the studied Paleozoic rock units.
Major (Si, Al, Fe, Mg, Ca, Na, K, P, S, and Cl) and
trace (Ti, Cr, Y, Co, Mn, V, Ni, Cu, Zn, Pb, Sr, Ba,

Rb, Zr, Ce, Th, and Ga) components were shown in
(Tables 2, 3, 7, and 8).

Discussion
Mineralogical composition
The detection of kaolinite and illite clay minerals in
early and late Paleozoic clays favor their formation
under alkaline waters and alkaline digenesis where
they show stability in agreement with (Millot, 1970).
The study of clay mineral associations reported in
the Paleozoic clays reveals that the environment of
formation was an alkaline environment and that the
origin of the clay minerals present is chlorite more
probably than illite origin where illite can be derived
from weathering of chlorite (Droste et al., 1962).

Digenesis

Clay minerals are particularly sensitive to pressure
and temperature variations and to the chemical envir-
onment. This sensitivity is expressed in terms of their
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Fig. 2 Composite columnar lithologic section of Paleozoic sedimentary formations in southwestern Sinai

Table 1 X-ray diffraction data of different Paleozoic studied rock units

Age Fms. S. Mineral  Normal Glycolated Heated
No. detected 40 ) " 29 aA° 1, 26 dA° I, 20
Paleozoic Late Paleozoic Early Carboniferous Magharet El Maiah 75 Kaolinite 337 100 2639 335 100 2657 - - -

llite 1030 309 858 1007 333 877 338 100 2634

73 Kaolinite 336 100 2645 2653 100 335 - - -
llite 1024 394 863 1022 394 865 337 100 2644

66 Kaolinite 7.17 100 1233 716 100 1236 - - -
llite 307 1250 2907 306 1722 2910 334 100 2663

El Hashash 62 Kaolinite 718 100 1232 719 100 1230 - - -
llite 448 718 1977 448 881 1980 336 100 2644

Early Paleozoic Cambro-Ordovician Adedia 40 Kaolinite 721 100 1226 722 100 1224 - - -
llite 1016 7363 869 1018 5977 868 337 100 2640

Abu 30 Kaolinite 719 100 1230 724 100 1221 - - -
Hamata llite 335 3786 2654 336 4316 2651 337 100 2640

25 Kaolinite 718 100 1232 723 100 1223 - - -
Illite 1008 1330 876 1025 1514 862 1007 100 877
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Fig. 3 X-ray diffraction pattern of oriented clay samples of Paleozoic mudrocks, a S. No. 25, b S. No. 30, ¢ S. No. 40, and d S. No. 62
.

S.Ne.30 G l

S.No30N

kaolinite
e
Kaolinite

? Tlite
—
& Hlite

H
i

Kaolinite
kaolinite

Tllite

é Illite

T
i Tllite
&
1
1 Ilite

| S.-No.62 N

i 1

—_—

Kaolnite |
————kaolinite

=
g Kaolinite

!

S.N0.62 G

Kaolinite |

aolinite

£

) ) ol

D

chemistry and mineralogy. According to Galan et al.,
(1985) Srodon, (1999) Carretero et al.,, (2002) Lopez
Aguayo, (1990), and Merriman (2002), clay minerals
mostly form from pre-existing minerals, primarily
from rock-forming silicates by transformation and/or
neo formation, where rocks are in contact with water,

air, or steam.

Weathering

The weathering environment is usually sub-aerial. It
involves physical disaggregation and chemical decom-
position, leading to the transformation of original
minerals into clay minerals. The factors controlling
rock weathering include: rock type, climate (rainfall,
chemical factor, and temperature), topography, and

the presence of organisms and organic matter (Velde,
1992; Foley, 1999). The study area belongs to tropical
zones and Mediterranean climates with seasonal con-
trast. Under these conditions, kaolinite is the main
clay mineral components. Kaolinite together with
some Illite can be neo-formed due to high rainfall
and a temperate climate.

Sedimentation
A typical clay mineral distribution found from the

coastline to the open sea is kaolinite-illite-smectite. In
general, clay minerals of sedimentary sequences mainly
reflect the climate, relief, and lithology of source areas.
Kaolinite is a typical clay mineral formed by direct

precipitation.
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Fig. 4 X-ray diffraction pattern of oriented clay samples of Paleozoic mudrocks, a S. No. 66 and b S. No. 73
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Origin of kaolin’s clay deposits
Kaolinite can be formed by weathering (residual kao-
lin’s) and hydrothermal activity (hydrothermal kaolin)
or occur as an authigenic sedimentary mineral. Sedi-
mentary kaolin’s are composed of kaolinized material
from a source area that was eroded, transported, and
deposited in a continental or coastal environment.
The previous study about the mineralogy supports
the assumption about the origin of kaolin clay de-
posits, whereas kaolinite can be neo-formed, trans-
formed, as already mentioned, at high rainfall and a
temperate climate which can transform muscovite and
biotite into kaolinite together with some Illite.

Chemical composition

Abundance and distribution of major oxides

Oxides forming silicates

The distribution of the average SiO, content in early
and late Paleozoic mudrocks is shown in (Tables 2
and 3) and Fig. 6. The distribution shows no particu-
lar trend for silica distribution with decrease in age
from early towards late Paleozoic rock units.

Alumina is similar to silica in its occurrence, where
silica and alumina tend to organize together into clay
minerals, if they do not, alumina stays in situ with
iron, whereas silica is removed with lime and magne-
sia (Millot, 1970).

According to Pettijohn et al. (1975) the silica/alu-
mina ratio for Paleozoic mudrocks were computed
(Table 4 and Fig. 7). It indicates that the grain size of
the late Paleozoic mudrocks are coarser than that of
early Paleozoic mudrocks; suggesting that; the late
Paleozoic mudstone rock units are of the sandy type.

It seems that as Paleozoic mudrocks get younger they
change from the clay to sandy through silty type and
from immature to submature.

Iron oxides

The distribution of Fe,O3 within Paleozoic mudrocks
shows no particular trend for distribution with
decrease in age from early towards late Paleozoic rock
units. This can be attributed to the fact that Fe,Os
can occur in a free state as pigment or in the silicate
state.

Calcium and magnesium oxides

Calcium and magnesium are considered to be two
ions with similar characteristics. The study shows that
there is no particular trend for distribution of calcium
and magnesium oxides with decrease in age from
early towards late Paleozoic rock units. The relatively
high values of CaO detected in Magharet El Maiah
Formation can be attributed to the presence of calcar-
eous material.
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Vinogradov and Renov (1956) suggest that the surface
of the crystalline basement available for weathering has
decreased through time. The computed Ca/Mg ratio for
early and late Paleozoic studied mudrocks (Table 5 and
Fig. 8) show values contradict with Vinogradov and
Renov (1956), and this may be attributed to the topog-
raphy of the studied rock units.

Sodium and potassium oxides

The distribution of both potassium and sodium oxide
through early and late Paleozoic mudrocks shows a
consistency. Whereas both show inconsistency with
the distribution of aluminum oxide, this can be attrib-
uted to their presence as chlorides rather than in the
silicate form.

Table 2 Chemical composition (major components in Wt.%) of Paleozoic mudrocks

Age Fms. S.No. SO, ALO; Fe,0; MgO CaO  Na,O KO P,0s SOs2 CI° LO
Paleozoic Late Paleozoic  Early Carboniferous Magharet 75 6338 1713 063 031 034 065 112 007 438 007 1008
EIMaiah 23 6740 1708 070 024 142 008 084 018 28 002 808

66 3924 1702 062 050 1000 030 053 009 1742 024 1244

El Hashash 62 69.68 2400 038 020 038 006 044 009 006 001 367

Early Paleozoic Cambro-Ordovician ~ Adedia 40 5186 1826 761 208 049 237 449 023 021 317 793

35 5955 2202 1.7 182 057 050 554 013 004 235 519

Abu 30 56.78 2055 529 154 148 013 533 060 150 005 403

Hamata s 5470 2357 619 199 056 089 575 024 015 053 408

23 4869 1782 734 253 059 381 531 029 006 429 792
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Age Frs. S.No. SO, ALO; Fe,0; MgO CaO Na,O KO P,0s SO;2 CI- LOI
Paleozoic Late Early Magharet El Min. 3924 1702 062 031 034 008 053 007 28 0.02 808
Paleozoic Carboniferous Maiah Max. 6740 1713 070 050 1000 065 112 018 1742 024 1244
Average 5667 1708 065 035 392 034 083 011 820 011 1020
El Hashash Average 6968 2400 038 020 038 006 044 009 006 001 367
Early Cambro- Adedia Min. 5186 1826 117 182 049 050 449 013 004 235 519
Paleozoic  Ordovician Max. 5955 2202 761 208 057 237 554 021 317 793 021
Average 5571 2014 439 195 053 144 502 018 013 276 656
Abu Min. 4869 1782 529 154 056 013 531 024 006 005 403
Hamata Max. 5678 2357 734 253 148 381 575 060 150 429 792
Average 5339 2065 627 202 088 161 546 038 057 162 534
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Fig. 6 Averages distribution curves of the studied mudrocks major chemical oxides
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Table 5 Ca/Mg ratio of the studied Paleozoic mudrocks

Age Paleozoic

Early Paleozoic Late Paleozoic

Age Paleozoic

Early Paleozoic Late Paleozoic

Formations  Abu Hamata Adedia El Hashash ~ Magharet EI Maiah
SiO, 53.39 5571 69.68 56.67

AlL,O3 20.65 20.14 24.00 17.08

Ratio 2.58 2.77 2.90 3.32

Formations ~ Abu Hamata Adedia El Hashash  Magharet EI Maiah
Ca 0.63 0.38 0.27 2.80

Mg 122 1.18 0.12 0.21

Ca/Mg Ratio  0.52 0.32 225 1333

The computed K/Na ratio (Table 6 and Fig. 9) favors
according to that crystalline igneous, metamorphic rocks
contain as much potassium as sodium, and the K/Na ra-
tio equals 2.8 for clays.

K/Na ratio are equally important whereas high ratios
favor the formation of illite in agreement with Vinogra-
dov and Ronov (1956). Also, the high values detected in
the studied Paleozoic mudrocks can be attributed to
formation in continental than marine environments in
addition to the predominance of clays over silts (Garrels
and Christ 1965, and Weaver, 1967).

Phosphorous oxide

According to Turekian and Wedepohl (1961), the aver-
age concentration of phosphorous oxide in shales is
0.07%. The higher averages detected in Paleozoic
mudrocks than that given by Turekian and Wedepohl
(op. cit.) indicate that oxidizing conditions prevailed dur-
ing the diagenesis of the deposited sediments causing
fixation of the phosphate ions.

Total sulphate
Generally, the average content of the SO3 is higher than
that given by Clarke (1924) (SO; = 0.64%). This

relatively high content indicates evaporation effect en-
hancing the formation of Paleozoic mudrocks in semi-
restricted environment.

Soluble chlorides

The soluble chloride content in Paleozoic mudrocks is
relatively higher than that given by Clarke (1924, 180
ppm) which indicates formation in semi-restricted envir-
onment with the prevalence of warm climate.

Abundance and distribution of trace elements

Titanium

Titanium is the most abundant trace element recorded
in Paleozoic mudrocks. The distribution of titanium
content does not show any particular trend as the sedi-
ments get younger (Tables 7 and 8) and Fig. 10.

The higher titanium content of early Paleozoic Abu
Hamata fm. and late Paleozoic Magharet El Maiah fm.
mudrocks than those given by Turekian and Wedepohl
(1961, 4600 ppm) can be attributed to the occurrence of
titanium in probably authigenic anatase and rutile and is
also structurally bound in iron minerals (Goldberg and
Arrhenius, 1958). The lower titanium content of early
Paleozoic; Adedia fm. and late Paleozoic; El Hashash fm.
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Fig. 7 SiO,/Al,05 ratio of the studied Paleozoic mudrocks
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mudrocks can be attributed to the occurrence authigenic
anatase and rutile in relatively small amount.

Isayeva (1971) suggested that under reducing envi-
ronments, titanium dissolved and can be adsorbed by
clays. It seems that the prevailed conditions favor for-
mation of titanium as hydrolysates at low alkaline pH
values under reducing environment.

Chromium

The detected chromium in the studied mudrocks reveals
no particular trend for distribution as the sediments get
younger.

The higher chromium content detected in early and
late Paleozoic mudrocks than those given by Turekian
and Wedepohl (1961, 100 ppm) can be attributed to that
the prevailed conditions favor formation of chromium as
hydrolysates at low alkaline pH values under reducing
environment. The lower Cr content than that given by
Nicholis (1967) (Cr > 150 ppm) indicates that the envir-
onment of formation of early and late Paleozoic
mudrocks was continental environment.

Table 6 K/Na ratio of studied Paleozoic mudrocks

Age Paleozoic

Early Paleozoic Late Paleozoic

Formations  Abu Hamata Adedia El Hashash ~ Magharet EI Maiah
K 453 417 037 0.69
Na 1.19 1.07 0.04 0.25
K/Na 3.81 3.90 9.25 2.76

Ytterbium

The detected yttrium in the studied mudrocks re-
veals no particular trend for distribution as the sedi-
ments get younger. The detected average yttrium
content in both early and late Paleozoic formation
mudrocks show that the lower content relative to
that given by Turekian and Wedepohl (1961, 90
ppm) can be attributed to the low alkaline pH values
prevailed causing the depletion of Y element in the
studied formations.

Cobalt

The detected cobalt in the studied mudrocks reveals
no particular trend for distribution as the sediments
get younger. The higher Co content detected in the
studied early and late Paleozoic formation mudrocks
than this given by Turekian and Wedepohl (1961, 74
ppm) can be attributed to the presence of magnesium
although they have similarities in ionic radii and
charge (Co** = 0.83 A and Mg®" 0.080 A) (Fig. 11).
It is clear that the early and late Paleozoic formation
mudrocks were formed under alkaline conditions
causing enrichment by cobalt trace elements.

Niobium

Niobium can substitute for Zr in zircon, since this
mineral is widely distributed in igneous rocks. Ac-
cording to Brookins (1988), niobium displays very low
mobility under alkaline environment whereas, acidic
environment increases the solubility of Nb. The study
reveals that the niobium content detected in the
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studied early and late Paleozoic formation mudrocks
are higher than this given by Turekian and Wedepohl
(1961, 14 ppm) and this can be attributed to not only
the environment of formation but also the type of ig-
neous rock detected.

Manganese
The manganese content which was lower than that given
by Turekian and Wedepohl (1961, 850 ppm) can be at-
tributed to that manganese is less mobile under oxidiz-
ing conditions and it will be mobilized in reducing
environment (Manheim, 1961; Wedepohl, 1964 and
Hartmann, 1964).

It seems that Paleozoic mudrocks were formed under
reducing environments causing leaching of manganese
and lowering its detected values.

Vanadium

The study of early and late Paleozoic formation
mudrocks reveals higher average vanadium content rela-
tive to the average given by Turekian and Wedepohl
(1961) (V = 120 ppm), supporting the idea that the pre-
vailing environment was slightly reduced since vana-
dium’s solution and migration take place only at
relatively high redox potential.

Nickel

The Ni content which lower than the average given by
Turekian and Wedepohl (1961, 80 ppm) can be attrib-
uted to formation under slightly reducing and alkaline
environment.

Copper

The higher copper content than that given by Turekian
and Wedepohl (1961, 50 ppm) can be attributed to the
relatively higher amount of organic matter recorded in
the studied mudrocks.

Zinc

The detected averages of zinc content show higher
values than that given by Turekian and Wedepohl (1961,
90 ppm) in early Paleozoic and vice versa for late
Paleozoic.

According to Krauskopf (1979), Zn>* (ionic radii =
0.83 A) follows Mg2+ (ionic radii = 0.80 A) in its way of
distribution. Figure 12 shows that zinc in the studied
mudrocks follows that of magnesium which may indi-
cate its adsorption on the clay minerals.

Lead

The detected lead average content shows higher values
than that given by Turekian and Wedepohl (1961, 20
ppm), and this can be attributed to the environment of
deposition which was alkaline, slightly reducing environ-
ment where the Eh was very low.

Strontium

The lower Sr content (early Paleozoic; Abu Hamata fm.
and late Paleozoic; El Hashash fm.) and vice versa for
(early Paleozoic; Adedia fm. and late Paleozoic;
Magharet El Maiah fm.) than the average given by Ture-
kian and Wedepohl (1961, 400 ppm) can be attributed
to that Sr (1.21 A) can substitute both Ca®* (1.08 A) and
K* (146 A) so its trend is a compromise between the
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trends of the two major elements. Strontium appears to
be a poor salinity indicator in mudrocks, is especially in-
corporated in the carbonate phase, and suffers all the
diagenetic changes of the carbonate.

Barium

It is generally believed that the Ba/Sr ratio (Table 9 and
Fig. 13) increases with salinity. The higher barium aver-
age content detected for the Paleozoic mudrocks (ex-
cept Late Paleozoic fms.) than that given by Turekian
and Wedepohl (1961, 600;ppm) indicate formation
under alkaline conditions causing leaching of barium
from late Paleozoic formations and vice versa for early
Paleozoic formations.

Rubidium

The higher rubidium average content detected for the
Paleozoic mudrocks (except Late Paleozoic fms.) than
that given by Turekian and Wedepohl (1961, 110 ppm)
can be attributed to the relative concentration of both
sodium and potassium oxides and to the type of clay
mineral present, whereas rubidium follows both two
major elements in their way of distribution.

Table 9 Br/Sr ratio of studied Paleozoic mudrocks

Age Paleozoic

Early Paleozoic Late Paleozoic

Formations  Abu Hamata Adedia El Hashash ~ Magharet EI Maiah
Ba 848 884 172 0

Sr 289 588 13 584

Ba/Srratio 293 1.50 13.23 0

Zirconium

According to Turekian and Wedepohl (1961), the aver-
age concentration of Zr content in mudrocks is 150
ppm showing that both early and late studied sandstones
are characterized by abnormal Zirconium content due to
adsorption onto clays.

Cerium

The study of early and late Paleozoic formation mudrocks
reveal lower average cerium content relative to the average
given by Turekian and Wedepohl (1961, 345 ppm), sup-
porting the idea that the prevailing environment was redu-
cing since cerium’s solution and migration take place only
at relatively high redox potential.

Thorium

The study of early and late Paleozoic formation mudrocks
reveal higher average thorium content relative to the aver-
age given by Turekian and Wedepohl (1961, 7 ppm), sup-
porting the idea that the prevailing environment was
reducing since thorium’s solution and migration take place
only at relatively high redox potential.

Gallium

The great similarity between Ga** (r = 0.80 A) and A
(r = 0.61 A) and the consequent extensive substitution
of Ga®* for AI** in aluminosilicate minerals reveals that
gallium flow aluminum in its way of distribution. Ac-
cordingly, Paleozoic mudrocks seem to be formed under
relatively warm and slightly alkaline conditions in agree-
ment with Corbel (1959).
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Conclusions

Mineralogical study reveals the presence of Kaolinite
and Illite clay minerals. The detection of kaolinite and il-
lite clay minerals favor that the environment of forma-
tion was alkaline, and the origin of the clay minerals
present is chlorite more probably than illite origin where
illite can be derived from weathering of chlorite. Diagen-
etic study reveals that kaolinite can be neo-formed,
transformed at high rainfall and a temperate climate
which can transform muscovite and biotite into kaolinite
together with some Illite. Chemical composition study,
abundance, behavior, and distribution of major and trace
components reveal that the studied mudrocks seem to
be formed under reducing alkaline environment.
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