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Angiotensin II: a key mediator in the
development of liver fibrosis and cancer
Sameh Saber

Abstract

Background: Liver fibrosis and its outcomes of cirrhosis and hepatocellular carcinoma are major worldwide health
problems and due to the complicated molecular pathogenesis, the options for effective systemic cure are relatively
restricted. Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, having well established
safety profiles and low economic costs, may provide synergistic effects to existing chemotherapies by reducing
angiotensin II-mediated angiogenesis, fibrogenesis, mitogenesis, metastasis, and oxidative stress.

Conclusion: These effects suggest angiotensin II inhibitors as promising agents for further clinical trials in the
management of patients with fibrotic diseases.
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Introduction and aim
Owing to the complex molecular pathogenesis of fi-
brosis and its outcomes of cirrhosis and hepatocellu-
lar carcinoma, the possibility for effective systemic
treatment is relatively limited. Angiotensin-converting
enzyme inhibitors and angiotensin II receptor blockers
may provide synergistic effects to existing chemotherapies
by reducing angiotensin II-mediated angiogenesis,
fibrogenesis, mitogenesis, metastasis, and oxidative
stress along with dilation of the tumor vessels, lead-
ing to improved overall drug delivery.

Hepatic fibrosis
Long-lasting liver damage due to various etiologies is
the leading cause of liver fibrosis. It is primarily
characterized by increased accumulation and unbal-
anced degradation of extracellular matrix (ECM)
(Beljaars et al. 2002; Baiocchini et al. 2016). Around
six times more ECM than normal is found in the
liver at progressive stages, including collagens I, III,
and IV. Reduced activity of metalloproteinases
(MMPs), the main ECM-removing mediators, is pre-
dominantly due to an overproduction of tissue inhib-
itors of metalloproteinases (TIMPs), which are the

specific inhibitors (Arthur 2000; Arpino et al. 2015).
ECM proteins interfere with the hepatic architecture
when they are developed by building up fibrous scars
(Parsons et al. 2007); ultimately, the development of
nodules of regenerating hepatocytes characterizes the
framework of cirrhosis (Schuppan and Afdhal 2008).
Owing to the high prevalence of fibrosis and cirrho-
sis in the general population (Poynard et al. 2010),
molecular abnormalities of the liver and their rela-
tion to fibrosis have been of particular interest
(Karsan et al. 2004).
Liver fibrosis is a result of the wound-healing re-

sponse to repetitive cycles of damage and repair in
the liver in which parenchymal cells regenerate and
substitute the necrotic tissue (Hayes and Chayama
2016). Concomitant with these processes, an inflam-
matory response and a regulated deposition of ECM
are established. If the damage persists, then eventually
liver regeneration is failed, with the replacement of
parenchymal cells with excessive ECM. As these
fibrotic changes continue, a transition from collagen
bands to bridging fibrosis to frank cirrhosis happens
(Bataller and Brenner 2005; Sayyed et al. 2016).
Hepatic stellate cells (HSCs) are the principal

ECM-producing cells of the damaged liver (Gabele et
al. 2003; Hyun et al. 2016). Normally, HSCs exist in
the space of Disse. Following persistent hepatic injury,
they differentiate into myofibroblast-like cells of
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pro-inflammatory and fibrogenic activities (Milani et
al. 1990; Marra 1999; Schon et al. 2016). Upon
activation, HSCs travel to the sites of damage and re-
pair and starts to produce and secrete large amounts
of ECM (Lindquist et al. 2000; Wang et al. 2016).
Injured liver produces reactive oxygen species (ROS)

and fibrogenic mediators and provokes the
recruitment of white blood cells by inflammatory cells
(Lan et al. 2015). Apoptosis of parenchymal cells stim-
ulates the fibrogenic activities of myofibroblasts. Poly-
morphnuclear leukocytes and lymphocytes induce
HSCs to produce and secrete collagen. HSC transacti-
vation is also influenced by paracrine cytokines,
platelet-derived growth factor (PDGF), tumor necrosis
factor-alpha (TNF-α), transforming growth factor-beta
(TGF-β), etc. that are synthesized by kupffer cells
(KCs). Further, chemokines and cell adhesion mole-
cules and their receptors are expressed by activated
HSCs (Vinas et al. 2003; Riether et al. 2015). There-
fore, inflammatory and fibrogenic cells stimulate each
other and a complex interaction occurs in the course
of liver fibrogenesis between different hepatic cell
types (Maher 2001).
Cytokines have a major pro-fibrotic role in regulating

liver fibrogenesis in response to injury in vivo and in vitro
(Marra 2002). Amongst them, TGF-β1 appears to be a
central mediator in hepatic fibrogenesis (Gressner et al.
2002). TGF-β favors the transactivation of HSCs into
myofibroblasts and prevents ECM degradation. Strategies
aimed at inhibition of TGF-β1 synthesis and/or signaling
markedly ameliorated liver fibrosis in experimental
models (Shek and Benyon 2004; Xu et al. 2016).
In addition, PDGF, TNF-α, interleukin (IL)-6, IL-1β,

and IL-13 are also key pro-fibrotic mediators, pharma-
cological inhibition, and/or gene deletion of these
cytokines prevented the progression of hepatic fibrosis
(Schwabe et al. 2003; Kaviratne et al. 2004; Sudo et al.
2005). Furthermore, vasoconstrictors (e.g., norepineph-
rine, angiotensin II (Ang-II)) (Oben and Diehl 2004; Han
et al. 2017), and endothelin (ET)-1 (Cho et al. 2000;
Correia-Costa et al. 2016) exert potent fibrogenic activ-
ities, while vasodilators (e.g., nitric oxide (NO), relaxin)
have opposite actions (Iwakiri 2015).
Ang-II is a vasoactive component of the renin-angio-

tensin system (RAS) that seems to play a principal role
in hepatic fibrosis (Iwakiri 2015); it induces produc-
tion of inflammatory cytokines, mitogenesis, prolifera-
tion, and collagen synthesis in activated HSCs
(Bataller et al. 2003a). Inhibition and/or gene knock-
out of Ang-II significantly attenuated experimental
liver fibrosis (Yao et al. 2004a). Notably, the main
components of RAS are expressed in injured liver
tissues locally (Ahmadian et al. 2016), and activated
HSCs can synthesize Ang-II (Yoshiji et al. 2002a).

RAS contribution to fibrosis development
Angiotensin-converting enzyme (ACE) catalyzes the
conversion of the Ang-I into Ang-II; several reports pro-
posed that Ang-II plays a crucial role in hepatic fibro-
genesis (Saber et al. 2018a), and an Ang-II inhibitor or
receptor blocker significantly attenuated hepatic fibrosis
development and progression (Rippe and Brenner 2004;
Yao et al. 2004b; Saber et al. 2017; Saber et al. 2018b).
ACE is synthesized by hepatic KCs and is detected at the
gene level in trans-activated HSCs (Bataller et al. 2003b;
Huang et al. 2015). Proliferating bile duct epithelial cells,
hepatic inflammatory cells, and activated HSCs are
potential sources of ACE in the bile duct ligation liver
model of fibrosis (Paizis et al. 2002). The normal level of
ACE expression and activity in normal liver tissue is
considerably upregulated in the bile duct ligation model
of rat liver (Paizis et al. 2002). The distribution of liver
ACE is generally found increased in areas of active fibro-
genesis following bile duct ligation. In addition, the
increased serum activity of ACE in cirrhotic patients
suggests also that ACE has a critical role in hepatic
fibrosis (Huskic et al. 1999; Noguchi et al. 2017).
Blockade of Ang-II can inhibit the progression of hep-

atic fibrosis in animal models (Yoshiji et al. 2005). Peri-
ndopril and candesartan were found to attenuate hepatic
fibrosis and reduce the expression of alpha smooth
muscle actin (α-SMA) (Yoshiji et al. 2001a) and TGF-β1
(de Oliveira da Silva et al. 2017). Captopril delayed the
progression of hepatic fibrosis in a model of rat bile duct
ligation and was strongly associated with a decrease of
collagen gene expression and TGF-β1 (Jonsson et al.
2001). TGF-β1 expression upregulated by Ang-II paral-
lels overproduction of ECM proteins (Yoshiji et al.
2001a; Sui et al. 2015). Ang-II also upregulates α-SMA
(Meng et al. 2015) and downregulates E-cadherin
(Nguyen et al. 2016), both of which control epithelial
mesenchymal transition (EMT) (Liu et al. 2007).
Tissue inhibitors of metalloproteinases, particularly

the TIMP-1, are markedly increased both in humans
and murine liver fibrosis (Arpino et al. 2015; Iredale
1997). TIMP-1 was found to boost the development of
hepatic fibrosis in a transgenic mouse model (Yoshiji
et al. 2000). A marked reduction in the TIMP-1
expression level was linked to resolution of fibrosis
following matrix remodeling in a rat model of hepatic
fibrosis (Iredale et al. 1998). In addition, the TIMP-1
expression level was significantly upregulated by
Ang-II in hepatic myofibroblasts in a time- and
dose-dependent manner (Caley et al. 2015). Parallel to
TIMP-1 inhibition perindopril significantly attenuated
hepatic fibrosis development. Moreover, Candesartan
and LY333531 (a protein kinase C (PKC) inhibitor)
abolished TIMP-1 mRNA increase by Ang-II in a
dose-dependent manner suggesting PKC signaling
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pathway in the fibrogenic effect of Ang-II (Yoshiji et
al. 2003).
It was found that Ang-II increased TGF-β and fibro-

nectin mRNA expression in KCs that found to express
the angiotensin II type 1 (AT1) receptor (Leung et al.
2003). One report stated that KCs induced with Ang-II
demonstrated marked increase in the mRNA expression
levels of TGF-β1, TNF-α, and fibronectin, and these
levels were effectively decreased by saralasin and losar-
tan (Leung et al. 2003). Therefore, Ang-II has a critical
role in the fibrotic process and the interaction of Ang-II
and AT1 receptor is one of the foremost regulatory
pathways in the development of liver fibrosis.
Mast cells are capable of producing TGF-β1 and ECM

components. AT1 receptor was found expressed in liver
mast cells in the murine bile duct ligation (BDL) model
of liver fibrosis (Paizis et al. 2002).
Angiogenesis is a vital process in both hepatic fibrogen-

esis (Ehling et al. 2014) and carcinogenesis (Vogten et al.
2004; Dimova et al. 2014). Vascular endothelial growth
factor (VEGF) receptor expression was found to be upreg-
ulated in a murine model of hepatic fibrosis (Iwakiri et al.
2014). VEGFR (VEGF receptor)-1 and VEGFR-2 neutral-
izing monoclonal antibodies markedly attenuated fibrosis
development through suppression of neovascularization
(Yoshiji et al. 2002b). Furthermore, experimental fibro-
sis was inhibited by the anti-angiogenic agents, angios-
tatin and TNP-470 (Vogten et al. 2004). Pro-angiogenic
properties of Ang-II are in part facilitated by potentiat-
ing the expression of VEGF in endothelial cells
(Imanishi et al. 2004).
Alpha smooth muscle actin-positive cells were

significantly reduced in count by candesartan and
perindopril. Ang-II activates nuclear factor kappa-B
(NF-κB) pathway via AT1Rs leading to gene transcrip-
tion of pro-inflammatory cytokines such as TNF-α,
IL-6, and TGF-β1 (Wolf et al. 2002; Ozawa et al. 2007;
Ruiz-Ortega et al. 2006).
The interactions of Ang-II and AT1Rs are connected

to certain cardiac and renal fibro-proliferative diseases
(Bascands and Schanstra 2005; Sakai et al. 2008). A
normotensive mouse model of renal fibrosis found that
both ramipril and candesartan postponed the onset and
abolished the increase in the magnitude of proteinuria
and increased survival (Gross et al. 2004).

Hepatocellular carcinoma
Hepatocellular carcinoma is the most widespread type of
primary liver lesions, and it is the main consequence of cir-
rhosis. Numerous risk factors including hepatitis C
virus (HCV) and hepatitis B virus (HBV) infections
are the main causes of high prevalence of HCC
(El-Serag 2007; Nordenstedt et al. 2010; Sherman
2005; Mancuso 2017).

RAS contribution to cancer development
At a local tissue level, RAS enhances tumor growth.
Immune modulatory effects (Abdel-Ghany et al. 2015),
angiogenesis, mitogenesis, and ECM formation lay
behind potential tumor-promoting effects of RAS
(Deshayes and Nahmias 2005). Components of the RAS
are frequently found overexpressed in several types of
cancers such as lung, skin, cervical, pancreatic, pros-
tate, brain, colon, and breast cancer compared to their
corresponding normal tissues (Deshayes and Nahmias
2005). In particular, upregulation of the AT1R is princi-
pal. However, the expression of RAS components
appears to be altered with tumor types and their grade
(Louis et al. 2007).
Modulation of angiogenesis is the principal mechan-

ism by which RAS achieves its pro-tumor effects, which
is an essential step in the development of solid tumors
(Saber et al. 2018c). Various pro-angiogenic mediators
are activated by Ang-II including VEGF (Huang et al.
2008), angiopoietin-2 (Yasumatsu et al. 2004), basic
fibroblast growth factor (b-FGF) (Wysocki et al. 2006),
and platelet-derived growth factor (PDGF) (Fujita et al.
2002); these angiogenic properties are mediated by the
AT1R. In addition, RAS inhibition is often accompany-
ing a reduction in the expression of VEGF (Uemura et
al. 2003; Kosaka et al. 2007; Saber et al. 2018d). In a
model of ischemia-induced angiogenesis, Ang-II induces
angiogenic effects in the damaged vessels by increasing
expression of VEGF and upregulating endothelial NO
synthase levels; these effects found to be mediated
through the AT1R (Tamarat et al. 2002).
In a murine model of HCC, angiotensin-converting

enzyme inhibitors (ACEIs) have inhibited the develop-
ment of HCC lesions (Yoshiji et al. 2001b). Perindopril
showed a reduction in angiogenesis and tumor progres-
sion in head and neck squamous cell carcinoma
(Yasumatsu et al. 2004). Also, candesartan diminished
angiogenesis in different types of cancers such as the
xenograft model of human prostate cancer (Kosaka et al.
2007), mouse melanoma syngeneic tumors (Egami et al.
2003), ovarian cancer cells (Suganuma et al. 2005), and
murine Lewis lung cancer model (Fujita et al. 2002). In
addition, captopril and irbesartan inhibited angiogenesis,
carcinogenesis, and metastases in colorectal cancer liver
metastases in mice (Neo et al. 2007). Therefore, RAS in-
tensely impact the level of neovascularization.
Yoshiji et al. (2007) revealed that a dual combination

of ACEI and vitamin K produced intense anti-angiogenic
properties and ameliorated dysplastic nodules and effect-
ive reduction in the level of alpha fetoprotein (AFP) in
cirrhotic patients; these nodules disappeared completely
after 1 year of administration. Another combination of
perindopril and vitamin K2 prevented neovascularization
and the development of HCC in a report by Yoshiji et al.
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(2006). In addition, Yoshiji et al. (2002c) revealed that
perindopril effectively ameliorated hepatic fibrosis and
pre-neoplastic foci in two models of liver carcinogen-
esis. In addition, perindopril and interferon-β at lower
clinical effective doses inhibited angiogenesis and
prevented tumor development that was associated
with a reduction in VEGF (Noguchi et al. 2003). Fur-
thermore, perindopril and 5-fluorouracil prevented
the development of HCC by suppressing neovasculari-
zation in mice (Yanase et al. 2007).
In the clinical settings, it was reported that patients

treated with sorafenib plus RAS inhibition had a better
median overall survival (19.5 months) compared to those
treated with either sorafenib (10.9 months) or RAS
inhibition (9.7 months) alone (p = 0.043) (Pinter et al.
2017). Another study reported that the use of ARBs dur-
ing erlotinib treatment may prolong overall survival of
metastatic non-small cell lung cancer patients (Aydiner
et al. 2015).
Ang-II can increase expression of ETB receptor in

HSCs and induce production of ET-1 in endothelial cells
(Bataller et al. 2003b; Cheng et al. 2005). ET-1 acting on
ETB receptor can induce migration and proliferation of
endothelial cells. Several studies proposed that ET-1
augments the pro-angiogenic effects of VEGF (Ribatti et
al. 2007).
Ang-II is able to induce mitogenesis of endothelial

cells, fibroblasts, and smooth muscle cells (Touyz and
Schiffrin 2000) and can induce transcription of several
growth-related oncogenes (Nogueira et al. 2007) and
growth factors (Deshayes and Nahmias 2005) in various
cells. These suggest that RAS can also affect tumor cell
proliferation and survival.
Ang-II stimulates the secretion of gonocyte colony-

stimulating factor (GCSF), MCP-1, and MCP-2 resulting
in excessive macrophage infiltration (Egami et al. 2003;
Kosugi et al. 2006; Tone et al. 2007). In addition, macro-
phage infiltration into the tumor endorses growth and
metastasis (Leek et al. 1994; van der Bij et al. 2005). Not-
ably, M2 macrophage pathway is connected with these
pro-tumor functions.
In addition, macrophage infiltration can participate in

tumor metastasis at later stages when host defenses are
debilitated. Regarding this situation, rapid proliferation
of cancer cells enable binding of tumor cells by KCs to
initiate the generation of new metastatic sites (Bayon et
al. 1996). Macrophages also can secrete several cytokines
facilitating tumor growth and metastases by induction of
angiogenesis (Egami et al. 2003; van der Bij et al. 2005;
Nishie et al. 1999).

Conclusion
A feature is now becoming clear that there is a pre-
requisite of using multiple drug therapy for management

of liver fibrosis and HCC. This is due to the complex
networks of multiple and often redundant pathways.
Anti-hypertensive agents based on angiotensin II inhib-
ition such as the ACEIs or the ARBs are of low economic
cost and have already been in clinical use with their
well-known safety profiles and if these drugs can inhibit
the development and progression of tumors at their lowest
effective clinical doses, then they may provide a useful
adjunctive therapeutic strategy in the treatment of fibrosis
and cancer. Therefore, angiotensin II inhibitors are prom-
ising candidates for further clinical trials in the manage-
ment of liver fibrosis, cirrhosis, and HCC.
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